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Parameter-Free Gaussian PSF Model for Extended
Depth of Field in Brightfield Microscopy
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Abstract— Due to their limited depth of field, conventional
brightfield microscopes cannot image thick specimens entirely
in focus. A common way to obtain an all-in-focus image is to
acquire a z-stack of images by optically sectioning the specimen
and then apply a multi-focus fusion method. Unfortunately, for
undersampled image stacks, fusion methods cannot remove the
blur in regions where the in-focus position is between two optical
sections. In this work, we propose a parameter-free Gaussian
PSF model in which the all-in-focus image together with both the
depth map and sampling distances in image plane are estimated
from the image sequence automatically, without knowledge on
the z-stack acquisition. In a maximum a posteriori framework,
an iteratively reweighted least squares method is used to estimate
the image and an adaptive scaled gradient descent method
is utilized to estimate the depth map and sampling distances
efficiently. Experiments on synthetic and real data demonstrate
that the proposed method outperforms the current state-of-the-
art, mitigating fusion artifacts and recovering sharper edges.

Index Terms— Blind deconvolution, point spread function,
shape from focus, focal stack.

I. INTRODUCTION

IN microcopy, the limited depth of field of optical systems
is an important problem which must be addressed. It is

impossible to capture an image in which all the objects are
in focus. In other words, only portions of the scene within
the system’s focal range are in focus, while others exhibit
various amount of blur. One common remedy for conventional
brightfield microscopy is to acquire a sequence of optical
sections of the sample by gradually moving the sample along
the optical axis, generating a z-stack of images that contains
all the available in-focus information on the specimen.
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Mathematically, the z-stack formation model can be
described in matrix-vector form as [1]–[3]

gl = Hl f + nl , l ∈ [1, L], (1)

where gl ∈ R
N is the lth observation in the z-stack, nl ∈ R

N

is assumed to be zero-mean Gaussian white noise, f ∈ R
M

represents the latent all-in-focus image, and Hl denotes the
M × N blur matrix corresponding to the lth capture, which
is defined by the Point Spread Function (PSF) of the system.
In this work, we aim to estimate the latent all-in-focus image f
from a given set of blurred images {g1, g2, . . . , gL}, without
knowing the sequence of blurs {H1, H2, . . . , HL}.

To estimate a sharp image from a z-stack, multi-focus
image fusion [4]–[11] or model based deconvolution [12], [13]
methods can be used. Most multi-focus image fusion methods
obtain the all-in-focus image as a weighted average of the
z-stack images, either in the spatial or a transformed domain,
see [14] for a recent literature review. The quality of the fused
image mainly relies on the focus measure (FM) used. This
measure determines the weighting values. Numerous FMs have
been proposed in the last decade, see [5] for a comprehensive
analysis. Commonly used FMs are image gradient (first or high
order derivatives), image variance, wavelet coefficients, dis-
crete cosine transform coefficients and image statistics.
FM weights strongly depend on the window size used. The
fused image often exhibits some blocking artifacts, since
an image block may contain both in focus and defocus
areas. Pixel based multi-focus fusion methods, including
guided filter fustion (GFF) [6], dense scale-invariant feature
transform (DSIFT) [8], dictionary based sparse representa-
tion [7], directional-max-gradient flow with depth propaga-
tion [9], and convolutional neural networks (CNN) [10], [11]
better preserve spatial consistency and mitigate block artifacts.
Unfortunately, depending on the depth of field (DOF) of
the optical system and the thickness of specimen, multi-
focus fusion methods often require tens or even hundreds
of partially in focus images to generate an all-in-focus
image [15]. If the z-stack is undersampled, multi-focus
fusion methods cannot remove the defocus blurs in every
image sample due to the averaging operation. This weak-
ness of fusion methods restricts their use in situation where
image acquisition cost (time) is limited, e.g., cervical cancer
screening.

Model based deconvolution methods take into account the
z-stack formation model and iteratively recover both the
latent sharp image and the depth map. For an undersampled
z-stack, the resulting problem becomes ill-posed, and priors
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on the latent image and the depth map must be introduced to
remove defocus blurs. When the optical constant and sampling
distances are both given, Auget et al. [12] propose a 2.5-D
Gaussian blur model for extended depth of field in brightfield
microscopy. Provided that the camera constants have already
been calibrated, Rajagopalan and Chaudhuri [3] propose to
reconstruct the all-in-focus image and depth map by modeling
both the restoration and depth varying parameters as Markov
random fields. Lin et al. [13] first estimate the initial depth
map by utilizing the relative blur [16] and total variation
regularization, and then alternatively refine the latent image
and depth map using sparse image priors [17]. References [3]
and [13] need camera calibration for different camera settings
and the image acquisition is not performed by optical section-
ing as in brightfield microscopy.

Non-model based deconvolution methods [18], [19],
and [20], which rely on blur map estimation, have also been
proposed to remove depth varying defocus blur from a single
image. Unfortunately, due to the missed information during
sampling, these blind deconvolution methods perform worse
than multi-focus fusion ones, since fine details that have been
significantly blurred cannot be recovered. Assuming that blur
kernels are constant within a local 9 × 9 patch, the recent
multi-image deconvolution method with �1 regularization [21]
recovers an all-in-focus super-resolution image from a focal
stack. However, since this method is not a model based one,
the depth map cannot be recovered and the blur kernels are
not correlated along the optical axis.

Apart from the above computational methods, optical tech-
niques also can be used to extend the depth of field. The
wavefront coding methods [22]–[24] utilize a cubic phase
mask, which is placed at (or conjugate to) the exit pupil
of the microscope objective, to make the out-of-focus PSF
similar to the in-focus PSF. A sharp all-in-focus image is
then reconstructed from the captured image using image
deconvolution. Levin et al. [17] show that a coded aperture
and patch based kernels can be used to improve the quality
of all-in-focus image. A different approach [25] uses vol-
umetric optical sampling to acquire an accumulated image.
It assumes that the blur is spatially invariant and reconstructs
the sharp image by deconvolving the captured image with the
accumulated PSF.

In this work, following the depth varying Gaussian
PSF model in [26], we propose a parameter free Gaussian
PSF model in which the optical constant is removed by includ-
ing it into the unknown depth map and sampling distances.
We show that, without knowing the optical constant and z-
stack sampling distances, the latent image, depth map and
sampling distance (both in the image plane sense) can be
estimated from the given z-stack by solving a regularized least-
squares minimization problem. Since the proposed model does
not need any information on the optical system, it can be used
in a wide range of scenarios. In the proposed framework,
an iteratively reweighted least squares method is used to
estimate the image and a new adaptively scaled gradient
descent algorithm is proposed to estimate the depth map and
sampling distances efficiently. Experiments on synthetic and
real data demonstrate that the proposed method outperforms

the current state-of-the-art, mitigating fusion artifacts and
recovering sharper edges.

II. MODEL FORMULATION

In this section, we first review the two 2.5-D convolution
models presented in [12] and [26], respectively. We then
discuss both models and finally formulate our parameter-free
Gaussian PSF model.

A. 2.5-D Convolution Model With Gaussian PSF

Without loss of generality, we assume that the size of
image gl is [√N ,

√
N ] and the largest PSF kernel size is

[2k+1, 2k+1]. Following the 2.5-D convolution model in [12],
the observed image gl is a shift-variant convolution between
the latent sharp image f and the 3D PSF h(x, y, ν) of the
microscope plus noise, that is,

gl(u, v) = nl(u, v)

+
k∑

x=−k

k∑
y=−k

f (u − x, v − y)h(x, y, d(u − x, v − y) − zl),

(2)

where d(u, v) denotes the depth map whose value represents
the distance between the surface point at pixel (u, v) and the
objective lens; zl represents the sampling distance at which
the surface of specimen will be in focus; and the use of√

M = √
N + 2k indicates that the undermined boundary

conditions have been imposed to mitigate boundary artifacts,
see [27] for more about boundary conditions. For a given
depth d(u, v) and a sampling distance z, the PSF h(x, y, ν),
where ν(u, v, x, y) = d(u − x, v − y) − z and (x, y) denotes
displacement vector, is assumed to be the Gaussian function

h(x, y, ν) = 1

2π(η0 + η1|ν|)2 exp (− (x2 + y2)

2(η0 + η1|ν|)2 ), (3)

where η0 is a small positive number to avoid division by zero
and η1, which depends on z and d , represents the optical
constant that converts world coordinates to image plane.

It is shown in [12] that the 2.5-D shift-variant convolution
model in Eq. (2) is valid provided that the specimen is
opaque or the specimen is transparent but much thicker than
the DOF of the system. A sequence of z-stack images can be
captured by varying the distance between the specimen and
objective lens. This sequence can be approximately described
by Eq. (2).

The image formation model in [26] (see Eq. (14), in
page 1136) assumes the following simpler form

gl(u, v)=
k∑

x=−k

k∑
y=−k

f (u−x, v−y)h(x, y, νl(u, v))+nl(u, v),

(4)

where νl(u, v) = d(u, v) − zl and h(x, y, νl) is the Gaussian
function in Eq. (3). In general, the image formation model in
Eq. (2) is more precise than the one in Eq. (4), since the local
kernel takes into account the neighbouring depth information.
However, for a smooth surface, both models are numerically
close. In this work, assuming that the surface of specimen is
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smooth, we adopt the image formation model in Eq. (4) since
it is mathematically more tractable.

B. Shortcomings of the Gaussian PSF in Eq. (3)

Using the thin lens model for the microscope in [15]
and according to the defocus blur radius equation given
in [1], [28], we have

η1 = s F2

Ad(z − F)
, (5)

where s denotes resolution (measured in pixels per microm-
eter), F is the focal length, and A is the f-number. Since
d(z − F) is almost constant (due to very reduced thickness
of specimens) and because the variability in {zl} is limited,
in [12], η1 and {zl} are treated as input constants provided by
the user.

However, the value of η1 is difficult to know, since the
depth map d is unknown in practice. Consequently, it is hard
to provide an accurate estimate of η1, and even more difficult
when {zl} is unavailable. Unfortunately, a wrong estimate
of η1 also introduces error in the estimation of the depth map.
If η1(d − z∗

l ) = η∗
1(d∗ − z∗

l ) (assuming no error in the PSF
for both models) with ∗ indicating groundtruth, then we have
the depth estimate error

�d − d∗� = �(η
∗
1

η1
− 1)(d∗ − z∗

l )�, (6)

which increases proportionally to the relative error of the
optical constant.

In addition, the normalization scalar 2π(η0 + η1|z|)2 in
Eq. (3) is true for infinite kernel support only. As a result,
a small approximation error which depends on the assumed
kernel size always exists in practice. The Gaussian PSF model
in [12] is never normalized and the total intensity of the recov-
ered image is modified. In summary, drawbacks of the
Gaussian PSF model in [12] include a) the need to know
the optical constant η1 and the sampling distance {zl} and
b) the PSF error caused by the finite kernel size and the inaccu-
rate estimates of optical constant and sampling distances. Let
us now introduce our model which solves the above indicated
problems.

C. Parameter-Free Gaussian PSF

Since we aim to estimate the latent sharp image,
we rescale ν, d , and z by multiplying all of them by

√
η1 and

define the discrete form of the 3D parameter-free Gaussian
PSF as

h(x, y, ν) =
exp (− (x2+y2)

2(η0+ν2)
)∑k

m=−k
∑k

n=−k exp (− (m2+n2)
2(η0+ν2)

)
. (7)

Notice that η0 is just a small positive number to avoid
division by zero. The proposed Gaussian PSF in Eq. (7) is
parameter free. The unknown depth and sampling distances
will be estimated from the z-stack. Furthermore, thanks to the
denominator in Eq. (7), all blur kernels are normalized for
arbitrary kernel support size.

Now substituting Eq. (7) into Eq. (4), we obtain the z-stack
model formulation:

gl(u, v)

=
k∑

x=−k

k∑
y=−k

f (u − x, v − y) exp (− (x2+y2)

2(η0+ν2
l (u,v))

)∑k
m=−k

∑k
n=−k exp (− (m2+n2)

2(η0+ν2
l (u,v))

)
+nl(u, v),

(8)

where νl is a vector with components νl(u, v) = d(u, v) − zl

and the redundant scalar η1 has been removed for simplicity.
In what follows, the depth map d and sampling distances zl are
understood in image plane.

Let fxy(u, v) = f (u − x, v − y) ∈ R
N be the shifted sub-

image of f , the matrix-vector convolution in Eq. (1) can be
written as

Hl f =
k∑

x=−k

k∑
y=−k

fxy ◦ h(x, y, νl), (9)

where ◦ denotes element-wise multiplication.
The benefits of the proposed PSF model in Eq. (7) include a)

no need to know the z-stack acquisition and b) the possibility
of finding the best sampling distances and depth map that
match the model in Eq. (8) regardless of factors like opti-
cal diffraction [29], [30], aberration [15], digitalization [31],
nonlinear camera response, downsampling, and image
compression.

III. PROBLEM FORMULATION

Given a z-stack {g1, g2, . . . , gL}, our goal is to estimate the
latent sharp image f , depth map d and sampling distances
{zl} using a probabilistic based formulation. To achieve this
goal we introduce the priors on the unknown (latent) variables
and combine them with the observation model to obtain the
cost function to be optimized when the MAP (maximum a
posteriori) approach is used.

Assuming an i.i.d. Gaussian noise with variance σ 2,
we write the observation model as

P({gl}| f, d, {zl}) ∝ exp
(

−
L∑

l=1

�Hl f − gl�2
2

2σ 2

)
. (10)

Unfortunately, the maximization of the above likelihood
is an ill-posed problem, particularly when the z-stack is
undersampled. Priors on the latent image and depth map are
indispensable. Levin et al. [17] have shown that natural images
have a heavy-tail distribution in the gradient domain. We adopt
the following sparse prior on the latent image

P( f ) ∝ exp
( − λ f

σ 2

5∑
γ=1

�Dγ f �p
)
, (11)

where Dγ is the partial convolution operator formed by
the derivative filter ∇γ (∇1 = [1,−1],∇2 = ∇T

1 ,∇3 =
[−1, 2,−1],∇4 = ∇T

3 ,∇5 = [1,−1; −1, 1]) and p is a scalar
in the range [0.6, 0.8] which enforces natural image sparsity
in the gradient domain, see [17] for details. See [32] and [33]
for additional information on sparsity promoting priors.
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Since we are interested in cell images, we impose a smooth
prior on the depth map, which is defined as

P(d) ∝ exp (−λd

σ 2

2∑
γ=1

�Dγ d�2
2). (12)

The depth prior plays an important role in depth recovery
and should be chosen properly according to the shape of
specimen. For example, if the shape of specimen is piecewise
smooth, sparse priors including TV [34], �p [17] and nonlocal
means [26] are good candidates.

Finally, assuming a uniform improper prior for the sampling
distances, namely P({zl}) ∝ const , we have

P( f, d, {zl }|{gl}) ∝ P({gl}| f, d, {zl})P( f )P(d)P({zl })

∝ exp(−
L∑

l=1

1

2σ 2 �Hl f − gl�2
2

−λ f

σ 2

5∑
γ=1

�Dγ f �p − λd

σ 2

2∑
γ=1

�Dγ d�2
2).

(13)

Now that we have the joint distribution, we proceed to cal-
culate the mode of the posterior distribution P( f, d, {zl }|{gl}),
the so called MAP estimate, which is obtained by max-
imizing the logarithm of the posterior or equivalently by
minimizing the following cost function

J ( f, d, {zl})

=
L∑

l=1

1

2
�Hl f − gl�2

2 + λ f

5∑
γ=1

�Dγ f �p + λd

2∑
γ=1

�Dγ d�2
2.

(14)

The cost function J ( f, d, {zl}) consists of three terms: the
data fidelity term J f = ∑L

l=1
1
2�Hl f − gl�2

2, the image

regularization term R f = λ f
∑

γ �Dγ f �p and the depth

map regularization term Rd = λd
∑2

γ=1 �Dγ d�2
2. The data

fidelity term takes the dependence on the observation data
into account and the regularization terms enforce the desired
smoothness. The regularization weights λ f and λd represent
the trade-off between data fidelity, image smoothness and
depth smoothness. Our goal now becomes the minimization
of the cost function.

IV. OPTIMIZATION

The cost function J ( f, d, {zl}) is minimized by an iterative
alternating optimization scheme: a) fixing the latent image,
the depth map and sampling distances are estimated; b) fixing
the depth map and sampling distances to estimate the latent
image.

A. Joint Depth and Sampling Distance Estimation

Fixing f in J ( f, d, {zl}), we use gradient descent to mini-
mize the nonconvex cost

Jdz(d, {zl}) =
L∑

l=1

1

2
�Hl f − gl�2

2 + λd

2∑
γ=1

�Dγ d�2
2. (15)

The gradients ∇d Jdz and ∇zl Jdz are computed using the chain
rule. First of all, we have

∇d Jdz =
∑
x,y,l

∂h(x, y, νl)

∂d
◦ ∂ Jdz

∂h(x, y, νl)
+2λd

2∑
γ=1

DT
γ Dγ d,

(16)

where ∂ Jdz/∂h(x, y, νl) and ∂h(x, y, νl(u, v))/∂d(u, v) are
respectively given by

∂ Jdz

∂h(x, y, νl)
= fxy ◦ (Hl f − gl) (17)

and
∂h(x, y, νl(u, v))

∂d(u, v)
= h(x, y, νl(u, v))

νl

(η0 + νl
2(u, v))2

[(x2 + y2) −
k∑

m=−k

k∑
n=−k

h(m, n, νl (u, v))(m2 + n2)].

(18)

Similarly, we have

∇zl Jdz =
∑

x,y,u,v

∂h(x, y, νl(u, v))

∂zl

∂ Jdz

∂h(x, y, νl(u, v))

= −
∑

x,y,u,v

∂h(x, y, νl(u, v))

∂d(u, v)

∂ Jdz

∂h(x, y, νl(u, v))
.

(19)

With the gradients in Eqs. (16) and (19), we use the
backtracking line search algorithm [35] to minimize the
cost Jdz . Notice that Jdz is expected to change faster
on z than on d , to compensate for the differences in
variation, we have experimentally observed that a better
convergence is obtained when we scale the gradient ∇d Jdz

by max(maxl |∇zl Jdz|/ maxu,v |∇d Jdz|, 1).
The Adaptively Scaled Gradient Descent Algorithm

(ASGDA) is presented in Alg. 1. It should be noted that
z1 is fixed to 0 to eliminate the ambiguity caused by multiple
solutions. Without fixing z1, there are infinite pairs of optimal
solutions {d∗+θ, {z∗

l +θ}} where θ is an arbitrary real number.
Numerical results demonstrate that the proposed ASGDA finds
an approximate (local or saddle) optimal solution efficiently.

B. Image Estimation

Fixing d and {zl} in J ( f, d, {zl}), we now minimize the
function

J f ( f ) =
L∑

l=1

1

2
�Hl f − gl�2

2 + λ f

5∑
γ=1

�Dγ f �p, (20)

whose stationary points can be approximately found by
iteratively reweighted least squares (IRLS). Using IRLS, at
iteration t (t = 0, 1, 2, ..) we update the weights using

W t
γ = min(p|Dγ f t |p−2, p� p−2) (21)

and then find f t+1 by solving the linear system

(

L∑
l=1

H T
l Hl + λ f

5∑
γ=1

DT
γ diag(W t

γ )Dγ ) f t+1 =
L∑

l=1

H T
l gl,

(22)
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Algorithm 1 Adaptive Scaled Gradient Descent Algorithm

where � is a small positive real number and the linear system
can be solved efficiently by the conjugate gradient (CG)
method, see [35]. We refer interested readers to [36] for the
derivations of Eqs. (21) and (22) and the proof of convergence.
Now that we have the optimization procedure to find the latent
image, the depth map, and the sampling distances, let us see
how we initialize them.

C. Initializations

The cost function J ( f, d, {zl}) is nonconvex and the pro-
posed optimization method may converge to poor local min-
ima. A good initialization not only reduces the running time
but also helps avoid poor local minima.

1) Image Initialization: Numerous multi-focus image fusion
methods, including the recent GFF [6], DSIFT [8] and CNN
based [10] method, just to name a few, can be used for
latent image initialization. For simplicity and speed, and based
on the fact that the total variation of a patch decreases as
defocus increases [37], we adopt as focus measure, the Patch
Total Variation (PTV), which is similar to Spatial Frequency
Measure [5], and it is defined as

PT Vl = APre

√
(D1gl)2 + (D2gl)2, l ∈ {1, . . . , L} (23)

where Pre pads the image with repeated instances of the
edge pixel values and A is the partial convolution matrix [27]
formed by the mean filter of size [4k + 1, 4k + 1]. Given
PT Vl , and using a 2D notation for pixels, we now proceed
to compute the weights which are needed for image fusion.
Firstly, we define

lmax(u, v) = arg max
1≤l≤L

PT Vl(u, v), (24)

wmax(u, v) = PT Vlmax(u,v)(u, v). (25)

Secondly, we set the weights to

ŵl(u, v) =
{

wmax(u, v) ∗ κ, i f l = lmax(u, v)

PT Vl(u, v), otherwi se

where κ ∈ R
+ is selected to achieve a trade-off between image

smoothness and sharpness [4]. By default we use κ = 100.
Weights are then normalized using

wl(u, v) = ŵl(u, v)∑
k ŵk(u, v)

. (26)

Finally, the initial image estimate f0 is the weighted average
of z-stack images, that is,

f0 = Pre

L∑
l=1

wl ◦ gl, (27)

where the repeated boundary condition Pre [27] is used for
padding.

The fused image f0 combines nearly all the sharpest regions
in the z-stack but it exhibits blocking artifacts caused by the
fusion. When the z-stack is undersampled, the quality of f0
drops and defocus blur remains in f0. Overall, the fused image
can be considered a good initial image estimate for PSFs
estimation, since no much computation will be needed to turn
it into a sharp image.

2) Sampling Distances and Depth Map Initialization: Since
we do not know much about the z-stack acquisition, we ini-
tialize {zl} using a user provided constant ζ (e.g., an estimate
of the mean ζ ≈ ∑L

l=1 zl/L), that is,

zl = ζ, 2 ≤ l ≤ L, (28)

and the depth map using the constant ζ , i.e., d(u, v) = ζ .

V. EXPERIMENTS

In this section we perform three sets of experiments. We first
validate the efficiency of the proposed ASGDA and compare
it to the Limited memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method [39]. Then we test our method to estimate
the all-in-focus image together with both the depth map and
sampling distances on synthetic data and compare it to the cur-
rent state-of-the-art methods. Finally, we conduct experiments
on real images. In all experiments, we set η0 = 0.1, tol =
1e − 3, λ f = 1e − 4 and κ = 100.

A. ASGDA Evaluation

In this section we evaluate the performance of Alg. 1 to
efficiently calculate the depth map and sampling distances. The
256 × 256 cameraman is selected as the groundtruth image.
To create the depth map we use a Gaussian function with
mean = [128.5, 128.5] and std = 128/3 as the normalized
depth map dn . The ground truth depth map is then set
to 3 ∗ dn . The sampling distances are 0, 1, and 2. We set
k = 4 to define the blur size in Eq. (8), and then we generate
a sequence of 3 partially in focus images to which white
Gaussian noise with std = 0.2% is added, see Fig. 1(a)-(c),
respectively. We use the groundtruth image as the latent image
estimate, set λd = 2e − 3 and ζ = 1.5, and compare the
performance of the proposed ASGDA and L-BFGS. As shown
in Fig. 1, the recovered images are of similar visual quality.
The one obtained by our method is, however, slightly better in
PSNR terms (33.77 dB vs 33.45 dB). See the the restorations
in Figs. 1(e) and 1(f).
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Fig. 1. ASGDA vs L-BFGS. (a)-(c) Z-stack images. (d) Groundtruth.
(e) Restoration with the PSFs estimated by L-BFGS, PSNR = 33.45 dB.
(f) Restoration with the PSFs estimated by ASGDA, PSNR = 33.77 dB. The
restoration obtained with the PSFs estimated by ASGDA with scaling factor
one is poor (PSNR = 30.80 dB) and it is not shown here.

Fig. 2. Simulation results with the image formation model in Eq. (2) [12].
(a)-(h) Z-stack images synthesized using EDF [12]. (i) EDF [12] restoration,
PSNR = 37.86 dB. (j) GFF [6] restoration, PSNR = 39.20 dB. (k) DSIFT [8]
restoration, PSNR = 38.51 dB. (l) CNN [10] restoration, PSNR = 38.54 dB.
(m) Our restoration, PSNR = 41.68 dB. (n) Groundtruth. (o) EDF depth map.
(p) Our depth map. Our restoration is sharper than the others. Please zoom
in for details.

Table I shows the Jdz(d, {zl}) (see Eq. (15)) values obtained
by both algorithms at different iterations. ASGDA drops the
cost from 74.87 to 23.72 in ten iterations, whereas L-BFGS
needs 20 iterations to reach a cost of 27.38. In addition,
without scaling the gradient ∇d J (d, {zl}) (fixing scale = 1
in Alg. 1), the cost decreases slowly to 48.37 after 99 itera-
tions. This demonstrates the importance of adaptively ampli-
fying the gradient ∇d J (d, {zl}). Overall, as shown in Table I,
the proposed ASGDA yields slightly more accurate sampling
distances than L-BFGS and it is less time consuming.

Fig. 3. Robustness against noise. (a) Z-stack with 1% Gaussian
noise. (b) DSIFT restoration, PSNR = 30.64 dB. (c) CNN restoration,
PSNR = 30.68 dB. (d) GFF restoration, PSNR = 30.18 dB. (e) EDF
restoration, PSNR = 26.68 dB. (f) Our restoration, PSNR = 33.37 dB.
(g) Groundtruth image. (h) EDF depth map. (i) Our depth map. (j) Groundtruth
depth map. (k) Our heatmap |d − z1|. (l) Our heatmap |d − z2|. (m) Our
heatmap |d−z3|. (n) Groundtruth heatmap |d∗−z∗

1 |. (o) Groundtruth heatmap
|d∗ − z∗

2 |. (p) Groundtruth heatmap |d∗ − z∗
3 |. All depth maps are divided by

their maximum value for visualization. Please zoom in for details.

B. Synthetic Data

In this section, we compare our method, using syntheti-
cally generated z-stacks, with the deconvolution based method
EDF1 [12] and the state-of-the-art fusion based methods
GFF2 [6], DSIFT3 [8] and CNN3 [10]. Notice that EDF [12]

1Software available at http://bigwww.epfl.ch/demo/edf/
2MATLAB code available at http://xudongkang.weebly.com
3MATLAB code available at http://www.escience.cn/people/liuyu1/
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Fig. 4. Recovered latent sharp images from the z-stack ‘Monopoly’ (ID=16). Close-up views are also provided. PSNR values are shown in Table II (ID=16).

provides a depth map estimate, whereas the fusion meth-
ods [6], [8], [10] cannot.

1) Analyzing the Robustness of the Proposed Model:
We first check the robustness of our z-stack model formulation
(see Eq. (8)) when the image formation model in [12], that is,
Eq. (2), is used to generate the observed images.

Since we are interested in cell pathology, the Hestain image
is used as the latent sharp image. By setting η0 = 0.1 and
η1 = 1 and selecting ‘dome’ as the groundtruth depth map,
the EDF java software provided by Auget et al. [12] generates
a sequence of eight partially in focus images, see Fig. 2(a)-(h).
Our estimated all-in-focus image, presented Fig. 2(m), has
slightly sharper textures than its competitors and leads

PSNR values by 2 ∼ 3 dBs. The depth map estimated by the
proposed method shows an overall dome like shape, but suffers
from noticeable chaotic structures due to the ill-posed nature
of flat regions. Notice that these structures in flat regions do
not prevent our method from providing a good image estimate
since the residuals gl(u, v) − [Hl f ](u,v) in flat regions are
always close to zero.

Let us now analyze the robustness of the proposed method
against noise. The USAF resolution test chart was chosen as
the latent sharp image and a pyramid of 6 levels was used
as depth map, see Fig. 3(j). The pyramid depth map is in the
range [0, 3] and the sampling distances are 1, 2, and 3. To each
image 1% white Gaussian noise is added. Since only three of
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Fig. 5. All-in-focus image reconstruction from the dome z-stack provided by Auget et al. [12]. Our image estimate exhibits more image details and sharp
edges. Please zoom in for more details.

TABLE I

COMPARISON OF ASGDA AND L-BFGS

the six pyramid layers are sampled, more than half the area of
the z-stack shown in Fig. 3(a)-(c) is out-of-focus. As we can
see in the restorations in Fig. 3, the proposed method, thanks to
the sparsity promoting regularization, recovers sharper image
edges without amplifying the noise. The depth map estimated
by EDF is quite blurry, whereas our depth map recovers
parts of the pyramidal structure. Since the PSF is determined

by the difference between depth map and sampling distance,
we compare the PSFs by visualizing the heatmap |d − z| and
plot in Fig. 3(k)-(p) our estimated |d − zl | and groundtruth
|d∗ − z∗

l |.
2) Comparison With the State-of-the-Art Fusion Meth-

ods: The scenes2006 half-size dataset4 [38], which contains
21 color image and depth map pairs, is downloaded. All color
images are converted to gray ones. The depth maps are linearly
re-scaled to the interval [0, 5] and the sampling distances are
set to 5/3, 10/3, and 5. In summary, we obtain 21 z-stacks.
A 0.2% white Gaussian noise is added to each individual
image. The PSNR values obtained by the 5 methods are
presented in Table II. As we can see, the 4 image fusion
methods ( f0 stands for the result of the PTV based fusion
method) perform similarly in PSNR terms, whereas the pro-
posed method achieves much higher average PSNR than its
competitors. It outperforms the best fusion method (DSIFT)
by more than 1 dB.

4Available at http://vision.middlebury.edu/stereo/data/scenes2006/
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Fig. 6. Comparison of image estimation from a z-stack of cervical cells. The proposed method recovers sharper image edges and more tiny details.

TABLE II

PSNR COMPARISON OF FUSION METHODS ON DATASET [38]

Figure 4 shows an example for visual comparison. As shown
in the close-up views in Fig. 4(a)-(c), the digit 5 at the bottom
is blurred in all the acquired images because the in focus
position is between two optical sections and the fusion method
cannot remove such blur. The digit 5 recovered by our method,
which is shown in Fig. 4(h), is as sharp as the one in the
groundtruth image, see Fig. 4(i).

TABLE III

RELATIVE �2-NORM ERRORS OF THE ESTIMATED SAMPLING DISTANCES

To evaluate the estimated sampling distances
we utilize the relative �2-norm error, defined as√∑3

i=1(zi − z∗
i )

2/
∑3

i=1 z∗
i

2. For calculating the relative
�2-norm error, z∗

1 = 0, z∗
2 = 5/3, and z∗

3 = 10/3 are
the right groundtruth sampling distances. Table III shows
them. The four largest relative �2 − norm errors: 0.72,
0.45, 0.7 and 0.76 correspond to images 2, 11, 17, and 21,
respectively. Notice that these errors are far away from the
rest. Interestingly, although the estimated sampling distances
are very inaccurate, e.g., images 11 and 17 in Table III,
the PSNRs of the recovered images are better than those of
the state-of-the-art fusion methods.

C. Real Data

We first evaluate the performance of the proposed method
on the ‘dome’ z-stack provided by Auget et al. [12].



3236 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 7. Image reconstruction from a undersampled z-stack of overlapping cervical cells. Our image estimate exhibits much less fusion artifacts and more
sharp nucleus and image details. Please zoom in for more details.

The ‘dome’ z-stack consists of 20 1450 × 1996 color images.
Estimating the all-in-focus image from the whole sequence
requires more than one TB of memory to store the PSFs only.
Instead we only use the first three images and crop out a
600 × 600 square region, where the first three images are
partially in focus but the remaining 17 images are entirely
out-of-focus and hence useless for image restoration.

The cropped 600 × 600 subimages are presented
in Fig. 5(a)-(c), they exhibit blur where the in focus position
falls between two optical sections. From the image estimates
shown in Fig. 5(d)-(i), it is clear that the proposed method sig-
nificantly removes the blur and recovers more tiny textures and
sharper image edges, see the blue boxes marked in Fig. 5(i).
The recovered depth map in Fig. 5(k) shows that the dark
and gray regions match the in-focus regions of g1 and g2.
Furthermore, the very bright top-right corner matches the in-
focus region of input g3. We also present in Fig. 5(l) the image
estimated by EDF using the whole z-stack, which is not better
than our recovered image.

We now show the performance of the proposed method on
two additional real z-stacks of cervical cell images of dimen-
sion 384 × 512. The first z-stack, presented in Fig. 6(a)-(e),
is sampled nearly evenly along the optical axis and consists
of 5 cervical cell images with some overlapping. The image
estimates shown in Fig. 6(f)-(k) demonstrate that the proposed
method recovers more details such as tiny nucleolus and fine
cell structures, see the blue boxes marked in Fig. 6(k).

The second z-stack of cervical cell images, which is sam-
pled unevenly along the optical axis, is shown in Fig. 7(a)-(c).
This is a very challenging image set since: a) the sequence
is undersampled and b) a number of cells overlap. As we
can see in Fig. 7, the nucleus in the blue boxes in Fig. 7(i)
are sharp while, at the same time, they are blurry in all
individual acquisitions in Fig. 7(a)-(c). The other methods are
not capable of removing the blur in Fig. 7(a)-(c), whereas the
proposed method makes all the nucleus sharper beyond the
input z-stack and recovers more fine cell structures. Moreover,
the fusion artifacts (e.g., around the nucleus in the yellow
boxes of Fig. 7(h)) caused by PTV are reduced by our
method, as shown in Fig. 7(i). In addition, as we can see
in Fig. 7(j) and Fig. 7(k), the depth map estimated by our
proposed method better matches the input z-stack and exhibits
much less noise than the depth map estimated by EDF. This
experiment shows that the proposed method not only reduces
fusion artifacts, but also recovers sharper nucleus and image
edges.

VI. CONCLUSION

In this work, we have proposed a parameter free Gaussian
PSF model for extended depth of field in brightfield micro-
scope. This recovery problem, which is extremely ill-posed
when the z-stack is undersampled, has been tackled here
using a maximum a posteriori formulation which assumes
a Gaussian prior for the depth map and a sparse prior for
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high-pass filtered versions of the latent sharp image. For
depth and sampling distance estimation, we propose an adap-
tively scaled gradient decent algorithm. Numerical results
demonstrate its superior performance against L-BFGS. Results
on synthetic and real data show that, in most of cases,
the proposed method estimates the sampling distances with
low relative error and recovers a smooth depth map and a
latent all-in-focus image with sharper edges and less fusion
artifacts. A MATLAB implementation of this work and the
data are available at http://site.google.com/view/cfedf.
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