
20 IEEE Signal Processing Magazine   |   January 2018   |

DEEP LEARNING FOR VISUAL UNDERSTANDING:  
Part 2

1053-5888/18©2018IEEE

Alice Lucas, Michael Iliadis, Rafael Molina,  
and Aggelos K. Katsaggelos

Using Deep Neural Networks  
for Inverse Problems in Imaging
Beyond analytical methods

T raditionally, analytical methods have been used to solve 
imaging problems such as image restoration, inpainting, and 
superresolution (SR). In recent years, the fields of machine 

and deep learning have gained a lot of momentum in solving 
such imaging problems, often surpassing the performance pro-
vided by analytical approaches. Unlike analytical methods for 
which the problem is explicitly defined and domain-knowledge 
carefully engineered into the solution, deep neural networks 
(DNNs) do not benefit from such prior knowledge and instead 
make use of large data sets to learn the unknown solution to 
the inverse problem. In this article, we review deep-learning 
techniques for solving such inverse problems in imaging. More 
specifically, we review the popular neural network architectures 
used for imaging tasks, offering some insight as to how these 
deep-learning tools can solve the inverse problem. Furthermore, 
we address some fundamental questions, such as how deep-
learning and analytical methods can be combined to provide 
better solutions to the inverse problem in addition to providing 
a discussion on the current limitations and future directions of 
the use of deep learning for solving inverse problem in imaging. 

Introduction
In most applications, an observed signal y  can be modeled as 
the output of a system ,T  whose input is denoted by .x  Both the 
input and output of the system might represent multidimension-
al signals in general, at one or multiple time and spatial instanc-
es. For example, x  and y  might represent two-dimensional 
(2-D) images, or x  might consist of multiple video frames and 
y  be a motion vector field, or x  might represent a three-dimen-
sional volume and y  a set of 2-D (projection) images.

There are various ways to describe the system ,T  through, 
for example, a differential or difference equation, an integral 
equation, or a general mathematical mapping. Such a system T  
might model defocusing introduced by the imaging device, blur 
due to motion or atmospheric turbulence, an acquisition mask 
in a compressive sampling application, and loss in general of 
spatiotemporal or spectral information. It might also model the 
motion estimation process or the image edge detection process 
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through differentiation. The system T  may exhibit various 
system properties, such as linearity, shift invariance, stability, 
causality, etc. Determining the output y  for a given input x  and 
assuming knowledge of the system, T  represents the forward 
model. Finding the input x  for a given output y  and knowl-
edge of the system, T  represents the inverse problem (if T  is 
not known or is partially known, the problem becomes a blind 
or semiblind inverse problem, respectively). The illustration of 
this framework is shown in Figure 1.

The difficulty in solving an inverse problem stems from the 
properties of the mapping ,T  even when it is exactly known. 
The spectral properties of the operator T  are critical and, by 
and large, determine the system to be ill-posed; i.e., even when 
T  is invertible, a small perturbation in the data results in a 
large perturbation in the solution. Clearly, what exacerbates the 
situation is the ever-present noise. In other words, the observa-
tion model has the form

	 ( ) ,y T x e= + � (1)

where e  models the noise in the observed data.
The solution of inverse problems in imaging applications 

has a long history of research and development. These inverse 
problems are also known as recovery problems, and they are 
encountered under different names, such as restoration, decon-
volution, pansharpening, concealment, inpainting, deblocking, 
demosaicking, SR, reconstruction from projections, compres-
sive sensing (CS), etc. Motion estimation and depth estimation 
are also inverse problems. The operator T  assumes different 
forms for each of these cases. A more detailed description of the 
inverse problems mentioned here can be found in [1]–[3].

Analytical techniques for solving inverse problems 
have been studied for a long time. When using an analyti-
cal approach, the forward model is explicitly described, the 
criteria for obtaining a solution are decided, and a solution 
approach is chosen. At the high level, one can group analyti-
cal techniques into deterministic and stochastic ones. With the 
first class, an optimization criterion is typically chosen, such 

as the minimization of the l2  error norm .( )y T x-
2

 Then 
prior (or domain) knowledge is incorporated into the solution 
process through regularization. That is, an additional term is 
included in the optimization functional imposing, e.g., smooth-
ness or sparsity on the solution. With stochastic approaches, all 
unknowns are treated as stochastic quantities and then a maxi-
mum likelihood, or a maximum a posteriori or a fully (hierar-
chical) Bayesian approach is followed (see, e.g., [4] for the SR 
problem). In the latter case, an estimate of the full posterior 
( | )x yp  is obtained. The prior knowledge in this case is clearly 

introduced into the problem formulation through the particular 
probabilistic models (e.g., Gaussian or Dirichlet or flat distri-
butions) used to describe the unknown quantities, such as the 
input image ,x  the possibly (partially) unknown system T  (the 
impulse response of the system for a deconvolution problem), 
and all the parameters (hyperparameters) describing the intro-
duced distributions (see, for instance, [5] for a review of varia-
tional Bayesian approaches applied to multimedia problems).

An alternative model of solving the inverse problem at 
hand, which is the approach most commonly employed when 
using DNNs for solving inverse problems in imaging, is to 
minimize ( )x yg

2
- z  for a convenient (·)gz , which plays 

the role of .T 1-  We will design this function to correspond 
to a DNN with parameters ,z  which are learned with the help 
of large data sets with pairs of examples .( , )y x  As a result of 
the learning procedure, explained in more detail in the section 
“Training Procedure of DNNs for Inverse Problems,” a direct 
mapping of y  to x  is obtained.

One of the first questions one might ask is: What are the rel-
ative advantages of analytical and (deep) neural network learn-
ing approaches for solving inverse problems—or, for a specific 
problem at hand, which of the approaches in our available tool-
box should one use? At the high level, learning approaches 
shift the computational burden to the learning phase while the 
“testing” phase, i.e., the step of providing an estimate of x  for 
a given ,y  is typically represented by a feed-forward network 

(·)gz  and it is, therefore, computationally efficient. Analytical 
techniques, on the other hand, rely on optimization approaches, 
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Figure 1. In a forward problem, the transformation T  is applied to an input image. The inverse problem aims to obtain an estimate of the input image 
from the observation. For illustration purposes, we show here the image restoration case where T  represents the blurring operator. Examples of other 
types of degradation systems are provided in the “Introduction.”
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which are more computationally elaborate. Generally, the more 
sophisticated the modeling of the inverse problem, the more 
demanding the optimization process (as demonstrated, e.g., by 
the number of approximations required to draw inference in a 
variational Bayesian framework).

When it comes to incorporating prior or domain knowledge 
into the solution of an inverse problem (such as the original image 
is a sample of a random field obeying a particular distribution), 
analytical approaches have an advantage since this modeling step 
represents an essential component of such approaches. It is hard, 
in general, to incorporate such domain knowledge into a neural 
network structure (the network extracts such information from 
the data). Therefore, there are efforts in multiple directions (e.g., 
unfolding and generative modeling with neural networks) toward 
bridging this gap between analytical and deep-learning approach-
es, forming a fertile ground for future investigation for the whole 
community (we revisit this topic in the section “Recent Develop-
ments: Increasing the Perceptual Quality of Images Predicted by 
Neural Networks”).

A second fundamental question one might ask is: Under what 
circumstances would one expect deep-learning approaches to 
provide more accurate solutions (computational considerations 
aside) than analytical approaches? Or by rephrasing this ques-
tion, would one expect to see the same gains in solving inverse 
problems with neural networks as we have seen in solving cer-
tain classification problems (equaling or even surpassing in some 
cases human performance)?

We do not believe there is necessarily a definitive answer to 
this question at this point. Certainly, at the extreme case when 
the operator T is exactly known and it is invertible and there is 
a small amount or no noise in the data, there might be little to be 
gained by using a neural network approach. On the other hand, 
in situations in which T is not exactly known and/or it cannot 
be precisely modeled mathematically and/or it consists of the 
concatenation of multiple operators (the original signal, e.g., is 

blurred and compressed, and a nonlinear clipping is applied to it), 
there might be more room for deep-learning techniques to learn 
all of this information from the data and outperform analytical 
approaches in terms of accuracy of the reconstruction.

Our objective in writing this article has been to provide a criti-
cal and nonlinear approach in reviewing the literature, with hope 
that the reader will gain an appreciation of the technology and 
valuable knowledge to utilize as guidance in solving their inverse 
problems in imaging using neural networks. Fine details were 
omitted due to a lack of space, but they can easily be acquired 
by referring to the original source of the information. It was also 
assumed that a basic background knowledge on neural networks 
was available to the reader, as it can be easily acquired utilizing 
the abundant resources on the Internet or referring to a text such 
as [6]. Finally, we note that, due to the large amount of work in 
this area, this article could not have covered all of the approaches 
that use deep learning for solving inverse problems in imaging. 
For example, we have not provided specific coverage of bio-
medical image reconstruction techniques using deep learning, 
although some of the results reported in this review are applicable 
to such techniques as well. In other words, while the references 
described in this article by no means constitute an exhaustive list, 
we believe that the techniques described in this article should 
provide the reader with a comprehensive overview of the ways 
DNNs may be employed to solve inverse problems in imaging.

Neural networks architectures  
for inverse problems in imaging
A DNN can be described as a multilayer stack of simple modules, 
each of which transforms its input to a new representation, which 
is then used as input to the next module. In the deep-learning 
literature, such modules are commonly referred to as layers, and 
each layer is composed of multiple units or neurons. An example 
of a fully connected neural network, also referred to as a mul-
tilayer perceptron (MLP), is shown in Figure 2. This network 
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Figure 2. An example of a fully connected neural network with two hidden layers. The activation of the j th output neuron in layer l  is defined as 
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consists of two hidden layers. The output of the unit in each layer 
is the result of the weighted sum of the input units, followed by 
a nonlinear element-wise function. The weights between each 
units are learned as a result of a training procedure, which we 
discuss in greater detail in the section “Training Procedure of 
DNNs for Inverse Problems” this article. 

The choice of the neural network architecture determines 
the generic set of possible functions (·)gz  that will be explored 
by the optimization procedure for solving the inverse problem 
at hand. Therefore, it is of paramount importance to pay close 
attention to the design of the model, which will be the focus of 
our discussion in the following sections.

Using MLPs for inverse problems in imaging
Due to DNNs’ ability to perform fast-forward inference, train-
ing DNNs to learn a mapping from the observation y  to its 
reconstruction xt  is often the favored approach. When deep-
learning methods first gained momentum in the image pro-
cessing community, fully connected neural networks, such as 
the one showed in Figure 2, were a popular architectural choice 
to perform this mapping. For example, Zhang and Salari [7] 
proposed to use an MLP for denoising images in the wave-
let domain. Table 1 summarizes representative works that use 
deep learning to solve inverse problems in imaging that are ref-
erenced in this article, however, this list is by no means exhaus-
tive. Similarly, Burger et al. [8] used an MLP to directly map 
noisy images to their corresponding denoised counterparts. 
To solve their nonblind deconvolution problem, Schuler et al. 
[9] trained an MLP to remove artifacts caused by the decon-
volution step. Autoencoder-based architectures, discussed in 
more detail in the section “Autoencoders for Learning New 
Representations,” were quite popular too, especially for solv-
ing denoising problems; see, e.g., Xie et al. [10] and Agostinelli 
et al. [11]. Most of these models, while straightforward, were 
able to achieve reconstruction quality that competed with the 
state-of-the-art analytical approaches, suggesting that neural 
network-based models for solving inverse problems in image 
processing had, in fact, a promising future.

End-to-end mapping with the vanilla  
convolutional neural network
It is known from the universal approximation theorem [12] that 
a fully connected neural network with a large number of neu-
rons in its hidden layer has the ability to represent any func-
tion we wish to learn, provided our activation functions satisfy 
some mild assumptions. However, when dealing with highly 
structured modalities such as images or videos, using a convo-
lutional neural network (CNN) is typically the default model 
of choice. We will see later that CNNs are particularly suitable 
for processing images as they can easily extract the statistics of 
their input and make use of them to solve the inverse problem 
(see the sections “Learning Higher-Level Representations with 
Encoder-Decoder CNNs” and “Training DNNs to Learn New 
Representations of Natural Images”). 

CNNs distinguish themselves from fully connected neu-
ral networks by applying convolutions to the previous layer. 

When implementing a CNN, convolving a k k#  kernel 
with a w w#  input layer will result in a feature map of size 
( ) ( ) .w k w k1 1#- + - +  Multiple convolution kernels are 
applied to the input layer, which provide multiple feature maps 
that collectively capture a new representation of the input.

There are multiple advantages to using CNNs for solving 
our inverse problems. First, because the weights of the ker-
nels are fixed as they slide across the input, there are typically 
much fewer parameters to learn compared with fully connect-
ed neural networks. This reduction in number of parameters 
simplifies the optimization problem. In addition, the convo-
lution operations implemented in CNNs provide these mod-
els with advantageous properties when dealing with images, 
such as translation invariance and locality (more detail on 
the properties of CNNs may be found in [6]). Furthermore, 
CNNs have been shown to be particularly suitable to learn-
ing interesting representations from images and capturing the 
multiscale structure from the input; e.g., when solving image 
classification, segmentation, or detection tasks. Therefore, 
we expect CNNs to efficiently extract information from the 
observed image y  provided at the input layer, information that 
is then interpreted by the CNN to output a reconstruction .xt  
Finally, CNN-based architectures, if properly designed, can 
be shown to share similarities with analytical methods (e.g., 
optimization-based iterative methods or deconvolution steps), 
which suggests that CNN-based models can be powerful tools 
for solving inverse problems in imaging. For example, a con-
nection between CNNs and multilayer convolutional sparse 
coding was recently established [13], offering a fresh view 
and, potentially, a better understanding of CNNs but also 
potentially other architectures (e.g., residual networks) and the 
common tricks currently employed such as batch normaliza-
tion and dropouts.

When CNNs are used for discriminative tasks such as 
classification, the convolutions applied at each step result in 
a decrease in the spatial extent of the feature maps, such that 
the final layer of the network represents the low-dimensional 
labels corresponding to the input image. However, when using 
neural networks for solving inverse imaging problems, the 
output of our model is a high-dimensional image that is usu-
ally of the same dimension as the input. Therefore, one com-
mon approach when designing a CNN for solving an inverse 
problem is to keep the dimensions of the output feature maps 
fixed to the size of the input to the convolutional layer, which is 
achievable through the use of appropriate padding with zeros. 
An example of a three-layer CNN architecture that follows this 
approach is shown in Figure 3.

Examples of works that use the CNNs described previ-
ously include Jain and Seung’s [14] use of a five-layer CNN to 
denoise an image subjected to Gaussian noise. More recently, 
Eigen et al. [15] trained a CNN with three layers for denoising 
photographs that showed windows covered with dirt and rain. 
To solve a SR task, Dong et al. [16] used a three-layer CNN that 
takes an interpolated low-resolution (LR) patch as input to pro-
duce the corresponding high-resolution (HR) patch. Kappeler 
et al. [17] extended this architecture to the problem of video 
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Table 1. A summary of the works that have used a deep-learning-based approach for solving inverse problems in imaging  
and to which have been referred in this article. We emphasize that this list is by no means exhaustive.

Reference Application Method/Remarks

Zhang and Salari [6] (2005) Denoising MLP with one hidden layer; end-to-end mapping in the wavelet domain

Jain and Seung [13] (2008) Denoising Five-layer CNN; trained using greedy layer-wise approach

Burger et al. [7] (2012) Denoising MLP with two-hidden layers, end-to-end mapping 

Xie et al. [9] (2012) Denoising and inpainting Stacked denoising autoencoders

Eigen et al. [14] (2013) Denoising Three-layer CNN; trained to remove dirt and rain

Agostinelli et al. [10] (2013) Denoising Stacked denoising autoencoders; used linear combination of autoencoders to solve for 
multiple noise levels and noise types

Zhang et al. [27] (2016) Denoising 17-layer CNN with input-output skip connection; extended model to SR and 
compression application

Mao et al. [29] (2016) Denoising Encoder-decoder CNN; symmetric skip connections

Zhang et el. [51 (2017) Denoising, deblurring, and SR Seven-layer CNN for regularization term in the half-quadratic splitting (HQS) method; 
residual learning

Chang et al. [52] (2017) Denoising, inpainting, and SR Ten-layer encoder-decoder CNN for projection operator in the alternating direction method 
of multipliers (ADMM) method; residual blocks; adversarial training

Schuler et al. [8] (2013) Nonblind image deconvolution MLP with two hidden layers; trained to remove artifacts following nonblind 
deconvolution step

Xu et al. [44] (2014) Nonblind image deconvolution Five-layer CNN with one-dimensional (1-D) filters; use singular-value decomposition of 
known inverse kernel for initializing filter weights

Hradis et al. [18] (2015) Blind deconvolution on text 15-layer CNN; end-to-end mapping for deblurring text documents

Schuler et al. [50] (2016) Blind image deconvolution DNN with a feature extraction module (learned by convolutional layers), a kernel 
estimation module (fixed), and an image restoration module (fixed)

Jin et al. [32] (2016) Biomedical image restoration Encoder-decoder CNN to refine initial inverse step

Kim et al. [25] (2015) Image SR Ten-layer CNN; input-output skip connection; mean squared error (MSE) loss

Zeng et al. [36] (2015) Image SR One hidden layer fully connected neural network, which maps LR to HR representations 
learned by autoencoders

Dong et al. [15] (2016) Image SR Three-layer CNN; end-to-end mapping from LR to HR patch

Kappeler et al. [16] (2016) Video SR Three-layer CNN; end-to-end mapping from three LR video frames to one HR video frame

Cui et al. [34] (2016) Image SR Five-layer cascade CNN; In each layer, nonlocal self-similarity search and collaborative 
local autoencoder is integrated

Sajjadi et al. [23] (2016) Image SR CNN with ten residual blocks; adversarial training; input-output skip connection; 
combination of MSE loss, feature-space loss, and texture loss

Ledig et al. [24] (2016) Image SR CNN with six residual blocks; adversarial training; end-to-end mapping; combination of 
MSE loss, feature-space loss, and total variation loss

Brune et al. [42] (2016) Image SR CNN that outputs the sufficient statistics of a Gibbs distribution for sampling HR image

Wang et al. [45] (2016) Image SR Multilayer neural network; each layer mimics an operation of the unfolded learned 
iterative shrinkage and thresholding algorithm (LISTA) for SR

Sonderby et al. [54] (2016) Image SR CNN with affine projection to output HR patch consistent with input LR patch; 
adversarial training

Mousavi et al. [38] (2015) CS Stacked denoising autoencoder to sense and reconstruct input image

Kulkarni et al. [17] (2016) CS Linear mapping followed by six-layer CNN; takes CS measurements as input and 
outputs an intermediate reconstruction, which is then fed to a denoiser

lliadis et al. [37] (2016) CS Learns two MLP end-to-end: one MLP to learn the sensing matrix and one MLP to learn 
the corresponding reconstructed image

Yang et al. [48] (2016) CS Designs and trains DNN to implement the ADMM algorithm to reconstruct magnetic 
resonance images from CS measurements

Yao et al. [26] (2017) CS Linear mapping followed by four residual blocks; takes CS measurements as input and 
outputs reconstructed image

Bora et al. 139] (2017) CS Reconstruct image from random Gaussian measurements using generator from 
adversarial training

Pathak et al. [30] (2016) Inpainting Encoder-decoder CNN; fully connected layer at bottleneck; adversarial training; MSE loss

Fischer et al. [31] (2015) Optical flow Encoder-deccoder CNN; refinement module; feature correlation layer
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SR. In this case, to predict an HR patch at time t, multiple 
motion-compensated frames from previous and future time 
instances are fed through separate CNNs. The individual fea-
ture maps produced by each CNNs are later fused by another 
CNN (different depths for implementing the fusion process 
were investigated) to produce the final prediction of the HR 
frame. In the CS literature, Kulkarni et al. [18] use a CNN 
with six convolutional layers to obtain an intermediate recon-
struction of the input CS measurements, which is then further 
refined with a nondeep-learning-based denoising method. 
Hradis et al. [19] surpassed state-of-the-art analytical methods 
for their blind deconvolution task on text images, which they 
solved by training a deep CNN with up to 15 layers.

Achieving greater depth: CNNs with  
residual blocks and skip connections
In their work on blind deconvolution using CNNs, Hradis et al. 
[19] show that training deeper networks produced results of 
significantly better quality compared with the results obtained 
from shallow networks. One might expect that constructing 
models of greater depth provides the model with more repre-
sentation power. In addition, increasing the depth of the net-

work increases the overall receptive field of the model, which 
provides more contextual information at each layer of the net-
work and improves the performance of the image recovery 
task. Until a couple of years ago, it was particularly challeng-
ing to train DNNs with more than a few layers, mostly due 
to image databases not being large enough, unstable training, 
and limited computational power. Many works had to resort 
to using greedy layer-wise pretraining (a greedy approach is 
used, e.g., in [14] for training a five-layer CNN for denoising). 
Recently, however, access to very large data sets and powerful 
computational systems, along with the introduction of effec-
tive activation functions (e.g., the rectified linear unit [20]), 
parameter initialization strategies (e.g., [21]) and more efficient 
architectural design choices (e.g., batch normalization [22]), 
have provided new possibilities for training deeper networks. 
The use of residual blocks [23], has also played a significant 
role in training very deep models. Instead of learning a new 
mapping function from one layer to the next, residual blocks 
learn a residual between two or more layers by adding a skip 
connection from the input of the residual block to its output. 
Figure 4 illustrates this concept by showing a generic archi-
tecture of a deep residual CNN. Because learning residuals 
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Figure 3. A three-layer CNN with successive convolutional layers, where the spatial dimensions of the feature maps match those of the input and output 
images. Following each convolution there is a nonlinearity operation, not shown here.
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Figure 4. An example of a deep residual CNN. Each residual block, consisting here of three convolutions, learns a residual between its input and  
its output.
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is an easier task than learning a new mapping from layer to 
layer, deep residual networks can be thought of as providing a 
stabler alternative to training DNNs. Sajjadi et al. [24], Ledig 
et al. [25] and Kim et al. [26] use this approach to train very 
deep CNN architectures for SR. They find that using residual 
blocks increases the performance and convergence of their 
model. In their CS reconstruction task, Yao et al. [27] use a 
similar deep residual CNN to reconstruct an image from its 
CS measurements.

Instead of having skip connections from input to output of 
residual blocks, one may choose to insert a skip connection 
from the input of the neural network to its output layer. This is 
particularly well suited to many image restoration problems, 
when the input and output images share very similar content. 
For example, in the SR task, using a skip connection from the 
input directly to the output layer forces the network to learn the 
image details, or the residuals, between the input and output. 
This architectural trick leads to an interesting explanation of 
the operations learned by the model in inverse problems. In 
the task of SR, e.g., if a skip connection is added from the 
input LR patch to the output HR patch, the CNN learns to 
predict the missing high-frequency components from the LR 
patch instead of an entire new mapping function from the LR 
to the HR patch. Kim et al. [26] showed that inserting this 
skip connection in their deep residual network significantly 
helped the training of their deep SR model. Similarly, Sajj-
adi et al. [24] showed that adding a skip connection helped 
stabilize the training of their deep CNN with residual blocks. 
Finally, to solve the image denoising task, Zhang et al. [28] 
train a residual 17-layer CNN which, inspired by the solu-
tions provided by analytical techniques, separates the clean 
latent image from the observed image by directly predicting 
the noise in the observed image. They find that using such a 
residual approach to their denoising problem results in better 
reconstruction quality compared with directly predicting the 
clean image.

Encoder-decoder CNNs: Downsampling  
and upsampling feature maps
While the networks previously mentioned keep the dimen-
sions of the feature maps fixed to the dimension of the input 
and output images, one may choose to downsample the feature 

maps at each convolution step all the way down to a bottleneck 
layer, and then upsample them back to the size of the output, as 
shown in Figure 5. The downsampling operation is performed 
with strided convolutions and the upsampling is performed 
with fractionally strided convolutions (see [29] for details on 
fractionally strided convolutions). This idea of downsampling 
and upsampling feature maps has become increasingly popular 
in segmentation and depth prediction tasks. The first part of 
the network, the “compressive” part, learns an abstract repre-
sentation of the input image, which is then used by the “expan-
sive” part of the network to produce an output image. We note 
here that this modeling has a very intuitive justification in the 
probabilistic formulation of the inverse problem, in which we 
find a set of latent variables which, after decoding, are able to 
explain our observations.

Because the encoder compresses the spatial information 
of the feature maps at each step, using an encoding-decoding 
architecture may lead to a significant loss of detail in the out-
put image. One solution to this problem is to insert symmetric 
skip connections in the neural network, described in the sec-
tion “Achieving Greater Depth: CNNs with Residual Blocks 
and Skip Connections,” between the lower downsampling con-
volutional layers of the network and the corresponding upper 
upsampling convolutional layer, which preserves the relevant 
details in the input image. We note that the encoder-decoder 
architecture with skip connections is typically referred to as 
the U-Net architecture [29].

This encoder-decoder framework, or U-Net, has success-
fully been applied to multiple inverse problems for imaging—
e.g., image denoising [30], image inpainting [31], optical flow 
[32], and computed tomography reconstruction [33].

Autoencoders for learning new representations
The encoder-decoder CNN described previously is one exam-
ple of a neural network architecture that learns a compressed 
representation prior to constructing an output image. Another 
type of neural network able to learn representations that is often 
used is the autoencoder. Autoencoders are trained to recon-
struct their input data at the output layer from the activations of 
one or several hidden layers. The input, hidden, and output lay-
ers are typically fully connected but can be made convolutional 
if desired. To prevent autoencoders from learning a trivial 
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Figure 5. In an encoder-decoder CNN, the feature maps are spatially compressed by an encoder network, then increased back to the size of the output 
image by a decoder network.
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identity mapping from input to output, several forms of regu-
larizations may be used. A common regularization method is to 
corrupt the input with noise, in which case we have a denoising 
autoecoder (see [34] for an example).

Autoencoders were originally used as tools for learning 
representations that could then be used for solving a future 
supervised training task or as part of a greedy layer-wise pre-
training procedure (see [35] for an example). However, recent 
image restoration methods such as those presented [19], [26], 
[28], which have been successful in training deep CNN mod-
els in an end-to-end fashion, suggest that supervised pretrain-
ing with autoencoders is much less needed than before. Thus, 
autoencoders as defined in their original context have lost 
some of their appeal. However, the core idea of representation 
learning with autoencoders is still used today to learn relevant 
statistics of images for inverse problems and can be a central 
component in some of the generative models described in 
the section “Recent Developments: Increasing the Perceptual 
Quality of Images Predicted by Neural Networks” (see [36] 
for an example).

Several works use the autoencoders’ effectiveness in learn-
ing relevant features to solve inverse problem in imaging. For 
example, Zeng et al. [37] exploit the autoencoder’s represen-
tation-learning capabilities to learn useful representations of 
LR and HR images. A one hidden-layer fully connected neural 
network is trained to learn a mapping between the learned LR 
representation and its corresponding learned HR representa-

tion. This procedure is depicted in Figure 6. Xie et al. [10] make 
use of the denoising ability of denoising autoencoders to imple-
ment a stacked autoencoder architecture as their proposed 
denoising model.

As explained previously, autoencoder-based architectures 
can be trained to reconstruct their input at the output layer, 
provided they learn a new representation that contains all the 
relevant information from the input layer. This approach is 
reminiscent of CS, in which T  represents the long random 
sensing matrix, which is typically manually designed and 
provides a new compressed representation when applied to 
an input signal. Instead of manually defining ,T  we can use 
the powerful representation learning abilities of DNNs to 
optimize the sensing process to obtain a result in the high-
est possible quality of the reconstructed signal. For tempo-
ral CS (i.e., reconstructing multiple video frames from one 
frame), Iliadis et al. [38] train a fully connected neural net-
work to learn the entries of the binary matrix T  (the sensing 
matrix is learned on a per patch basis, referred to as a binary 
mask). The resulting compressed acquisitions y  are inputs 
to another fully connected neural network that performs the 
reconstruction of multiple frames represented by .x  Both net-
works are trained jointly, as depicted in the general frame-
work of Figure 7. The authors demonstrated experimentally 
that the obtained binary masks result in reconstructed videos 
of improved quality over the random masks. We can think of 
this as a blind CS system.

Training Phase 1: Train Autoencoders to Learn New Representation

Training Phase 2: Train a Neural Network to Map One Representation to Another

Testing (Inference) Phase
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Figure 6. An example of an approach in which new representations for images are learned, prior to solving the reconstruction problem in a supervised 
way. In Zeng et al.’s work [37], autoencoders first learn new features for the LR and HR patches (training phase 1). An MLP is then trained to map the 
representation of the observed LR patch to that of the HR patch (training phase 2). The final HR patch can be obtained with the second half of the autoen-
coder trained to reconstruct HR images (testing phase).
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Other works that use DNNs for learning better represen-
tations for CS include Mousavi et al. [39], who use stacked 
denoising autoencoders to sense and reconstruct signals, and 
Bora et al. [40], who use the knowledge of distributions of 
natural images provided by generative models to recover 
images from Gaussian measurements.

Training procedure of DNNs for inverse problems
In the previous sections, we described some of the common 
choices of generic architectures (·)gz  for solving inverse 
problems. However, merely choosing a neural network archi-
tecture, whether it is an MLP, a CNN, or an autoencoder, with 
random parameters z  will fail at solving the inverse problem 
at hand if the model does not go through a training procedure 
prior to inference. The choice of architecture defines a set 
of functional relationships to be learned. It is the role of the 
training procedure to determine the optimal relationship for 
the given task.

Training DNNs in an supervised fashion requires access 
to a training data set with a large number of pairs .( )x,y  In 
the context of solving inverse problems, these pairs can be 
synthetically generated by corrupting the original image x  
with the transformation function .T  In addition to a training 
set, the training procedure requires the use of a loss func-
tion, whose choice is critical for the training procedure to 
be successful. Because the inverse problems here are formu-
lated as a regression problem, the MSE is typically used as 
a cost function

	 .( )y xl g
2

mse = -z � (2)

At each step of the training procedure, the parameters z  of 
the model are updated by an optimization algorithm that 
commonly implements a variant of gradient descent, such 
as stochastic gradient descent [41]. These optimization algo-
rithms typically require critical choices for some hyperpa-
rameters, such as learning rate, learning rate decay schedule, 

and regularization strength. Once the optimal parameters 
z  are learned, we are equipped with a trained model that 
has learned a fixed, functional relationship between its input 
and output. We can then estimate the original x  from the 
observed y  simply by computing ( )yx g= zt  with the use of 
the trained network. We note that this simple and efficient 
inference step is one of the major advantages of neural net-
works over traditional analytical methods that may require 
complex inference procedures.

However, note that pixel-wise MSE, although compu-
tationally attractive, does not fully reflect the difference in 
visual quality between two images, as is well known in the 
image processing literature. Using the MSE as the sole loss 
function in solving ill-posed inverse problems cannot ade-
quately distinguish between the possibly multiple similar so-
lutions the problem might admit. One approach in addressing 
this issue is to add a new loss component to the lmse  defined 
in (2), which in some sense regularizes the oversmoothing 
behavior of .lmse  In addition to using the Euclidean distance 
in pixel space, we compute the Euclidean distance in a pre-
defined feature space (·)}

	 ( ( )) ( ) .y xl gfeat } }= -z
2

� (3)

The illustration of this approach is depicted in Figure 8. A dis-
cussion of how the feature-space loss may improve perceptual 
quality is provided in [42]. An example of a chosen feature space 
(·)}  is given by the feature maps of the convolution layer located 

right before the fully connected layer in a deep CNN for classifi-
cation. The motivation behind the use of a high-level layer close 
to the final labeling stage is that these layers should capture a 
very robust representation of the input image. While the details 
of the input image are lost as a result of the multiple convolu-
tion operations, its content and structural information is stored 
in the feature maps. Therefore, minimizing the Euclidean dis-
tance between these high-level representations forces the neural 
network to produce an output image that is structurally consistent 
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with the ground-truth image, but without enforcing pixel-wise 
accuracy as dictated by the MSE [42]. The approach of adding a 
feature-space loss to the MSE loss was used in SR tasks and was 
shown to be particularly successful at reconstructing images with 
fine detail and edges (see [24] and [25]).

How do neural networks solve  
the inverse problem?
In the section “Neural Networks Architectures for Inverse Prob-
lems in Imaging,” we reviewed some of the commonly used 
deep-learning architectures for solving inverse problems in 
imaging. In this section, we provide some insight as to how these 
specific choices of models affect the network’s approach to solv-
ing inverse problems. We show that there exist some tricks, e.g., 
imposing architectural constraints to the model, or incorporat-
ing the neural network directly into an analytical method, which 
allows a departure from the common notion of a “black-box” 
model and guide our model to provide improved solutions to the 
imaging problem.

Learning higher-level representations  
with encoder-decoder CNNs
In the section “Neural Networks Architectures for Inverse 
Problems in Imaging,” we have seen two major types of CNN-
based architectures used for solving inverse problems in imag-
ing. The first type is composed of multiple convolutional layers 
that produce feature maps of fixed size. The other type of CNNs 
described consists of an encoding-decoding architecture, in 
which case the spatial size of the feature maps first decreases and 
then increases again to match the output image size.

For inverse problems for which the input and output images 
are of the same size, it may seem unnecessary to first downsam-

ple and then upsample the feature maps. However, there are mul-
tiple advantages to using such an encoder-decoder framework for 
our inverse problems, as explained by Johnson et al. [42]. First, 
decreasing the feature maps at each step of the encoder network 
results in fewer algebraic operations performed by the network 
which, in turn, increases the efficiency of inference. Second, due 
to downsampling, the effective receptive field of the network 
increases significantly. The receptive field of a unit in a neural 
network refers to the size of the field of view the unit has over its 
input layer. For example, the output units in fully connected neu-
ral networks have a receptive field that covers the entire input size, 
as each output unit is connected to all the units in the input layer. 
In CNNs, however, the receptive field of a unit is determined 
by the width k  of the convolution kernel. The use of successive 
convolutions in an encoder-decoder CNN increases the overall 
receptive field of the model. The concept of receptive field in 
CNNs is of paramount importance in solving inverse problems 
such as optical flow or inpainting, since having a large field of 
view over the input image can significantly improve the pre-
diction at each pixel in the output image. Therefore, we can use 
the large receptive fields provided by encoder-decoder CNNs 
to our advantage when solving problems that require such a 
wide field of view.

As briefly mentioned in the section “Neural Networks Archi-
tectures for Inverse Problems in Imaging,” studying the role of 
encoder-decoder CNNs from a representation learning per-
spective can provide us with valuable insight. Encoder-decoder 
CNNs can be seen as mapping an input image to a more use-
ful representation, which is then used by the decoder to recon-
struct the final image. For example, for the image inpainting 
problem, it may be desirable for the neural network to learn 
to extract semantic information regarding the input, especially 
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when large regions are missing from the input image. Pathak 
et al. [31] show that their encoder-decoder CNN can learn to 
successfully reconstruct large missing regions from an input 
image. Using a contractive/expansive network has provided 
successful results even for imaging tasks for which it is unclear 
as to which representation ends up being learned in the bottle-
neck part of the network. See, e.g., Mao et al. [30], who use an 
encoder-decoder CNN to denoise images, or Jin et al. [33] who 
use a similar form of encoder-decoder CNN with skip connec-
tions as refinement to their solution for biomedical imaging 
reconstruction tasks.

Training DNNs to learn new representations  
of natural images
The encoder-decoder CNNs previously described implic-
itly learn a higher-level representation of images to solve an 
inverse problem. Instead, one might want to explicitly train the 
neural network to learn relevant features of natural images, 
which can then be later used to solve image reconstruction 
tasks. This type of learning can be achieved in multiple ways. 
We have already seen in the section “Training Procedure of 
DNNs for Inverse Problems” that using a loss function in a 
feature-space obtained from the representations learned by a 
deep discriminative CNN can significantly improve the qual-
ity of the output solution [42]. In addition, one may choose to 
learn features that are directly tailored to the inverse problem 
being solved. For example, prior to performing an end-to-end 
mapping between LR and HR patches, Zeng et al. [37] pro-
pose to first use autoencoders to learn the manifolds of LR 
and HR patches. The autoencoders used in this case are not 
denoising autoencoder, but instead compact autoencoders, in 
which the intermediate hidden layer is of smaller dimension 
than the input and output layer dimensions. This forces the 
intermediate hidden layer to learn only the most salient fea-
tures of LR and HR patches. Once these intermediate repre-
sentations are learned, Zeng et al. [37] use a fully connected 
neural network to find the optimal mapping between the two 
learned manifolds. At test time, the representation of the LR 
patch is mapped to the representation of the HR patch, from 
which the trained autoencoder then recovers the underlying 
HR image.

Instead of using autoencoders, Bruna et al. [43] use a CNN-
based architecture to learn new representations of LR patches. 
They train a CNN to accept an LR patch and output its cor-
responding low-dimensional features such that the representa-
tion of the LR patch in this learned feature space is close to the 
representation of the corresponding HR patch provided by one 
of the layers of a deep pretrained CNN for classification. At 
test time, they use the learned statistics of the CNN to solve for 
the most plausible HR image, which is sampled from a Gibbs 
distribution conditioned on the LR patch. This idea of learning 
the relevant statistics of natural images and using them to solve 
an inverse problem in imaging is further explored in our dis-
cussion of generative models for inverse problem in the section 
“Recent Developments: Increasing the Perceptual Quality of 
Images Predicted by Neural Networks.”

Facilitating the learning process:  
Gradual refinement with deep residual CNNs
We have seen that encoding-decoding neural networks offer 
promising approaches for solving inverse problems, such as 
image inpainting and optical flow, as these models can benefit 
from a semantic understanding of the input image. In other 
cases, such as image SR or CS, it may not be appropriate to 
use encoder-decoder frameworks like the ones previously 
described. For both of these applications, the input image 
already has a lower spatial dimension than the output image 
we wish to predict, and applying additional downsampling to 
the input may be more harmful than beneficial to the model. 
Instead, because the input image is already close to the desired 
output solution, we could approach the inverse problem as one 
of performing a gradual refinement of the input. In this case, 
we can think of each convolution in the CNN, or each residual 
block, as applying a small amount of refinement to the input. 
For example, Mao et al. [30] visualized the learned filters of 
Jain and Seung’s denoising vanilla CNN [14] and found that 
each convolution operation seems to denoise the input layer 
just a little more. In some cases, this gradual refinement can be 
related to iterative noise removal strategies employed by some 
analytical methods. For example, Zhang et al. [28] show that 
a two-layer residual CNN performs operations that are math-
ematically equivalent to the operations implemented at each 
step of the trainable nonlinear reaction diffusion denoising 
algorithm [44]. 

Similar interpretations can be made in the context of SR. A 
common approach to construct the training data set in SR is to 
use an interpolated version of the LR patch as the input to the 
model instead of the original LR patch. The neural network 
then learns to refine the estimate provided by the interpolation 
step, instead of actually learning an upscaling function to out-
put the HR patch (see, e.g., [16] and [26]). The idea of refining 
an image has also been seen in Yao et al.’s [27] work on CS, 
where a fully connected neural network first outputs an ini-
tial estimate of the reconstruction, and a CNN then performs 
a refinement over the initial solution to output the final recon-
structed image. Similarly, Jin et al. [33] choose to use a U-Net 
CNN as described in the section “Encoder-Decoder CNNs: 
Downsampling and Upsampling Feature Maps,” to refine their 
solution obtained from a direct inversion step to solve for their 
various biomedical imaging reconstruction tasks.

Neural networks and analytical methods
In the sections “Learning Higher-Level Representations with 
Encoder-Decoder CNNs” and “Facilitating the Learning 
Process: Gradual Refinement with Deep Residual CNNs,” 
we have shown that the choice of our architectures can have 
a significant impact on the operations learned by our model. 
One strong argument in favor of analytical methods in lieu 
of neural networks is that we can explicitly incorporate our 
knowledge about the unknown quantities into the solution 
process when developing analytical methods, whereas neural 
networks tend to be more obscure models over which we have 
very little control. We discuss in the rest of this section multiple 
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ways to incorporate domain expertise within the neural net-
work framework. We describe how, with carefully designed 
choices, we can guide our neural networks to learn operations 
similar to those implemented by analytical models. This may 
be seen as a way to incorporate domain expertise within the 
DNN framework. Similarly to the residual learning approach 
described in the section “Facilitating the Learning Process: 
Gradual Refinement with Deep Residual CNNs,” guiding the 
neural network to perform known analytical steps may facili-
tate the learning procedure of the models, hence resulting in 
better solutions.

Nonblind deconvolution, e.g., is an inverse problem for 
which we are provided with domain knowledge (more specifi-
cally here the knowledge of the degradation system operating 
on the original image) that should not be ignored when design-
ing the inverse system. Xu et al. [45] propose to inject their 
knowledge of the blur kernel directly into the weights of their 
neural network architecture. More specifically, they use the 
singular value decomposition of the pseudo-inverse of their 
blur kernel to initialize the weights of their large 1-D convolu-
tion kernels. This provides their model with a good starting 
point to learn an operation similar to nonblind inverse filter-
ing. Wang et al. [46] choose to design a multilayer neural net-
work that mimics the operations implemented by the unfolded 
LISTA for SR. The authors use their knowledge of each step 
implemented by the LISTA algorithm [47] to fix their initial 
weights to precomputed values. Both Xu et al. [45] and Wang 
et al. [46] show that making an explicit choice of weight ini-
tialization using knowledge of another algorithm improves 
the final performance of their model compared with random 
weight initialization. 

LISTA [47] represents a simple case of an unfolding algo-
rithm [48] that aims to combine the advantages of both analyti-
cal approaches and neural networks. The basic idea is to start 
with an analytical approach and an associated inference algo-
rithm, and unfold the inference iterations as layers in a deep 
network. After the size of the network is fixed, it is trained 
to perform accurate inference. In [48], the unfolding frame-
work is shown to be able to interpret conventional networks as 
mean-field inference in Markov random fields, and obtain new 
architectures by instead using belief propagation as the infer-
ence algorithm.

A similar approach is taken by Yang et al. [49], who designed 
a DNN for reconstructing magnetic resonance images from 
CS measurements. Each layer in their deep network graph is 
explicitly implemented to mimic the step of the ADMM [50] 
optimization procedure. The neural network parameters to be 
learned include a nonlinear transformation of the CS measure-
ments, the shrinkage function, the regularization function, in 
addition to the various hyperparameters of the ADMM algo-
rithm. All of these unknowns are optimized as a result of the 
training of the neural network. Yang et al. [49] showed that 
choosing a neural network in this way could achieve higher 
reconstruction performance than state-of-the-art methods.

Some authors have also enforced a fixed operation with non-
trainable weights within the network to influence the model to 

operate in a particular way. For example, the encoder-decoder 
CNN designed by Fischer et al. [32] for optical flow estima-
tion uses a correlation layer at the end of the encoder part of 
their network architecture. After computing two separate sets 
of feature maps for each of the two input video frames, the 
correlation layer explicitly computes the correlations between 
the two sets. The result of this correlation is then used by the 
decoder part of their network. Fischer et al. [32] hypothesize 
that explicitly incorporating this correlation layer, instead of 
having the network learn the operation, facilitates the learn-
ing process. Similarly, in their work on blind deconvolution, 
Schuler et al. [51] perform end-to-end training of a deep lay-
ered architecture of which the first layers, corresponding to the 
feature extraction step, are learned through training a CNN, 
but the other two modules of the architecture are fixed and 
correspond to operations implemented by traditional image 
deconvolution. Their deep network learns to deblur the input 
image by iteratively alternating between the three modules.

Using neural networks as denoisers in variable  
splitting-based optimization methods
Recently, a new approach to directly combine analytical opti-
mization methods with DNNs has been proposed. With the 
use of variable splitting techniques, such as the ADMM and 
the HQS methods [50], the inverse problem is split into two 
subproblems: a fidelity term subproblem and a regularization 
subproblem. The inverse problem is solved by alternating opti-
mization. Recent research has proposed the use of DNNs to 
tackle the regularization subproblem. More specifically, in the 
context of the variable splitting methods, the regularization 
step can be interpreted as a denoising procedure, in which the 
restored image at a particular step of the algorithm is mapped 
to a more plausible image with the guidance of the prior term. 
Instead of hand-engineering the prior term, DNNs have been 
recently proposed performing the regularization step. Zhang 
et al. [52], e.g., show that their set of learned denoisers can be 
incorporated into their optimization framework to solve other 
problems besides image denoising, such as image deblurring 
and image SR. The set of denoiser-CNNs essentially act as 
prior terms that regularize the optimization-based restora-
tion procedure for the inverse problem at hand. Similarly, 
because Chang et al.’s [53] encoder-decoder CNN is trained 
in an adversarial learning context (discussed in the section 
“Using Generative Adversarial Networks to Learn Posteriors 
for the Inverse Problem”), it acquires a prior knowledge that is 
directly extracted from the statistics of the images seen in the 
training data set, and not dependent on the type of the inverse 
problem we are trying to solve. This allows the authors to apply 
their trained model to other inverse problem tasks, such as CS, 
image inpainting, and image SR.

Making careful design choices for solving inverse problems
Special caution must be taken when using CNNs for regres-
sion tasks. Architectural choices that may work for a classi-
fier CNN may harm the learning process of a CNN trained 
for solving an inverse problem using regression. For example, 
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while using a pooling layer in CNNs is highly recommended 
for classification and object recognition tasks, it is not for most 
of the inverse problems discussed in this article. An example 
of a commonly used pooling operation in classification tasks is 
that of max-pooling. This operation consists of taking the larg-
est element of each n n#  nonoverlapping region of the feature 
map. Using pooling in discriminative tasks such as automatic 
image classification guarantees that small changes in the input 
do not affect the output label. This is important in classifica-
tion because we want the model to predict a label based on 
what is in the input image, not based on where it is located [6]. 
In the case of our inverse problems, however, pooling may have 
a destructive effect. If, for example, pooling windows of size 
2 2#  are used, %75  of the information provided by the input 
feature maps is lost. We cannot allow such information loss 
when solving a regression inverse problem.

The choice of the kernel size and the depth of the CNN 
may depend on the specific inverse problem we are trying 
to solve. Authors often prefer using small kernel sizes (e.g., 
3 3# ) to increase the efficiency of the model and reduce the 
number of total parameters. This approach typically works 
well, provided that the resulting CNN is deep enough to have 
a large enough effective receptive field. To determine the pre-
cise number of layers, and hence the desired effective recep-
tive field, Zhang et al. [28] first found the most effective patch 
size for which analytical models performed best, and com-
puted the number of layers that the CNN should contain to 
achieve this effective receptive field size. Note that, although 
computationally efficient, restricting the neural network to 
small receptive fields may not always be appropriate for all 
inverse problems.

Recent developments: Increasing the perceptual 
quality of images predicted by neural networks
The models described previously approach inverse imaging 
problems, by and large, by estimating a deterministic function 
that maps the observed output y  back to the original underly-

ing data .x  However, as we indicated in the “Introduction” and 
in the section “Training DNNs to Learn New Representations 
of Natural Images,” these models can be greatly enhanced by 
their combination with sound and well grounded probabilistic 
modeling and inference. This coupling will lead to not only 
solving our inverse problem but also to generative capabilities, 
i.e., we will be able to generate images similar to the ones we 
have in our database.

Using generative adversarial networks  
to learn posteriors for the inverse problem
In recent deep-learning literature, powerful generative mod-
els have been successful at approximating image distribu-
tions, and so they have provided users with the capability to 
generate realistic-looking images. In the rest of this section, 
we investigate the use of such generative models as a means 
of regularizing our inverse problem solution process. Genera-
tive adversarial networks (GANs) [54] were first developed in 
a purely generative context, where a generator G  was trained 
to output an image ( )Gx z=  from a random noise vector .z  
GANs provide a way to learn the complex density associated 
with natural image distributions without having to explicitly 
define it but through the transformation of a latent variable 
.z  GANs learn the natural image distribution ( )p x  through 

an indirect interaction with the training distribution via a dis-
criminator network .D  During training, G  generates an image 

( )Gx z=  from a random vector ,z  and the discriminator D  
classifies the image x  as real (i.e., drawn from the training 
data) or synthesized (from G ). The generator’s goal is to cheat 
the system and try to produce images that the discriminator 
can not distinguish from the ones in the training data. Instead 
of starting with a random vector ,z  we could instead condition 
our generator G  on our observed image ,y  which would then 
output a reconstruction ( ) .yx G=t  Similarly to the generative 
case, the discriminator D  determines whether the prediction 
made by the generator xt  looks real or not. The so-called con-
ditional GAN (cGAN) framework is illustrated in Figure 9.
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Figure 9. The GAN framework for inverse problems. Given an observed image, the generator outputs a prediction for the output image, and the discrimi-
nator determines whether its input was synthesized by the generator, or comes from the training data.
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It is fairly straightforward to adapt the optimization of the 
models described in this article to a GAN setting. The model 

(·)gz  takes the place of the generator .G  The discriminator D  
is typically chosen to have the standard architecture of a clas-
sification CNN. Both parameters of G  and D  are optimized 
simultaneously, through the use of the adversarial loss

	 [ ( ( ))] [ ( ( ( ( ))))],log logx yl D D G1E EGAN
( ) ( )x~ y~x yp pdata data

= + - � (4)

where ( )D x  is the label provided by the discriminator D  
when it receives a real image as input and ( ( ))D G y  is the 
label obtained when a synthesized image, ( ),G y  is input to 
.D  This loss drives the discriminator network to correctly 

classify the samples as real or synthesized, 
and pushes the generator to synthesizing 
images that look real with the goal of fool-
ing the discriminator [6]. Once the networks 
are trained, D  is discarded and only G  is 
used. In cGANs, the adversarial loss is usu-
ally optimized in addition to the pixel-wise 
MSE loss. Similarly to the loss in feature 
space described in the section “Training 
Procedure of DNNs for Inverse Problems,” the adversarial loss 
acts as a regularizer to the negative perceptual effects that may 
result from optimizing the pixel-wise MSE. We note here that 
the generator G  does not explicitly model the distribution of 
images ( | ),p x y  but instead implicitly models it through its in-
teraction with the discriminator during training. The cGANs’ 
ability to indirectly learn the complex distribution of natural 
image densities has shown to significantly increase the quality 
of images generated for SR (see [24], [25], and [55]) and image 
inpainting (see [31]).

Solving SR and CS problems in an unsupervised context
In this article, we have, until now, focused on solving an inverse 
problem as a regression problem, which required the use of a 
training data set with example pairs .( , )y x  In this section, we 
discuss some of the methods that solve the SR and CS problems 
following an unsupervised learning approach.

Sønderby et al. [55] reformulate the SR problem as a 
maximum a posteriori estimation problem. They show that, 
by imposing several architectural constraints on their CNN-
based model, the range of functions learned by the model are 
restricted to valid SR function only. To achieve this, they use 
their knowledge of the downsampling operation T  used for SR 
and define a parametric function class that guarantees that the 
output of their model ,x  given y  as input, is consistent with 
the forward downsampling modeling .y Tx=  By restricting 
the set of functions in this way, the knowledge of the relation-
ship between x  and y  is explicitly wired into the architectur-
al design of the network. This result is quite powerful, as it 
allows us to depart from the traditional supervised approach 
and instead use unsupervised generative methods for solving 
the SR tasks with DNNs. Approaching the task as a generative 
one, the authors train their neural network architecture to out-
put HR images of high perceptual quality by optimizing their 

model within a GAN framework. During training, the genera-
tor G  learns to output HR images that look plausible to the eye 
of the discriminator .D

The use of generative models to increase the quality of the 
output images is not limited to the task of image SR. When 
a generator G  is trained to generate images from a random 
vector ,z  the generator ultimately learns a transformation 
that maps a trivial distribution like a Gaussian distribution to 
the complex distribution of natural images. We can use this 
learned transformation for solving a CS task. Bora et al. [40] 
show that given a measurement y  that was obtained from a 
random Gaussian measurement matrix ,A  we can estimate xt  
by finding the optimal zt  that minimizes .( )AG z y-t  Given 

this optimal ,zt  we obtain the reconstruc-
tion through the mapping ( )x G z= t  (We 
note, however, that solving the optimization 
above may be very difficult). While tradi-
tional CS reconstruction methods make 
assumptions regarding the structure of nat-
ural images, the approach described here 
requires no such assumption regarding the 
structure of the image. Instead, all prior 

knowledge needed to reconstruct the image was indirectly 
learned from a large training data set.

Variational autoencoders for inverse problems
Although we have only talked about GANs as generative mod-
els, another type of neural networks, variational autoencoders 
(VAEs), have also been successful in capturing the complex 
distribution of natural images. VAEs are composed of an 
encoder and a decoder. The encoder outputs the parameters 
of the distribution of the latent variable z  given either y  or x  
depending on the problem, i.e., the encoder learns a conditional 
distribution. Given this distribution, we can sample a random 
vector z  and pass it through the decoder part of the network to 
output an image that looks like it is drawn from the distribution 
of natural images. In their work on learning representations 
for CS, Bora et al. [40] experiment with the use of the decoder 
part of the VAE to map z  to an image .( )Gx z=  While VAEs, 
just like GANs, provide a way to produce an output image that 
looks natural, they have been less popular than GANs in their 
use for solving inverse problems in imaging.

Limitations of the use of neural networks  
for inverse problems in imaging

The knowledge of neural networks is constrained  
to the data seen during training
The functional relationship between input and output of the 
model are highly based on the image pairs ( , )y x  seen dur-
ing training. We usually do not have access to a data set that 
contains labeled real-world images x  and their corresponding 
transformations ,y  and therefore we have to resort to artifi-
cially generating the data set. There are multiple issues with 
this approach. First, the neural network reconstruction ability 
will be highly dependent on the choice of T  used to create the 

With carefully designed 
choices, we can guide our 
neural networks to learn 
operations similar to  
those implemented by 
analytical models.
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data set. Kim et al. [26]’s work confirmed this by training a 
deep CNN to solve an image SR task for a specific upscaling 
factor and testing the model on another upscaling factor unseen 
during training. They found that the model 
consistently performed worse when tested on 
a data set with upscaling factor different from 
the one used to construct the training data set.

In today’s literature, multiple approaches 
to obtain deep-learning models generaliz-
able to more than one type of degradation 
have been proposed. Agostinelli et al. [11], for 
example, train individual denoising autoen-
coders that are each trained to clean patches 
corrupted with different noise levels and 
noise types. At test time, a linear combina-
tion of each of the neural networks’ proposed reconstructions is 
used as the final denoised patch. The optimal weights of each 
network’s contribution is obtained with a separate, previously 
trained neural network.

Another, perhaps more straightforward solution, is to sim-
ply add more than one type of degradation T  when construct-
ing the data set of pairs ( , )y x . Constructing their training data 
set in this way, Zhang et al. [28] found that, through the use 
of residual connections and batch normalization, they are able 
to build a single CNN model with enough expressive power 
that could successfully denoise images at multiple noise levels. 
They accomplished this by using the residual approach dis-
cussed in the section “Achieving Greater Depth: CNNs with 
Residual Blocks and Skip Connections” in addition to using 
batch normalization in their CNN architecture. Similarly, Kim 
et al. [26] showed that their SR deep residual CNN trained on 
multiple scaling factors could achieve comparable results when 
compared with the models trained on a single scale.

Combining domain-based knowledge with  
the heuristic approach of deep-learning models
The works and approaches previously described showed that 
neural networks, when properly trained, are capable of achiev-
ing competitive and often state-of-the-art performance in solv-
ing many inverse problems. However, while neural networks 
have been revolutionary tools for solving many machine-learn-
ing tasks in computer vision or natural language processing, 
they have yet to provide a radical improvement over analyti-
cal methods for solving inverse problems in imaging. Further 
improvement could be obtained if we could make explicit use 
of our prior knowledge as engineers to better guide the learn-
ing of DNNs for solving inverse problems. Simple architec-
tural tricks such as adding a skip connection between input and 
output to explicitly make the model learn details, as described 
in the section “Achieving Greater Depth: CNNs with Residual 
Blocks and Skip Connections,” is one example of how we can 
insert domain-specific knowledge about our problem into the 
architecture of our network. Other approaches include unfold-
ing (see the section “Neural Networks and Analytical Meth-
ods”) or incorporating the use of DNNs as an actual step of 
a known analytical approach (see the section “Using Neural 

Networks as Denoisers in Variable Splitting-Based Optimiza-
tion Methods”). However, the aforementioned methods are 
still are not capable of explicitly bringing the large amount 

of domain-knowledge that we possess 
directly into the deep-learning framework. 
Therefore, one of the next critical research 
directions is to come up with a better way 
of enforcing our engineer ing knowledge 
about the inverse problem into the deep-
learning architecture and further regularize 
the learning process of a neural network 
with this analytical knowledge. One step 
in this direction was already taken with 
the recent development of generative mod-
els. By indirectly interacting with the train-

ing data set, GANs gain some understanding of what posterior 
distributions we should expect at the output of the model. The 
ongoing efforts in designing powerful unsupervised models, 
which are often based on more theoretical and probabilistic 
explanations, provide new opportunities for deep-learning 
based approaches for inverse problems in imaging.

However, one might argue that in some cases the heuristic 
approach of neural networks may sometimes be viewed as an 
asset, instead of a limitation, when solving an inverse problem 
in imaging. For example, the task of explicitly modeling image 
statistics can be particularly complex, and using neural net-
works as a substitute to complete that task may provide us with 
more accurate reconstructions when solving inverse problems 
in imaging. As discussed in this article, there are multiple ways 
to train DNNs to successfully learn the relevant natural image 
statistics and use these for solving image reconstruction tasks. 
Examples of this include training a network in an adversarial 
setting with a GAN setup (see [24], [25], [31], and [55]), or 
explicitly learning new and robust representations with encod-
er-decoder CNNs (see [30] and [32]), coupled autoencoders 
(see [37]), and discriminative CNNs (see [43]), or even learn-
ing new sensing matrices for CS with fully connected neural 
networks (see [38]).

Conclusions
Most of the early works that used deep-learning methods for 
image processing took a regression, end-to-end learning ap-
proach, in which a specific inverse problem task to be solved 
was chosen, a synthetic training data set was generated, and a 
neural network of a predetermined architecture was trained in a 
supervised manner. The works mentioned in the sections “Us-
ing MLPs for Inverse Problems in Imaging” and “End-to-End 
Mapping with the Vanilla CNN” follow this basic procedure.

Today, this approach is still the prevalent one, but the key 
differences lie in the more evolved model architectures avail-
able to us, in addition to the new optimization procedures and 
tricks that significantly facilitate the training and acceler-
ate convergence. For example, we have shown in the section 
“Facilitating the Learning Process: Gradual Refinement with 
Deep Residual CNNs” that the use of residual blocks may 
alleviate the learning problem for solving the reconstruction 

One of the next critical 
research directions is to 
come up with a better 
way of enforcing our 
engineering knowledge 
about the inverse problem 
into the deep-learning 
architecture.
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task at hand, and may be useful for refining an initial solution 
provided by an analytical method. Encoder-decoder CNNs 
with skip connections explained in the section “Learn-
ing Higher-Level Representations with Encoder-Decoder 
CNNs,” have also provided our deep-learning models with 
new ways to reconstruct images from given observations. In 
addition to more intricate architectures, more appropriate 
loss functions were recently proposed, such as the percep-
tual loss function in feature space described in the section 
“Training Procedure of DNNs for Inverse Problems” or the 
unsupervised GAN loss function introduced in the section 
“Using Generative Adversarial Networks to Learn Posteriors 
for the Inverse Problem,” which paves the way for the use of 
powerful statistical models in the near future. In addition to 
using DNNs in a regression framework, many methods have 
made the choice to explicitly train neural networks for what 
they are known to do best—feature extraction (see the section 
“Training Deep Neural Networks to Learn New Representa-
tions of Natural Images”). In particular, the use of CNNs to 
extract the statistics of natural images and use these learned 
representations to solve an inverse problem is a promising 
approach that needs to be further explored. This approach 
has already been investigated and proven successful in the 
context of variable splitting methods, autoencoders, or with 
generative approaches. 

While the techniques described in this article are suc-
cessful at solving inverse problems in imaging, sometimes 
surpassing the analytical state of the art, the challenge of 
bringing the large amount of prior knowledge we possess as 
engineers into the deep-learning framework still remains. The 
most critical issue in today’s research lies in the fact that we 
are, in most of the techniques described previously, essen-
tially using a “black-box” model for solving a problem for 
which we possess a considerable quantity of knowledge and 
understanding. Therefore, more research reframing the use 
of DNNs in a context in which we can apply some of our 
domain-based knowledge is needed to simultaneously benefit 
from the advantages of deep-learning and analytical meth-
ods when solving inverse problems in imaging. In the future, 
this research may manifest itself in terms of the introduction 
of new layers and operations in the deep-learning system 
that are specifically tailored to the inverse problem at hand. 
Moreover, as we aim to combine deep-learning and analytical 
methods, we expect that future research will depart from the 
traditional end-to-end mapping approach and instead focus 
on solving a very specific step of the formulated inverse prob-
lem. Finally, we will undoubtedly see more research in the 
coming years on the use of generative models to solve image 
recovery tasks, as has already been manifested with the recent 
introduction of GANs toward solving various inverse prob-
lems. These different future directions have in common a key 
challenge that remains to be addressed, that of achieving the 
optimal balance between imposing engineering knowledge 
into the framework, and, simultaneously, making use of the 
ever-growing potential of deep learning to solve problems for 
which we do not have answers.
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