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Abstract— Video super-resolution (VSR) has become one of
the most critical problems in video processing. In the deep
learning literature, recent works have shown the benefits of
using adversarial-based and perceptual losses to improve the
performance on various image restoration tasks; however, these
have yet to be applied for video super-resolution. In this
paper, we propose a generative adversarial network (GAN)-based
formulation for VSR. We introduce a new generator network
optimized for the VSR problem, named VSRResNet, along with
new discriminator architecture to properly guide VSRResNet
during the GAN training. We further enhance our VSR GAN
formulation with two regularizers, a distance loss in feature-space
and pixel-space, to obtain our final VSRResFeatGAN model.
We show that pre-training our generator with the mean-squared-
error loss only quantitatively surpasses the current state-of-the-
art VSR models. Finally, we employ the PercepDist metric to
compare the state-of-the-art VSR models. We show that this
metric more accurately evaluates the perceptual quality of SR
solutions obtained from neural networks, compared with the
commonly used PSNR/SSIM metrics. Finally, we show that
our proposed model, the VSRResFeatGAN model, outperforms
the current state-of-the-art SR models, both quantitatively and
qualitatively.

Index Terms— Artificial neural networks, video signal process-
ing, image resolution, image generation.

I. INTRODUCTION

THE task of video super-resolution, which corresponds
to estimating high-resolution (HR) frames from their

observed low-resolution (LR) versions, has become one of
the central problems in image and video processing. With the
growing popularity of high-definition display devices, such
as High-definition television (HDTV), or even Ultra-high-
definition television (UHDTV) on the market, there is an avid
demand for transferring LR videos into HR videos so that

Manuscript received July 3, 2018; revised December 14, 2018 and
January 21, 2019; accepted January 23, 2019. Date of publication January 29,
2019; date of current version May 14, 2019. This work was supported in
part by the Sony 2016 Research Award Program Research Project and in
part by the National Science Foundation under Grant DGE-1450006. The
work of S. López-Tapia was supported in part by the Spanish Ministry of
Economy and Competitiveness under Project DPI2016-77869-C2-2-R, in part
by the Visiting Scholar Program at the University of Granada, and in part
by the Spanish FPU Program. The work of R. Molina was supported in
part by the Spanish Ministry of Economy and Competitiveness under Project
DPI2016-77869-C2-2-R and in part by the Visiting Scholar Program at the
University of Granada. Preliminary experiments of this work were presented
at the 2018 IEEE International Conference on Image Processing (ICIP) [1].
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Emanuele Salerno. (Corresponding author: Alice
Lucas.)

A. Lucas and A. K. Katsaggelos are with the Department of Electri-
cal Engineering and Computer Science, Northwestern University, Evanston,
IL 60208 USA (e-mail: alicelucas2015@u.northwestern.edu).

S. López-Tapia and R. Molina are with the Computer Science and Artificial
Intelligence Department, Universidad de Granada, 18071 Granada, Spain.

Digital Object Identifier 10.1109/TIP.2019.2895768

they can be displayed on high resolution TV screens, void of
artifacts and noise.

The objective posed by the Video Super-Resolution
(VSR) problem is to reconstruct a high-resolution sequence
{x1, x2, . . . , xT−1, xT} given a corresponding low-resolution
sequence {y1, y2, . . . , yT−1, yT}. Algorithms which tackle the
SR problem can be divided into two broad categories:
model-based and learning-based algorithms. In model-based
approaches (e.g., [3]–[6]) the low-resolution (LR) frames
are explicitly modeled as blurred, subsampled, and noisy
versions of the corresponding high-resolution (HR) frames,
i.e. yi = DHxi where xi is the i -th high-resolution frame in
the sequence, H is the blurring operator, D the downsampling
matrix, and yi the corresponding observed low-resolution
frame. With this explicit modeling, one can invert the SR
model to obtain an estimate of the reconstructed HR frame.
Due to the strongly ill-posed nature of the SR problem, careful
regularization must be used when solving for the reconstructed
frame. Signal priors must be used to enforce image-specific
features into the HR estimate. For example in the Bayesian
framework, priors controlling the smoothness or the total
variation of the reconstructed image are utilized to regularize
the SR problem (see for example [3]–[5]).

On the other hand, conventional learning-based algorithms
do not explicitly make use of the analytical SR model and
instead use large training databases of HR and LR videos to
learn to solve the video super-resolution problem. Recently,
Deep Neural Networks (DNNs) have been proposed as another
learning-based tool used for video super-resolution. In the
general case of using deep neural networks for video SR,
the goal is to find a function f(·) such that xt = f(Yt).
In other words, f(·) learns the mapping from the LR center
frame and the corresponding past and future frames, e.g., Yt =
(yt−k, . . . , yt−1, yt, yt+1, . . . , yt+k), k ≥ 0, to obtain an esti-
mate of the reconstructed center HR frame xt.

The traditional approach to train DNNs for video
super-resolution is to first artificially synthesize a dataset
with corresponding high-resolution and low-resolution frames.
The Mean-Squared-Error (MSE) cost function between the
estimated high-resolution frame xt and the ground truth frame
is then used as the cost function during the training of the
neural network. Numerous works in the literature (e.g., [7])
have shown that while the MSE-based approach provides
reasonable SR solutions, its fairly conservative nature does
not fully exploit the potential of deep neural networks and
instead produces blurry images. As an alternative to the MSE
cost function, literature for NN-based super-resolution has
proposed the use of feature spaces learned by pre-trained
discriminative networks to compute the l2 distance between an
estimated and ground truth HR frame during training. Using
such feature-based losses in addition to the MSE loss has been
proven to be effective at significantly boosting the quality of
the super-resolved images.
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Generative Adversarial Networks (GANs) [8] are powerful
models which have been shown to be able to learn complex
distributions by sampling from these with the use of deep
neural network. Originally introduced in the context of image
generation [8], GANs have since been used for a multitude of
generative tasks, such as various image-to-image translation
tasks, 3D modeling, and audio synthesis. The generative ability
of these models has been exploited to produce images of
exceptionally high quality for several image reconstruction
tasks (e.g., [9]–[11]). While GANs have been applied to the
image super-resolution in numerous ways (e.g., [10]), they
have not been applied to the problem of video super-resolution
yet. Similarly, the use of feature-based losses for video
super-resolution still lacks in today’s literature. Therefore in
this paper, we extend the use of GANs and feature-based loss
functions to the intricate problem of video super-resolutions
with deep neural networks.

The rest of the paper is organized as follows. We provide a
brief review of the current literature for learning-based VSR in
Section II. In Section III-A, we introduce a residual architec-
ture for video super-resolution, denoted VSRResNet, which
surpasses current state-of-the-art algorithms and removes
the need to apply motion-compensation on the input video
sequence. Next, in Section III-B we re-frame the VSRResNet
architecture in an adversarial setting. In addition to using an
adversarial loss, we add feature-based losses in the overall
cost function. The training procedure and experiments which
provide the resulting VSRResFeatGAN is explained in more
detail in Section IV. In our final section, Section V, we eval-
uate the performance of VSRResFeatGAN by comparing it
with the current state-of-the-art learning-based approaches for
video super-resolution for scale factors of 2, 3 and 4. Using
quantitative and qualitative results, we show that our proposed
VSRResFeatGAN model successfully sharpens the frames to
a much greater extent than current state-of-the-art deep neural
networks for video super-resolution.

II. RELATED WORK

In the past couple of years, multiple DNN-based models for
video SR have been proposed in the literature. Liao et al.’s
[12] approach follows a two-step procedure in which an
ensemble of SR solutions is first obtained through the use of an
analytical approach, and then used as input to a Convolutional
Neural Network (CNN). Kappeler et al. [13] design an end-
to-end approach and instead learn a direct mapping between
the bicubically interpolated low-resolution frames, Yt and the
corresponding central high-resolution frame xt. Other works
have experimented with the use of Recurrent Neural Networks
(RNNs) for video super-resolution, for example in [14], where
the authors use a bidirectional RNN to learn from past and
future frames in the input low-resolution sequence. While
RNNs have the advantage of explicitly learning the temporal
dependencies in the input frame sequences, the challenges and
difficulties associated with their training has led to CNN being
the favored neural network for video super-resolution. In this
direction, Li and Wang [15] show the benefits of residual
learning with CNNs in video super-resolution by predict-
ing only the residuals between the high-frequency and low-
frequency frame. Caballero et al. [16] jointly train a spatial
transformer network and a CNN to warp the videos frames to
one another and benefit from sub-pixel information. Similarly,
Makansi et al. [17] and Tao et al. [18] found that performing

a joint upsampling and motion compensation (MC) operation
increases the SR performance of the model.

Each of these models use the MSE loss as the guiding
cost function for training their neural networks, hence result-
ing in estimated HR frames which are still fairly blurry.
In the field of image super-resolution, the use of feature-based
losses as additional cost functions, along with the use of
GAN-based frameworks for training has been shown to result
in significantly superior HR estimates compared with the ones
obatined with traditional NN-based frameworks, such as the
ones described above. For example, Johnson et al. [7] found
that the use of feature-based loss as a loss function for learning
the super-resolution task significantly increases the sharpness
of the estimated HR image. Ledig et al. [10] were the firsts to
use a GAN network and feature losses for learning to super-
resolve images, which produced images with a previously
unseen photorealistic quality.

III. ADVERSARIALLY TRAINED DEEP RESIDUAL

ARCHITECTURE FOR VIDEO

SR: VSRRESFEATGAN

In this section, we first describe a novel neural network
architecture, VSRResNet, to solve the task of video super-
resolution. Next, we re-frame the VSRResNet architecture in
a GAN-based setting to further increase the perceptual quality
of the super-resolved frames. Finally, we describe the use of
feature-space and pixel-space loss functions to further improve
the performance of our VSR model.

A. The VSRResNet Architecture

While single image super-resolution algorithms have used
very deep neural networks to improve their model, this
approach has not been applied yet to VSR. We argue that
adding depth to the model increases the capacity of the
model, which in turn provides better learned solutions for
the VSR problem. To increase the depth of a model and
avoid the vanishing gradient problem, we choose to design
an architecture based on a chain of residual blocks, resulting
in a neural network composed of a total of 34 convolu-
tion operations. The details of the architecture are shown in
Figure 1. Our proposed architecture, VSRResNet, is based on
a series of residual blocks, each composed of two convolution
layers with learnable kernel of size 3 × 3. A Rectified Linear
Unit (ReLU) activation function follows each convolution step.
As shown in Figure 1, the VSRResNet architecture is explicitly
designed in order to extract spatial information from each
input frame and then fuse the information together. More
specifically, the first convolution layer applies a convolution
operation individually to each of the five frames in the input
sequence. We performed an experiment in which we instead
stack the input frames together (early fusion) and then apply
a convolution operation to these concatenated frames. In this
case we observed a small decrease in the PSNR performance
of our network and therefore we did not adopt such an
early fusion approach (see also [13] for more experiments on
early and late fusion of architectures for VSR). The second
convolution operation takes a concatenation of the extracted
features across the different time steps to fuse the informa-
tion from the previous step. The following fifteen residual
blocks then learn the transformation that provides the final
HR solution. We note here that we also experimented with
smaller and larger numbers of residual blocks to determine
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Fig. 1. The proposed VSRResNet architecture. The network consists of a series of convolution operations with 64 kernels of size 3×3, applied on each input
frame. The resulting feature maps are then concatenated together to obtain 320 feature maps. This is followed by two convolution operations and 15 residual
blocks. Each residual block consists of two convolutional operations with 64 kernels of size 3 × 3, each followed by a ReLU layer. Following the definition
of a residual block, the inputted feature maps are added to the output feature maps to obtain the final output of the residual block.

our final VSRResNet architecture. More specifically, we found
out that by using 5, 10, or 20 residual blocks instead of the
proposed 15 residual blocks, the PNSR on our test dataset
decreases by 0.90 dB, 0.20 dB, and 0.36 dB, respectively.
Similarly, to determine the best number of input frames to
the VSRResNet, we modified its architecture to acccept as
input either 3 or 7 frames, instead of the proposed 5 input
frames. We found out that these architectural changes resulted
in a PSNR decrease of 0.19 dB and 0.72 dB, respectively,
which suggests that using 5 input frames provide the optimal
performance for our task.

As we later show in Section V the increased depth in
VSRResNet provides the network with more capacity to learn
from the motion in the input frames and produce higher quality
frames. Therefore, unlike most state-of-the-art systems for
video super-resolution which perform motion-compensation
on the input video, we choose to train the VSRResNet
architecture on a non motion-compensated dataset, to let the
network extract useful information from the motion. In addi-
tion to learning from motion, not using motion compensation
provides the additional benefit of significantly reducing the
computational time of the proposed method.

In the next section, we include the VSRResNet architecture
as part of an adversarial framework with perceptual losses.
We call our resulting model the VSRResFeatGAN model.

B. The Proposed Adversarial System

Generative Adversarial Networks (GANs) [8] learn to gener-
ate samples from a specific data distribution through an adver-
sarial training procedure. In the traditional GAN approach
for image generation, a generator network learns to generate
an image given a latent random vector z at its input. The
learning of the generator is guided by an auxiliary network, a
discriminator, which is simultaneously trained to distinguish
between the images generated by the generator from images
from the training dataset. Given a generator G(z), on latent
variables z to be later defined, the discriminator is trained to
distinguish between real and fake images, i.e. output D(x) = 1
when x is sampled from the training dataset of natural
images and D(G(z)) = 0 when the images are produced
by the generator. On the other hand, the generator is trained

to make the discriminator believe that its generated images
G(z) are real, i.e., trained to assign the discriminator output
a probability D(G(z)) = 1. As a result of this adversarial
training, the generator eventually converges to a solution which
the discriminator fails to identify as “fake”, which generally
implies successful learning of the image manifold by the
generator.

Adapting the original GAN framework to the problem of
video super-resolution, we propose to use the powerful gen-
erative property of GANs by training a GAN to super-resolve
high-resolution center patches from a given input sequence of
low-resolution frames. Using a GAN-based training instead of
the MSE-based training enables the model to obtain frames
of much higher perceptual quality. We modify the original
GAN setting by inputting the sequence of input low-resolution
frames Y to the generator instead of a random vector z. This is
similar to the use of GANs in still image super-resolution [10],
in which case a single low-resolution image is provided at the
input of the generator. The generator is adversarially trained to
super-resolve the input LR frames such that the discriminator
cannot distinguish between the reconstructed HR frames, x̂ =
G(Y) and those obtained from the training dataset. To this
end, we use the GAN formulation first introduced in [8] and
adapt it to video super-resolution by solving:

min
θ

max
φ

LGAN(φ, θ) = Ex[log Dφ(x)]
+ EY[log(1 − Dφ(Gθ (Y)))] (1)

where x is the center high-resolution frame of dimensions
N × N , Y is the sequence of low-resolution input frames
around its low-resolution version y, each of dimensions N×N ,
Dφ is our discriminator with trainable parameters φ and Gθ is
the generator network with trainable parameters θ , where here
these parameters correspond to the learneable convolutional
kernels of our networks.

We fix the architecture of the generator network to the
VSRResNet architecture in Figure 1. The proposed discrimi-
nator Dφ’s architecture is shown in Figure 2. It is composed of
three convolution layers followed by a fully connected layer
and sigmoid operation, which provides the probability of a real
patch. We also experimented with the use of a very deep CNN
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Fig. 2. The proposed discriminator architecture architecture. The input to the discriminator corresponds to either an HR patch x from the ground-truth
dataset, or a patch provided by the generator Gθ (Y). Its output corresponds to the probability that the input is a real HR patch. All convolutions in the
discriminator use 3 × 3 convolutional kernels. The number of convolution feature maps used for each convolution step corresponds to the number shown on
top of each convolution data cube (e.g., 64, 128, or 256). Each convolution layer is followed by a Batch Normalization (BN) layer as defined in [19] and the
LeakyReLU operation defined in [20].

as the one defined in [10], but found that the large capacity
of this latter discriminator prevented the subsequent learning
of our generator. Thus, for all the experiments in this paper,
we fix the discriminator architecture to be the one in Figure 2.

C. Adding Feature-Space and Pixel-Space
Distance as Regularizers

Using the GAN function in Eq. 1 alone usually results
in strong artifacts in the estimated super-resolution high-
resolution frame, Gθ (Y). Examples of what the resulting
super-resolved frames may look like are shown in Figure 3.
From this figure, it is clear that the use of the adversarial
loss alone results in the generator network learning to pro-
duce high-frequency artifacts, which resemble ringing patterns
around the edges of the frame. In order to regularize such
undesired effect of the adversarial loss, it is necessary to add
regularizers to the adversarial Equation 1. In today’s literature,
commonly used regularizers for the GAN loss correspond to
distances between the estimate x̂ = Gθ (Y) and the ground
truth x available from the training dataset. The first regular-
ization term measures the distance between the estimated x̂
and the ground truth x in pixel-space, whereas the second
term provides the distance in a pre-defined feature space. Here,
the “distance” is provided by the Charbonnier loss, defined as:

γ (x̂, x) =
∑

i

∑

j

√
(x̂i,j − xi,j)2 + �2 (2)

where i, j denote the pixel coordinates and � is a small
constant close to zero, which for our experiments we set
to � = 0.001. The Charbonnnier loss may be seen as an
approximation to the l1 loss. We found that using the Char-
bonnier distance instead of the traditional l2 loss in pixel and
feature-space as regularizers for the GAN training improves
the learning behavior of the GAN model. We explain our
findings in more detail in the experiments section, Section IV.
The Charbonnier loss in pixel-space provides regularization
in pixel-space, to ensure that the super-resolved frames does
not depart by a great extent from the content in the corre-
sponding ground truth high-resolution frame. The second term,
the Charbonnier regularization in feature-space, leverages the
deep features learned by deep discriminative classifiers to
compare the the reconstructed frame from the ground truth
frame. We choose our feature space to be the representation
space obtained from extracting the feature maps from the third
and fourth convolution layer of the VGG network defined
in [21], denoted as VGG() in this paper. We found from our
experiments that these two loss components are necessary for

producing HR frames of high perceptual quality. Thus our
proposed framework for training our VSR system becomes
minθ maxφ Ltotal(φ, θ) where:

Ltotal(φ, θ) = α
∑

(x,Y)∈T

γ (VGG(x), VGG(Gθ (Y)))

+ β[Ex[log Dφ(x)]+EY[log(1−Dφ(Gθ (Y)))]]
+ (1 − α − β)

∑

(x,Y)∈T

γ (x, Gθ (Y)) (3)

where x and Y are sampled from the training dataset T ,
VGG(x) and VGG(Gθ (Y)) denote the feature maps obtained
by providing x and Y as the input to the V GG network,
and the weights α > 0 and β > 0 with α + β < 1 are
hyper-parameters which control the contribution of each loss
component and are determined experimentally.

We name the resulting model the VSRResFeatGAN model.
In the next section, we provide the details of our training
procedure used for training VSRResFeatGAN.

IV. EXPERIMENTS

In this section, we describe the steps taken towards the
training of our final model, the VSRResFeatGAN model.

A. Training Dataset

To synthesize our training dataset of HR/LR pairs, we use
the Myanmar video sequence, which was obtained from a
publicly available video database [22]. The Myanmar video
contains 59 video sequences, of which 53 were used for
training, and 6 for testing, following Kappeler et al.’s [13]
approach. While the Myanmar videos in their raw and uncom-
pressed form are 4K resolution (3840×2160 pixels), we down-
sampled the frames in each scene by four to obtain frames
of resolution 960 × 540. For each frame at time t , the
high-resolution patches were obtained by extracting 36 × 36
patches from the HR frame. To synthesize the corresponding
LR patches, we first performed bicubic downsampling on the
HR frames at times t −2, t −1, t , t +1 and t +2, followed by
bicubic interpolation on these frames. We then extracted the
corresponding LR patches. at times t − 2, t − 1, t , t + 1 and
t+2. All of the downsampling and interpolation operations use
MATLAB’s imresize function. As a result, our training dataset
consists of near 1 million HR/LR pairs, where for each ground
truth 36×36 HR patch xt in our dataset, we are provided with
a sequence of the corresponding five corresponding 36 × 36
low-resolution patches Yt = {yt−2, yt−1, yt, yt+1, yt+2}.
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Fig. 3. An illustration of the artifacts originating from using the adversarial loss alone for scale factor 3. (a) ground truth; (b) adversarial loss; (c) our
proposed regularized adversarial loss.

B. Pre-Training of the Generator Architecture

Clearly, the generator’s task of learning a super-resolution
function G that accurately super-resolves LR patches is a
much more difficult task than that of the discriminator, which
is given the objective to discriminate reconstructed patches
from ground-truth high-resolution patches. If the generator
produces patches with significant artifacts, the discriminator’s
task then becomes trivial and failure of GAN training may
follow. Therefore, it is critical to have the generator network
start at a reasonable point in the beginning of the training,
to ensure proper convergence of the generator and discrimina-
tor’s loss functions. To this end, prior to starting the adversarial
training, we first train the VSRResNet neural network with the
traditional MSE loss function:

LRMS(x, Gθ (Y)) = �x − Gθ (Y)�2
2 (4)

We train the VSRResNet model with the loss function in
Equation 4 for 100 epochs using the ADAM [23] optimizer
and a batch size of 64. The initial learning rate is set to 0.001
and is then divided by a factor of 10 at the 50th and 75th epoch
of the training. We train the VSRResNet model for each of the
SR scale factors of 2, 3 and 4. The training hyper-parameters
are fixed across scale factors.

C. Training of VSRResFeatGAN

We trained the VSRResFeatGAN model with a learning rate
of 10−4 for both the generator and the discriminator networks.
The weight decay was set to 0.001 for the discriminator

and 0.0001 for the generator. Similary to the training of
VSRResNet, batches of 64 patches were used to perform each
gradient update with the ADAM [23] optimizer. We trained
the VSRResFeatGAN for 30 epochs, which we found was a
suitable number of epochs for achieving convergence of the
GAN training.

V. RESULTS

In Section IV, we described our approach for performing
DNN-based video super-resolution with perceptual losses in
an adversarial training. In this section, we qualitatively and
quantitatively assess the performance of our VSRResNet and
VSRResFeatGAN models and compare these to the current
state-of-the-art DNNs for video super-resolution. To quantita-
tively assess the perceptual quality of the frames estimated by
VSRResFeatGAN, we propose the use of an additional metric
for evaluating the perceptual quality of our super-resolving
models, denoted as the PercepDist metric, which we describe
in more detail in Section V-C.

A. Evaluation of the Effect of Depth in VSRResNet

We first evaluate the performance of our proposed
VSRResNet model, which corresponds to our deep residual
architecture trained with the Mean-Squared-Error loss only.
To assess the effect of depth in our network, we compare its
performance with its shallower counterpart, the VSRNet archi-
tecture, first introduced in [13]. The VSRNet architecture is
similar to the VSRResNet architecture as it first extracts spatial
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Fig. 4. Qualitative comparison of VSRNet (figures (a), (c), and (e)) and VSRResNet (figures (b), (d), and (f)) for scale factor 3. The weights for the
VSRNet model that produces these images were provided by Kappeler et al. [13]. By zooming in the selected regions large differences can be observed.
In this figure and the rest of the figures in this paper, the three numbers in the caption below each frame correspond to the PSNR/SSIM/PercepDist metrics
computed for that frame.

information from the sequence of five input frames which is
then fused together by the subsequent convolution layers in
the network. However, the number of convolution layers in
VSRNet is limited to four, whereas our VSRResNet network
contains 15 residual blocks, for a total of 34 convolution opera-
tions. Both networks were trained on the same training dataset.
We report the computed PSNR and SSIM values obtained
when evaluating the VSRNet and VSRResNet models on our
Myanmar test frames in table I. Similarly to the generation
of the training dataset, the Myanmar test frames were both
downsampled using bicubic interpolation as implemented in
MATLAB’s imresize function and subsequently upsampled to
their original 960 × 540 spatial extent to provide an initial
estimate of the HR solution. The VSRNet results in the table

are those reported by Kappeler et al. [13]. Note that while the
VSRNet model was trained on motion-compensated dataset,
the VSRResNet model was not.

It is clear from Table I that VSRResNet outperforms
VSRNet by a large margin across all scale factors. This
implies that a large boost in performance can be obtained
by increasing the depth of the network with residual blocks.
For qualitative comparison, we show in Figure 4 selected
regions from the Myanmar test frames super-resolved by
VSRNet and VSRResNet. By zooming in these regions,
large differences can be observed. As expected, the solu-
tion obtained by VSRResNet is of much sharper quality
than the one provided by VSRNet, once again proving the
benefits of increasing depth in a network trained for video
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Fig. 5. Qualitative comparison of SPMC [18] (figures (a), (c)) vs. VSRResNet (figures (b), (d)) with zoomed-in regions of VidSet4 for scale factor two.
The three numbers in the caption underneath each frame correspond to the PSNR/SSIM/PercepDist metrics computed for that frame.

TABLE I

COMPARISON OF VSRRESNET AND VSRNET IN TERMS OF PSNR
AND SSIM. THE EVALUATION METRICS WERE COMPUTED

ON THE MYANMAR TEST DATASET

super-resolution without having to motion compensate the
input images.

B. Learning From Motion With VSRResNet

Having shown that adding depth provides the network
with more capacity to learn accurate SR solutions, we now
analyze whether the VSRResNet network successfully learns
from the motion present in the sequence of input frames.
Unlike most current VSR DNN-based algorithms, we chose
not to perform explicit motion-compensation on the input

LR sequence. This saves a considerable amount of processing
time in real application and forces the network to learn to
extract useful temporal information from the past and future
frames and further improve the estimate of the center HR
frame. To investigate whether the VSRResNet truly makes use
of the motion present in the input, we design an experiment
in which we replicate the center frame of the sequence across
the five time steps, i.e. setting Yt = {yt, yt, yt, yt, yt} and
feed this “center only” sequence to VSRResNet. We compute
the resulting PSNR values obtained by VSRResNet when
evaluated on the Myanmar test frames and the VidSet4 test
dataset [24] and report these in table II.

As shown in Table II, a large drop in the PSNR value is
observed for both test sequences at all scale factors, more
than 3 dB for the upscale factor of 2 on the Myanmar test
dataset. This result suggests that VSRResNet successfully uses
the motion in the input LR frame sequence to predict the center
frame. We emphasize here that even though VSRResNet was
trained on the Myanmar video dataset, which contains rela-
tively small motion in between frames, it still efficiently uses
the fast motion field present in the VidSet4 frames, as Table II
clearly indicates. In this table we also present the results
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Fig. 6. Qualitative comparison of SPMC [18] (figures (a), (c)) vs. VSRResNet (figures (b), (d)) with zoomed-in regions of VidSet4 for scale factor four.

TABLE II

COMPARISON OF VSRRESNET WHEN USING AS INPUT A SEQUENCE

OF FRAMES VERSUS THE Center Frame Only (VSRRESNET-CFO).
WE REPORT RESULTS FOR BOTH THE MYANMAR AND VIDSET

4 DATASETS. THE DIFFERENCE COLUMN IS COMPUTED BY
SUBTRACTING THE RESULTS OF VSRRESNET WHEN USING

THE CENTER FRAME ONLY FROM THE RESULTS

OF USING THE WHOLE INPUT SEQUENCE

obtained from the EDSR network [25], which uses a deep
residual architecture similar to ours, trained for super-resolving
still images. We generated the super-resolved frames by
EDSR [25] using the official Pytorch repository available at
https://github.com/thstkdgus35/EDSR-PyTorch and computed
the corresponding PSNR values in MATLAB. The results in
Table II indicate that the EDSR network outperforms the

VSRResNet for still image inputs quantitatively. However,
for video sequences with motion it performs worse than
the VSRResNet model that takes in temporally consecutive
frames as input (except for Myanmar-x4). From this, one may
conclude that the performance of a super-resolving deep CNN
can greatly improve when provided temporal information at
its input. Furthermore, this experiment suggests two paths to
improve our model: either to detect motionless sequences for
which to use still image SR methods or alter its architecture
to better handle motionless sequences.

C. Comparison With State-of-the-Art DNNs

While the PSNR metric is the de facto standard metric
for assessing the performance of an image restoration model,
recent super-resolution literature has shown that the PSNR
metric does not always provide an accurate assessment of
the perceptual quality of images produced by deep neural
networks. On the other hand, the family of discriminative Con-
volutional Neural Networks has been shown to learn features
that seem to be positively correlated to the human’s assess-
ment of perceptual quality (e.g., [7]). This suggests that the
representations learned by CNNs may be capable of providing
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Fig. 7. Qualitative comparison of VSRResNet (figures (a), (c)) vs. VSRResFeatGAN (figures (b), (d)) for scale factor 4 with zoomed-in regions of the
Myanmar frames.

us with a suitable metric for assessing the performance of
an image restoration model. Recently, Zhang et al. [2] have
trained a convolutional neural network to predict the per-
ceptual similarity between a reference image and a distorted
one [26], where the correct labels were obtained from large
subjective studies. As a result of the training, the CNN learns
to output a distance value between the ground truth and the
distorted images. The smaller the distance between the two
images, the better the perceptual quality of the distorted image.
The authors found that the predictions provided by these neural
networks agreed with the human judgement regarding the
quality of a given image.

To accurately assess the quality of the images produced by
our VSRResFeatGAN, we choose to use this metric, which
we denote in this paper as the PercepDist metric. To com-
pute the PerceptDist metric, we use the github repository
provided by Zhang et al. [2], which contains the required
pre-trained CNN model weights and evaluation code that
computes the “distance” between two images. When using
this metric for evaluating the performance of VSR sys-
tems, the image pair corresponds to the ground truth frame
and the super-resolved frame outputted by our proposed
model.

Equipped with this new metric, we now compare the
performance of our VSRResFeatGAN model with multiple
state-of-the-art VSR models. These include the VSR neural
network proposed by Tao et al. [18], which is based on
a convolution-LSTM neural network with efficient motion
compensation on the input learned jointly within the net-
work. In the rest of this paper, we refer to their work as

SPMC-VSR. We also compare our model with two additional
competing state-of-the-art VSR models: the VESPCN network
proposed by Caballero et al. [27] and the Temporal Adaptive
Net proposed by Liu et al. [28]. The VESPCN network [27]
incorporates temporal information into the VSR network by
performing motion compensation on the past and future
frames, and uses a sub-pixel convolution to pre-process the
input frames in low-resolution space. The Temporal Adaptive
Net [28] consists of a network with multiple SR branches,
each responsible for super-resolving the frames at a temporal
scale. A temporal modulation branch is then responsible for
fusing the multiple VSR solutions into a single one. We also
compare our model against two powerful SR models for still
images: (1) the state-of-the-art image SR model proposed
by Kim et al. [29], referred as VDSR in this paper, and
the (2) SRGAN model [10], which uses a GAN-based loss
similarly to our model. The VDSR network [29] corresponds
to a very deep convolutional neural network with twenty
layers trained to predict residuals between the low-resolution
image and the unknown high-resolution image. The SRGAN
model [10] is based on a deep residual neural network which
was trained in an adversarial setting.

We test all models on the VidSet4 dataset, which was
downsampled by factors of 2, 3 and 4. To test the
SPMC-VSR model proposed in [18], we use the model
weights and test code made available by the authors at https://
github.com/jiangsutx/SPMC_VideoSR to super-resolve the
VidSet4 sequence for scale factors of 2 and 4. The model
weights for scale factor 3 being unavailable, we use the
results reported in [18]. The VidSet4 frames super-resolved



LUCAS et al.: GANs AND PERCEPTUAL LOSSES FOR VSR 3321

Fig. 8. Qualitative comparison of (a) ground truth frame, (b) SPMC-VSR [18] vs. (c) temporal adaptive net [28] and (d) VSRResFeatGAN for scale factor 4,
with zoomed in regions. The frame belongs to the ‘walk’ sequence of the VidSet4 dataset.

TABLE III

COMPARISON WITH STATE-OF-THE-ART FOR VIDSET4 DATASET ON SCALE FACTORS 2, 3, AND 4. THE FIRST TABLE USES PSNR AND SSIM AND

THE SECOND TABLE USES THE PERCEPTUAL DISTANCE AS DEFINED IN [2]. SMALLER PERCEPTUAL DISTANCE METRICS IMPLIES BETTER

PERCEPTUAL QUALITY. WE WERE UNABLE TO COMPUTE THE PERCEPTDIST METRIC FOR THE SPMC-SR MODEL [18] FOR SCALE

FACTOR 3 AS THESE MODEL WEIGHTS WERE NOT MADE AVAILABLE BY THE AUTHORS

by VESPCN [27] and the Temporal Adaptive Net [28]
were found at https://twitter.app.box.com/v/vespcn-vid4 and
http://www.ifp.illinois.edu/ dingliu2/videoSR/, respectively.
To test the VDSR model proposed in [29], we use the
code available at https://github.com/twtygqyy/pytorch-vdsr,
and use their provided model weights to upscale the
VidSet4 sequence. Finally, the model weights of SRGAN
being publicly unavailable, we use a third party source
(https://github.com/leftthomas/SRGAN) to load the SRGAN
model and evaluate its performance on scale factors 2 and
4. Given the super-resolved frames provided by the various
models we wish to evaluate, we compute the PSNR, SSIM

and PercepDist metric for each model. The results of our
computations are shown in table III.

Multiple observations can be made from table III. First,
we find that our VSRResNet model, without applying motion
compensation on its input, surpasses the state-of-the-art
NN-based systems for scale factors of 2 and 3, both in
terms of PSNR and SSIM. We argue that the VSRResNet’s
performance slightly decreases for scale factor of 4 due to the
lack of helpful motion details which occurs as a result of the
large downscaling factor. In Figures 5 and 6, we provide a
comparison of the estimated frames obtained by VSRResNet
and the SPMC-VSR [18] for scale factors of 2 and 4.
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Fig. 9. Qualitative comparison of (a) ground truth frame, (b) SPMC-VSR [18] vs. (c) temporal adaptive net [28] and (d) VSRResFeatGAN for scale factor 4,
with zoomed in regions. The frame belongs to the ‘city’ sequence of the VidSet4 dataset.

These qualitative results agree with the values shown
in Table III, which together show that the VSRResNet network
is more successful at super-resolving frames for the scale
factor 2, but not as successful for scale factor 4.

Table III shows that while the VSRResNet model out-
performs all other SR models in terms of PSNR for scales
2 and 3, the VSRResFeatGAN model is the favored model
for producing visually pleasing frames, as determined by the
PerceptDist measure. In fact, VSRResFeatGAN outperforms
VSRResNet, SPMC-VSR [18], VESPCN [27], and Temporal
Adaptive Net [28] networks consistently across all scale fac-
tors (in addition to surpassing the models trained for still
image SR). In addition, its PercepDist measure is much
higher than that of the SRGAN model, which also uses a
GAN-based training meant to increase the perceptual quality
of the resulting images.

To directly assess the qualitative effect of perceptual and
adversarial losses, we show in figure 7 a comparison of
selected test Myanmar frames estimated by VSRResNet ver-
sus those obtained by VSRResFeatGAN for the scale fac-
tor 4. Interestingly, while the VSRResNet has a higher PSNR
value that VSRResFeatGAN for this scale factor (table III),
the frames of VSRResFeatGAN look much sharper. Fine
details and textures are recovered in the case of VSRResFeat-
GAN, whereas these regions are left blurry by VSRResNet.
With the significant increase in sharpness, one may note that
a subtle amount of distortion is simultaneously introduced in
the super-resolved frames of VSRResFeatGAN. This is not an

unexpected behavior of GAN models, as these models tend
to generate small artifacts, even when strongly regularized
with perceptual losses like ours. It may be the case that
these artifacts originate from the feature loss’s tendency to
generate strong grid-like patterns in the frames, which are
then further used and distorted by the GAN to provide high-
frequency information to the discriminator. The question of
whether the subtle artifacts in the frame cancel out the visually
pleasing effect of the sharpening is subjective and left to
the reader’s own assessment. However, even if undesired
artifacts are introduced in the outputted frame, the PercepDist
still favors the VSRResFeatGAN solution over the traditional
MSE-based approaches. We conclude from these qualitative
and quantitative results that the use of a combination of
perceptual and adversarial losses can have a very significant
impact on the resulting quality of the frame.

Furthermore, not only does the VSRResFeatGAN model
outperforms the VSRResNet model in terms of the PerceptDist
measure, Table III shows that it also outperforms by a
large margin the state-of-the-art VSR models in [18], [28],
and [27]. In Figures 8 and 9, we qualitatively compare
the results of VSRResFeatGAN with those provided by the
SPMC-VSR [18] and the Temporal Adaptive Net in [28].
We focus on these two VSR models as they provide the
best PSNR and PercepDist metrics after VSRResFeatGAN
in Table III. The particularly sharp quality observed in the
VSRResFeatGAN frames is consistent with its superior met-
rics seen in Table III. More specifically, the ‘walk’ frame



LUCAS et al.: GANs AND PERCEPTUAL LOSSES FOR VSR 3323

Fig. 10. Qualitative comparison of the (a) ground truth frame, (b) VDSR [29], (c) SRGAN [10] vs. (d) VSRResFeatGAN for scale factor 4, with zoomed
in regions. The frame belongs to the ‘calendar’ sequence of the VidSet4 dataset.

in Figure 8 shows that the solution obtained by VSRResFeat-
GAN is less blurry than the frame provided by SPMC-SR [18]
and the Temporal Adaptive Net [28]. The small distortions
introduced from the adversarial loss are most evident in the
‘city’ frame (Figure 9), in which a strong dot-like pattern is
added to the straight lines defining the building architectures.
In Figures 10 and 11, we compare the VSRResFeatGAN
models with state-of-the-art still image SR models, more
particularly the VDSR [29] and the SRGAN [10] networks.
The frame in Figure 10 shows the success of our network
in sharpening the text printed on the calendar. Finally, the car
and leafy trees in Figure 11 are less blurry than in the solution
proposed by the VDSR [29] and the SRGAN [10] networks.

While the lower PSNR/SSIM values for VSRResFeatGAN
may imply lower performance, the qualitative comparison
described above, in addition to the figures provided in this
paper, clearly suggest that using the PSNR/SSIM metrics may
not always accurately assess the performance of a SR model.
Instead, our results show that using a learning-based perceptual
metric such as the PercepDist introduced here may be more
appropriate for comparing the various models in a fair manner.
The significantly low values of the PercepDist metric for the
VSRResFeatGAN models imply that it is largely successful at
providing SR estimates of visually pleasing quality, and more
importantly, is consistent with the observations made from the

qualitative results shown in the figures of this paper. Overall,
our quantitative and qualitative results show the benefits of
using an adversarial approach for training DNNs for VSR
along with strong regularization with the use of feature-based
losses.

D. Training Observations

To conclude this section, we describe in more detail the
effect of using the Charbonnier loss as a substitute to the l2
loss, and using the weights from VSRResFeatGAN-u2 instead
of those of the VSRResNet model for scale factor 4. We show
that these training design decisions improve the adversarial
training procedure and lead to frames of higher perceptual
quality.

1) The Effect of the Charbonnier Loss During Training:
We introduced the use of the Charbonnier loss to measure
the distance between an estimated patch and its corresponding
ground truth in pixel and feature-space in Section III-C. Other
works have chosen to use the l2 loss �x̂ − Gθ (Y)�2

2 for
computing this distance. We compare these two approaches
in a controlled setting by replacing the Charbonnier loss term
in equation 3 with the l2 distance. We evaluate the effect
of each by plotting the loss function of the discriminator
during adversarial training, which we show in Figure 12.
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Fig. 11. Qualitative comparison of the (a) ground truth frame, (b) VDSR [29], (c) SRGAN [10] vs. (d) VSRResFeatGAN for scale factor 4, with zoomed
in regions. The frame belongs to the ‘foliage’ sequence of the VidSet4 dataset.

As demonstrated in Figure 12, the Charbonnier loss provides
a more stable alternative to the adversarial training than the l2
loss. With the use of the latter loss function, the discriminator
loss converges to values near zero. This indicates that using
the l2 loss to regularize the generator results in the network
generating patterns which are easily detected by the discrim-
inator. On the other hand, when using the Charbonnier loss,
the discriminator loss decreases much more steadily, which
implies successful learning between the two adversarial net-
works. Therefore we conclude that the Charbonnier loss acts as
an effective regularizer for controlling the learning dynamics
between the generator and the discriminator, providing a more
stable alternative to the l2 loss. The reason for this may be
due to its particular robustness to small details, as observed
in the super-resolution literature (e.g., [30]). This ability to
better super-resolve small details than the l2 loss is what
makes the discriminator’s task slightly more difficult, which
in return facilitates the subsequent learning of the generator
network.

2) Transfer Learning From VSRResFeatGAN-u2 to
VSRResFeatGAN-u4: When training VSRResFeatGAN
for super-resolving HR frames downsampled by scale
factor 4, we found that the quality in the frame estimated
by VSRResFeatGAN could greatly improve by initializing
the training process with weights obtained from the trained
VSRResFeatGAN for the SR task of scale factor 2. This form
of transfer learning places the VSRResFeatGAN weights
at a good position in parameter space at the beginning of
the training process, providing the generator with more

Fig. 12. The effect of using the Charbonnier loss instead of the standard
MSE as regularization during adversarial training leads to a more stable
training procedure. When using MSE, the discriminator quickly learns to
distinguish super-resolved patches from ground truth ones, which results in
limited learning for the generator.

leeway to learn accurate SR functions with fewer artifacts.
We show the visual effect of setting the initial weights
of the VSRResFeatGAN trained for scale factor 2 to that
of scale factor 4 in Figure 13. The figure reveals that
much of the strong dot-like pattern originating from the
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Fig. 13. A comparison of initial VSRResFeatGAN’s weights for scale factor 4 (figure (a)) with those of the converged VSRResFeatGAN for scale factor 2
(figure (b)), with zoomed in regions. The dot-like artifacts originating from the GAN training are greatly attenuated when using weight transferring from scale
factor 2.

Fig. 14. The effect on the loss functions of the discriminator (left) and generator (right) of using the weights from VSRResFeatGAN pre-trained on scale
factor 2, vs. starting with the VSRResNet weights pre-trained on scale factor 4.

adversarial loss is attenuated when using weight transferring
from the VSRResFeatGAN training with scale factor 2.
Figure 14 shows a comparison of the discriminator and
generator loss functions during training. The larger values of
the loss function for the discriminator shows that the network
has a slightly harder time distinguishing the generated HR
patches from the ground truth ones. This implies that the
generator generates patches of higher perceptual quality,
resulting in the loss function with smaller values, as seen
in the right part of Figure 14, which shows the generator’s
loss function. In conclusion, these experiments reveal that by
appropriately trasferring weights from a VSRResFeatGAN
trained for a smaller scale factor can greatly help the training
of GAN models for more challenging scale factors, which
results in frames with fewer high-frequency distortions than
when not using weight transferring.

VI. CONCLUSION

In this paper, we have shown that training a deep residual
neural network with appropriate architectural and loss function
choices results in a significant increase in performance, whilst

removing the need to perform motion compensation and
instead encourage the network to use the motion information
for providing better SR estimates. We have applied perceptual
losses to video super-resolution by training our deep residual
network with GAN losses and Charbonnier distance in feature
and pixel spaces. We showed that these losses enabled the net-
work to produce high-resolution frames of significantly higher
perceptual quality. In addition to using the PSNR and SSIM
metrics for comparing VSRResFeatGAN with current state-
of-the-art models, we used the Perceptual Distance metric [2]
to provide a comparison of the solutions provided by various
super-resolution models. We found out that frames of sharp
quality that would have been qualified as blurry according to
the PSNR metric would in fact achieve a high score with the
Perceptual Distance metric.

While the VSRResNetGAN model is successful at pro-
viding sharpened SR estimates to a large degree, it could
be further improved by reducing the noise introduced in
the estimated frames as a result of the adversarial training.
One solution to this would be to constrain the VSRResFeat-
GAN model to learn SR mappings that are consistent with
the mathematical formulation of the VSR problem at hand.
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This approach may be seen as a way to combine the SR
knowledge explicitly used by analytical methods with the
powerful ability of GAN-based neural networks, to produce
solutions of pleasing visual quality.
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