
20 IEEE Signal Processing Magazine | January 2018 |

DEEP LEARNING FOR VISUAL UNDERSTANDING:
Part 2

1053-5888/18©2018IEEE

Alice Lucas, Michael Iliadis, Rafael Molina,
and Aggelos K. Katsaggelos

Using Deep Neural Networks
for Inverse Problems in Imaging
Beyond analytical methods

T raditionally, analytical methods have been used to solve
imaging problems such as image restoration, inpainting, and
superresolution (SR). In recent years, the fields of machine

and deep learning have gained a lot of momentum in solving
such imaging problems, often surpassing the performance pro-
vided by analytical approaches. Unlike analytical methods for
which the problem is explicitly defined and domain-knowledge
carefully engineered into the solution, deep neural networks
(DNNs) do not benefit from such prior knowledge and instead
make use of large data sets to learn the unknown solution to
the inverse problem. In this article, we review deep-learning
techniques for solving such inverse problems in imaging. More
specifically, we review the popular neural network architectures
used for imaging tasks, offering some insight as to how these
deep-learning tools can solve the inverse problem. Furthermore,
we address some fundamental questions, such as how deep-
learning and analytical methods can be combined to provide
better solutions to the inverse problem in addition to providing
a discussion on the current limitations and future directions of
the use of deep learning for solving inverse problem in imaging.

Introduction
In most applications, an observed signal y can be modeled as
the output of a system ,T whose input is denoted by .x Both the
input and output of the system might represent multidimension-
al signals in general, at one or multiple time and spatial instanc-
es. For example, x and y might represent two-dimensional
(2-D) images, or x might consist of multiple video frames and
y be a motion vector field, or x might represent a three-dimen-
sional volume and y a set of 2-D (projection) images.

There are various ways to describe the system ,T through,
for example, a differential or difference equation, an integral
equation, or a general mathematical mapping. Such a system T
might model defocusing introduced by the imaging device, blur
due to motion or atmospheric turbulence, an acquisition mask
in a compressive sampling application, and loss in general of
spatiotemporal or spectral information. It might also model the
motion estimation process or the image edge detection process

Digital Object Identifier 10.1109/MSP.2017.2760358
Date of publication: 9 January 2018

©Istockphoto.com/zapp2photo

21IEEE Signal Processing Magazine | January 2018 |

through differentiation. The system T may exhibit various
system properties, such as linearity, shift invariance, stability,
causality, etc. Determining the output y for a given input x and
assuming knowledge of the system, T represents the forward
model. Finding the input x for a given output y and knowl-
edge of the system, T represents the inverse problem (if T is
not known or is partially known, the problem becomes a blind
or semiblind inverse problem, respectively). The illustration of
this framework is shown in Figure 1.

The difficulty in solving an inverse problem stems from the
properties of the mapping ,T even when it is exactly known.
The spectral properties of the operator T are critical and, by
and large, determine the system to be ill-posed; i.e., even when
T is invertible, a small perturbation in the data results in a
large perturbation in the solution. Clearly, what exacerbates the
situation is the ever-present noise. In other words, the observa-
tion model has the form

	 () ,y T x e= + � (1)

where e models the noise in the observed data.
The solution of inverse problems in imaging applications

has a long history of research and development. These inverse
problems are also known as recovery problems, and they are
encountered under different names, such as restoration, decon-
volution, pansharpening, concealment, inpainting, deblocking,
demosaicking, SR, reconstruction from projections, compres-
sive sensing (CS), etc. Motion estimation and depth estimation
are also inverse problems. The operator T assumes different
forms for each of these cases. A more detailed description of the
inverse problems mentioned here can be found in [1]–[3].

Analytical techniques for solving inverse problems
have been studied for a long time. When using an analyti-
cal approach, the forward model is explicitly described, the
criteria for obtaining a solution are decided, and a solution
approach is chosen. At the high level, one can group analyti-
cal techniques into deterministic and stochastic ones. With the
first class, an optimization criterion is typically chosen, such

as the minimization of the l2 error norm .()y T x-
2

 Then
prior (or domain) knowledge is incorporated into the solution
process through regularization. That is, an additional term is
included in the optimization functional imposing, e.g., smooth-
ness or sparsity on the solution. With stochastic approaches, all
unknowns are treated as stochastic quantities and then a maxi-
mum likelihood, or a maximum a posteriori or a fully (hierar-
chical) Bayesian approach is followed (see, e.g., [4] for the SR
problem). In the latter case, an estimate of the full posterior
(|)x yp is obtained. The prior knowledge in this case is clearly

introduced into the problem formulation through the particular
probabilistic models (e.g., Gaussian or Dirichlet or flat distri-
butions) used to describe the unknown quantities, such as the
input image ,x the possibly (partially) unknown system T (the
impulse response of the system for a deconvolution problem),
and all the parameters (hyperparameters) describing the intro-
duced distributions (see, for instance, [5] for a review of varia-
tional Bayesian approaches applied to multimedia problems).

An alternative model of solving the inverse problem at
hand, which is the approach most commonly employed when
using DNNs for solving inverse problems in imaging, is to
minimize ()x yg

2
- z for a convenient (·)gz , which plays

the role of .T 1- We will design this function to correspond
to a DNN with parameters ,z which are learned with the help
of large data sets with pairs of examples .(,)y x As a result of
the learning procedure, explained in more detail in the section
“Training Procedure of DNNs for Inverse Problems,” a direct
mapping of y to x is obtained.

One of the first questions one might ask is: What are the rel-
ative advantages of analytical and (deep) neural network learn-
ing approaches for solving inverse problems—or, for a specific
problem at hand, which of the approaches in our available tool-
box should one use? At the high level, learning approaches
shift the computational burden to the learning phase while the
“testing” phase, i.e., the step of providing an estimate of x for
a given ,y is typically represented by a feed-forward network

(·)gz and it is, therefore, computationally efficient. Analytical
techniques, on the other hand, rely on optimization approaches,

Input Image Restored ImageOutput Image

Forward Problem Inverse Problem

Degradation
System T

Deep Learning

Analytical Method

or

Figure 1. In a forward problem, the transformation T is applied to an input image. The inverse problem aims to obtain an estimate of the input image
from the observation. For illustration purposes, we show here the image restoration case where T represents the blurring operator. Examples of other
types of degradation systems are provided in the “Introduction.”

22 IEEE Signal Processing Magazine | January 2018 |

which are more computationally elaborate. Generally, the more
sophisticated the modeling of the inverse problem, the more
demanding the optimization process (as demonstrated, e.g., by
the number of approximations required to draw inference in a
variational Bayesian framework).

When it comes to incorporating prior or domain knowledge
into the solution of an inverse problem (such as the original image
is a sample of a random field obeying a particular distribution),
analytical approaches have an advantage since this modeling step
represents an essential component of such approaches. It is hard,
in general, to incorporate such domain knowledge into a neural
network structure (the network extracts such information from
the data). Therefore, there are efforts in multiple directions (e.g.,
unfolding and generative modeling with neural networks) toward
bridging this gap between analytical and deep-learning approach-
es, forming a fertile ground for future investigation for the whole
community (we revisit this topic in the section “Recent Develop-
ments: Increasing the Perceptual Quality of Images Predicted by
Neural Networks”).

A second fundamental question one might ask is: Under what
circumstances would one expect deep-learning approaches to
provide more accurate solutions (computational considerations
aside) than analytical approaches? Or by rephrasing this ques-
tion, would one expect to see the same gains in solving inverse
problems with neural networks as we have seen in solving cer-
tain classification problems (equaling or even surpassing in some
cases human performance)?

We do not believe there is necessarily a definitive answer to
this question at this point. Certainly, at the extreme case when
the operator T is exactly known and it is invertible and there is
a small amount or no noise in the data, there might be little to be
gained by using a neural network approach. On the other hand,
in situations in which T is not exactly known and/or it cannot
be precisely modeled mathematically and/or it consists of the
concatenation of multiple operators (the original signal, e.g., is

blurred and compressed, and a nonlinear clipping is applied to it),
there might be more room for deep-learning techniques to learn
all of this information from the data and outperform analytical
approaches in terms of accuracy of the reconstruction.

Our objective in writing this article has been to provide a criti-
cal and nonlinear approach in reviewing the literature, with hope
that the reader will gain an appreciation of the technology and
valuable knowledge to utilize as guidance in solving their inverse
problems in imaging using neural networks. Fine details were
omitted due to a lack of space, but they can easily be acquired
by referring to the original source of the information. It was also
assumed that a basic background knowledge on neural networks
was available to the reader, as it can be easily acquired utilizing
the abundant resources on the Internet or referring to a text such
as [6]. Finally, we note that, due to the large amount of work in
this area, this article could not have covered all of the approaches
that use deep learning for solving inverse problems in imaging.
For example, we have not provided specific coverage of bio-
medical image reconstruction techniques using deep learning,
although some of the results reported in this review are applicable
to such techniques as well. In other words, while the references
described in this article by no means constitute an exhaustive list,
we believe that the techniques described in this article should
provide the reader with a comprehensive overview of the ways
DNNs may be employed to solve inverse problems in imaging.

Neural networks architectures
for inverse problems in imaging
A DNN can be described as a multilayer stack of simple modules,
each of which transforms its input to a new representation, which
is then used as input to the next module. In the deep-learning
literature, such modules are commonly referred to as layers, and
each layer is composed of multiple units or neurons. An example
of a fully connected neural network, also referred to as a mul-
tilayer perceptron (MLP), is shown in Figure 2. This network

∑

∑

∑

y1

y2

y3

x1

x2

x3

1 1 1

∑

∑

∑

∑

∑

∑

w(1)
1,1

z(1)
1

z(1)
2

z(1)
3

z(2)
1

z(2)
2

z(2)
3

w(2)
1,1

w(3)
1,1

b(1)
3

b(2)
3

b(3)
3

Input Image Output ImageHidden Layer 1 Hidden Layer 2

Figure 2. An example of a fully connected neural network with two hidden layers. The activation of the j th output neuron in layer l is defined as
z f w z b,j
l

i j
l

i
l

j
l

i
1

= +
- ,` j/ where ()f $ is the chosen activation function. All weights w and biases b are learned during the training phase.

23IEEE Signal Processing Magazine | January 2018 |

consists of two hidden layers. The output of the unit in each layer
is the result of the weighted sum of the input units, followed by
a nonlinear element-wise function. The weights between each
units are learned as a result of a training procedure, which we
discuss in greater detail in the section “Training Procedure of
DNNs for Inverse Problems” this article.

The choice of the neural network architecture determines
the generic set of possible functions (·)gz that will be explored
by the optimization procedure for solving the inverse problem
at hand. Therefore, it is of paramount importance to pay close
attention to the design of the model, which will be the focus of
our discussion in the following sections.

Using MLPs for inverse problems in imaging
Due to DNNs’ ability to perform fast-forward inference, train-
ing DNNs to learn a mapping from the observation y to its
reconstruction xt is often the favored approach. When deep-
learning methods first gained momentum in the image pro-
cessing community, fully connected neural networks, such as
the one showed in Figure 2, were a popular architectural choice
to perform this mapping. For example, Zhang and Salari [7]
proposed to use an MLP for denoising images in the wave-
let domain. Table 1 summarizes representative works that use
deep learning to solve inverse problems in imaging that are ref-
erenced in this article, however, this list is by no means exhaus-
tive. Similarly, Burger et al. [8] used an MLP to directly map
noisy images to their corresponding denoised counterparts.
To solve their nonblind deconvolution problem, Schuler et al.
[9] trained an MLP to remove artifacts caused by the decon-
volution step. Autoencoder-based architectures, discussed in
more detail in the section “Autoencoders for Learning New
Representations,” were quite popular too, especially for solv-
ing denoising problems; see, e.g., Xie et al. [10] and Agostinelli
et al. [11]. Most of these models, while straightforward, were
able to achieve reconstruction quality that competed with the
state-of-the-art analytical approaches, suggesting that neural
network-based models for solving inverse problems in image
processing had, in fact, a promising future.

End-to-end mapping with the vanilla
convolutional neural network
It is known from the universal approximation theorem [12] that
a fully connected neural network with a large number of neu-
rons in its hidden layer has the ability to represent any func-
tion we wish to learn, provided our activation functions satisfy
some mild assumptions. However, when dealing with highly
structured modalities such as images or videos, using a convo-
lutional neural network (CNN) is typically the default model
of choice. We will see later that CNNs are particularly suitable
for processing images as they can easily extract the statistics of
their input and make use of them to solve the inverse problem
(see the sections “Learning Higher-Level Representations with
Encoder-Decoder CNNs” and “Training DNNs to Learn New
Representations of Natural Images”).

CNNs distinguish themselves from fully connected neu-
ral networks by applying convolutions to the previous layer.

When implementing a CNN, convolving a k k# kernel
with a w w# input layer will result in a feature map of size
() () .w k w k1 1#- + - + Multiple convolution kernels are
applied to the input layer, which provide multiple feature maps
that collectively capture a new representation of the input.

There are multiple advantages to using CNNs for solving
our inverse problems. First, because the weights of the ker-
nels are fixed as they slide across the input, there are typically
much fewer parameters to learn compared with fully connect-
ed neural networks. This reduction in number of parameters
simplifies the optimization problem. In addition, the convo-
lution operations implemented in CNNs provide these mod-
els with advantageous properties when dealing with images,
such as translation invariance and locality (more detail on
the properties of CNNs may be found in [6]). Furthermore,
CNNs have been shown to be particularly suitable to learn-
ing interesting representations from images and capturing the
multiscale structure from the input; e.g., when solving image
classification, segmentation, or detection tasks. Therefore,
we expect CNNs to efficiently extract information from the
observed image y provided at the input layer, information that
is then interpreted by the CNN to output a reconstruction .xt
Finally, CNN-based architectures, if properly designed, can
be shown to share similarities with analytical methods (e.g.,
optimization-based iterative methods or deconvolution steps),
which suggests that CNN-based models can be powerful tools
for solving inverse problems in imaging. For example, a con-
nection between CNNs and multilayer convolutional sparse
coding was recently established [13], offering a fresh view
and, potentially, a better understanding of CNNs but also
potentially other architectures (e.g., residual networks) and the
common tricks currently employed such as batch normaliza-
tion and dropouts.

When CNNs are used for discriminative tasks such as
classification, the convolutions applied at each step result in
a decrease in the spatial extent of the feature maps, such that
the final layer of the network represents the low-dimensional
labels corresponding to the input image. However, when using
neural networks for solving inverse imaging problems, the
output of our model is a high-dimensional image that is usu-
ally of the same dimension as the input. Therefore, one com-
mon approach when designing a CNN for solving an inverse
problem is to keep the dimensions of the output feature maps
fixed to the size of the input to the convolutional layer, which is
achievable through the use of appropriate padding with zeros.
An example of a three-layer CNN architecture that follows this
approach is shown in Figure 3.

Examples of works that use the CNNs described previ-
ously include Jain and Seung’s [14] use of a five-layer CNN to
denoise an image subjected to Gaussian noise. More recently,
Eigen et al. [15] trained a CNN with three layers for denoising
photographs that showed windows covered with dirt and rain.
To solve a SR task, Dong et al. [16] used a three-layer CNN that
takes an interpolated low-resolution (LR) patch as input to pro-
duce the corresponding high-resolution (HR) patch. Kappeler
et al. [17] extended this architecture to the problem of video

24 IEEE Signal Processing Magazine | January 2018 |

Table 1. A summary of the works that have used a deep-learning-based approach for solving inverse problems in imaging
and to which have been referred in this article. We emphasize that this list is by no means exhaustive.

Reference Application Method/Remarks

Zhang and Salari [6] (2005) Denoising MLP with one hidden layer; end-to-end mapping in the wavelet domain

Jain and Seung [13] (2008) Denoising Five-layer CNN; trained using greedy layer-wise approach

Burger et al. [7] (2012) Denoising MLP with two-hidden layers, end-to-end mapping

Xie et al. [9] (2012) Denoising and inpainting Stacked denoising autoencoders

Eigen et al. [14] (2013) Denoising Three-layer CNN; trained to remove dirt and rain

Agostinelli et al. [10] (2013) Denoising Stacked denoising autoencoders; used linear combination of autoencoders to solve for
multiple noise levels and noise types

Zhang et al. [27] (2016) Denoising 17-layer CNN with input-output skip connection; extended model to SR and
compression application

Mao et al. [29] (2016) Denoising Encoder-decoder CNN; symmetric skip connections

Zhang et el. [51 (2017) Denoising, deblurring, and SR Seven-layer CNN for regularization term in the half-quadratic splitting (HQS) method;
residual learning

Chang et al. [52] (2017) Denoising, inpainting, and SR Ten-layer encoder-decoder CNN for projection operator in the alternating direction method
of multipliers (ADMM) method; residual blocks; adversarial training

Schuler et al. [8] (2013) Nonblind image deconvolution MLP with two hidden layers; trained to remove artifacts following nonblind
deconvolution step

Xu et al. [44] (2014) Nonblind image deconvolution Five-layer CNN with one-dimensional (1-D) filters; use singular-value decomposition of
known inverse kernel for initializing filter weights

Hradis et al. [18] (2015) Blind deconvolution on text 15-layer CNN; end-to-end mapping for deblurring text documents

Schuler et al. [50] (2016) Blind image deconvolution DNN with a feature extraction module (learned by convolutional layers), a kernel
estimation module (fixed), and an image restoration module (fixed)

Jin et al. [32] (2016) Biomedical image restoration Encoder-decoder CNN to refine initial inverse step

Kim et al. [25] (2015) Image SR Ten-layer CNN; input-output skip connection; mean squared error (MSE) loss

Zeng et al. [36] (2015) Image SR One hidden layer fully connected neural network, which maps LR to HR representations
learned by autoencoders

Dong et al. [15] (2016) Image SR Three-layer CNN; end-to-end mapping from LR to HR patch

Kappeler et al. [16] (2016) Video SR Three-layer CNN; end-to-end mapping from three LR video frames to one HR video frame

Cui et al. [34] (2016) Image SR Five-layer cascade CNN; In each layer, nonlocal self-similarity search and collaborative
local autoencoder is integrated

Sajjadi et al. [23] (2016) Image SR CNN with ten residual blocks; adversarial training; input-output skip connection;
combination of MSE loss, feature-space loss, and texture loss

Ledig et al. [24] (2016) Image SR CNN with six residual blocks; adversarial training; end-to-end mapping; combination of
MSE loss, feature-space loss, and total variation loss

Brune et al. [42] (2016) Image SR CNN that outputs the sufficient statistics of a Gibbs distribution for sampling HR image

Wang et al. [45] (2016) Image SR Multilayer neural network; each layer mimics an operation of the unfolded learned
iterative shrinkage and thresholding algorithm (LISTA) for SR

Sonderby et al. [54] (2016) Image SR CNN with affine projection to output HR patch consistent with input LR patch;
adversarial training

Mousavi et al. [38] (2015) CS Stacked denoising autoencoder to sense and reconstruct input image

Kulkarni et al. [17] (2016) CS Linear mapping followed by six-layer CNN; takes CS measurements as input and
outputs an intermediate reconstruction, which is then fed to a denoiser

lliadis et al. [37] (2016) CS Learns two MLP end-to-end: one MLP to learn the sensing matrix and one MLP to learn
the corresponding reconstructed image

Yang et al. [48] (2016) CS Designs and trains DNN to implement the ADMM algorithm to reconstruct magnetic
resonance images from CS measurements

Yao et al. [26] (2017) CS Linear mapping followed by four residual blocks; takes CS measurements as input and
outputs reconstructed image

Bora et al. 139] (2017) CS Reconstruct image from random Gaussian measurements using generator from
adversarial training

Pathak et al. [30] (2016) Inpainting Encoder-decoder CNN; fully connected layer at bottleneck; adversarial training; MSE loss

Fischer et al. [31] (2015) Optical flow Encoder-deccoder CNN; refinement module; feature correlation layer

25IEEE Signal Processing Magazine | January 2018 |

SR. In this case, to predict an HR patch at time t, multiple
motion-compensated frames from previous and future time
instances are fed through separate CNNs. The individual fea-
ture maps produced by each CNNs are later fused by another
CNN (different depths for implementing the fusion process
were investigated) to produce the final prediction of the HR
frame. In the CS literature, Kulkarni et al. [18] use a CNN
with six convolutional layers to obtain an intermediate recon-
struction of the input CS measurements, which is then further
refined with a nondeep-learning-based denoising method.
Hradis et al. [19] surpassed state-of-the-art analytical methods
for their blind deconvolution task on text images, which they
solved by training a deep CNN with up to 15 layers.

Achieving greater depth: CNNs with
residual blocks and skip connections
In their work on blind deconvolution using CNNs, Hradis et al.
[19] show that training deeper networks produced results of
significantly better quality compared with the results obtained
from shallow networks. One might expect that constructing
models of greater depth provides the model with more repre-
sentation power. In addition, increasing the depth of the net-

work increases the overall receptive field of the model, which
provides more contextual information at each layer of the net-
work and improves the performance of the image recovery
task. Until a couple of years ago, it was particularly challeng-
ing to train DNNs with more than a few layers, mostly due
to image databases not being large enough, unstable training,
and limited computational power. Many works had to resort
to using greedy layer-wise pretraining (a greedy approach is
used, e.g., in [14] for training a five-layer CNN for denoising).
Recently, however, access to very large data sets and powerful
computational systems, along with the introduction of effec-
tive activation functions (e.g., the rectified linear unit [20]),
parameter initialization strategies (e.g., [21]) and more efficient
architectural design choices (e.g., batch normalization [22]),
have provided new possibilities for training deeper networks.
The use of residual blocks [23], has also played a significant
role in training very deep models. Instead of learning a new
mapping function from one layer to the next, residual blocks
learn a residual between two or more layers by adding a skip
connection from the input of the residual block to its output.
Figure 4 illustrates this concept by showing a generic archi-
tecture of a deep residual CNN. Because learning residuals

Convolution
Layer

Convolution
Layer

Convolution
Layer

Input Image Output Imagen Feature Maps n Feature Maps

W

H

W

Figure 3. A three-layer CNN with successive convolutional layers, where the spatial dimensions of the feature maps match those of the input and output
images. Following each convolution there is a nonlinearity operation, not shown here.

Input Image Output Image
Residual Block

Residual
Block

Residual
Block

Residual
Block+

Figure 4. An example of a deep residual CNN. Each residual block, consisting here of three convolutions, learns a residual between its input and
its output.

26 IEEE Signal Processing Magazine | January 2018 |

is an easier task than learning a new mapping from layer to
layer, deep residual networks can be thought of as providing a
stabler alternative to training DNNs. Sajjadi et al. [24], Ledig
et al. [25] and Kim et al. [26] use this approach to train very
deep CNN architectures for SR. They find that using residual
blocks increases the performance and convergence of their
model. In their CS reconstruction task, Yao et al. [27] use a
similar deep residual CNN to reconstruct an image from its
CS measurements.

Instead of having skip connections from input to output of
residual blocks, one may choose to insert a skip connection
from the input of the neural network to its output layer. This is
particularly well suited to many image restoration problems,
when the input and output images share very similar content.
For example, in the SR task, using a skip connection from the
input directly to the output layer forces the network to learn the
image details, or the residuals, between the input and output.
This architectural trick leads to an interesting explanation of
the operations learned by the model in inverse problems. In
the task of SR, e.g., if a skip connection is added from the
input LR patch to the output HR patch, the CNN learns to
predict the missing high-frequency components from the LR
patch instead of an entire new mapping function from the LR
to the HR patch. Kim et al. [26] showed that inserting this
skip connection in their deep residual network significantly
helped the training of their deep SR model. Similarly, Sajj-
adi et al. [24] showed that adding a skip connection helped
stabilize the training of their deep CNN with residual blocks.
Finally, to solve the image denoising task, Zhang et al. [28]
train a residual 17-layer CNN which, inspired by the solu-
tions provided by analytical techniques, separates the clean
latent image from the observed image by directly predicting
the noise in the observed image. They find that using such a
residual approach to their denoising problem results in better
reconstruction quality compared with directly predicting the
clean image.

Encoder-decoder CNNs: Downsampling
and upsampling feature maps
While the networks previously mentioned keep the dimen-
sions of the feature maps fixed to the dimension of the input
and output images, one may choose to downsample the feature

maps at each convolution step all the way down to a bottleneck
layer, and then upsample them back to the size of the output, as
shown in Figure 5. The downsampling operation is performed
with strided convolutions and the upsampling is performed
with fractionally strided convolutions (see [29] for details on
fractionally strided convolutions). This idea of downsampling
and upsampling feature maps has become increasingly popular
in segmentation and depth prediction tasks. The first part of
the network, the “compressive” part, learns an abstract repre-
sentation of the input image, which is then used by the “expan-
sive” part of the network to produce an output image. We note
here that this modeling has a very intuitive justification in the
probabilistic formulation of the inverse problem, in which we
find a set of latent variables which, after decoding, are able to
explain our observations.

Because the encoder compresses the spatial information
of the feature maps at each step, using an encoding-decoding
architecture may lead to a significant loss of detail in the out-
put image. One solution to this problem is to insert symmetric
skip connections in the neural network, described in the sec-
tion “Achieving Greater Depth: CNNs with Residual Blocks
and Skip Connections,” between the lower downsampling con-
volutional layers of the network and the corresponding upper
upsampling convolutional layer, which preserves the relevant
details in the input image. We note that the encoder-decoder
architecture with skip connections is typically referred to as
the U-Net architecture [29].

This encoder-decoder framework, or U-Net, has success-
fully been applied to multiple inverse problems for imaging—
e.g., image denoising [30], image inpainting [31], optical flow
[32], and computed tomography reconstruction [33].

Autoencoders for learning new representations
The encoder-decoder CNN described previously is one exam-
ple of a neural network architecture that learns a compressed
representation prior to constructing an output image. Another
type of neural network able to learn representations that is often
used is the autoencoder. Autoencoders are trained to recon-
struct their input data at the output layer from the activations of
one or several hidden layers. The input, hidden, and output lay-
ers are typically fully connected but can be made convolutional
if desired. To prevent autoencoders from learning a trivial

W

H

Input Image Output ImageEncoder Part Decoder Part

n Feature
Maps

n Feature
Maps

2n Feature
Maps

2n Feature
Maps

4n Feature
Maps

Figure 5. In an encoder-decoder CNN, the feature maps are spatially compressed by an encoder network, then increased back to the size of the output
image by a decoder network.

27IEEE Signal Processing Magazine | January 2018 |

identity mapping from input to output, several forms of regu-
larizations may be used. A common regularization method is to
corrupt the input with noise, in which case we have a denoising
autoecoder (see [34] for an example).

Autoencoders were originally used as tools for learning
representations that could then be used for solving a future
supervised training task or as part of a greedy layer-wise pre-
training procedure (see [35] for an example). However, recent
image restoration methods such as those presented [19], [26],
[28], which have been successful in training deep CNN mod-
els in an end-to-end fashion, suggest that supervised pretrain-
ing with autoencoders is much less needed than before. Thus,
autoencoders as defined in their original context have lost
some of their appeal. However, the core idea of representation
learning with autoencoders is still used today to learn relevant
statistics of images for inverse problems and can be a central
component in some of the generative models described in
the section “Recent Developments: Increasing the Perceptual
Quality of Images Predicted by Neural Networks” (see [36]
for an example).

Several works use the autoencoders’ effectiveness in learn-
ing relevant features to solve inverse problem in imaging. For
example, Zeng et al. [37] exploit the autoencoder’s represen-
tation-learning capabilities to learn useful representations of
LR and HR images. A one hidden-layer fully connected neural
network is trained to learn a mapping between the learned LR
representation and its corresponding learned HR representa-

tion. This procedure is depicted in Figure 6. Xie et al. [10] make
use of the denoising ability of denoising autoencoders to imple-
ment a stacked autoencoder architecture as their proposed
denoising model.

As explained previously, autoencoder-based architectures
can be trained to reconstruct their input at the output layer,
provided they learn a new representation that contains all the
relevant information from the input layer. This approach is
reminiscent of CS, in which T represents the long random
sensing matrix, which is typically manually designed and
provides a new compressed representation when applied to
an input signal. Instead of manually defining ,T we can use
the powerful representation learning abilities of DNNs to
optimize the sensing process to obtain a result in the high-
est possible quality of the reconstructed signal. For tempo-
ral CS (i.e., reconstructing multiple video frames from one
frame), Iliadis et al. [38] train a fully connected neural net-
work to learn the entries of the binary matrix T (the sensing
matrix is learned on a per patch basis, referred to as a binary
mask). The resulting compressed acquisitions y are inputs
to another fully connected neural network that performs the
reconstruction of multiple frames represented by .x Both net-
works are trained jointly, as depicted in the general frame-
work of Figure 7. The authors demonstrated experimentally
that the obtained binary masks result in reconstructed videos
of improved quality over the random masks. We can think of
this as a blind CS system.

Training Phase 1: Train Autoencoders to Learn New Representation

Training Phase 2: Train a Neural Network to Map One Representation to Another

Testing (Inference) Phase

DNN gφ (.)

DNN gφ (.)

y y

"

x

"

x

"

x
ψ (x)

ψ (x)

χ (y)

y
χ (y)

y
χ (y)

gφ (χ (y))

gφ (χ (y))

igφ (χ (y)) – ψ (x)i2min
φ

Figure 6. An example of an approach in which new representations for images are learned, prior to solving the reconstruction problem in a supervised
way. In Zeng et al.’s work [37], autoencoders first learn new features for the LR and HR patches (training phase 1). An MLP is then trained to map the
representation of the observed LR patch to that of the HR patch (training phase 2). The final HR patch can be obtained with the second half of the autoen-
coder trained to reconstruct HR images (testing phase).

28 IEEE Signal Processing Magazine | January 2018 |

Other works that use DNNs for learning better represen-
tations for CS include Mousavi et al. [39], who use stacked
denoising autoencoders to sense and reconstruct signals, and
Bora et al. [40], who use the knowledge of distributions of
natural images provided by generative models to recover
images from Gaussian measurements.

Training procedure of DNNs for inverse problems
In the previous sections, we described some of the common
choices of generic architectures (·)gz for solving inverse
problems. However, merely choosing a neural network archi-
tecture, whether it is an MLP, a CNN, or an autoencoder, with
random parameters z will fail at solving the inverse problem
at hand if the model does not go through a training procedure
prior to inference. The choice of architecture defines a set
of functional relationships to be learned. It is the role of the
training procedure to determine the optimal relationship for
the given task.

Training DNNs in an supervised fashion requires access
to a training data set with a large number of pairs .()x,y In
the context of solving inverse problems, these pairs can be
synthetically generated by corrupting the original image x
with the transformation function .T In addition to a training
set, the training procedure requires the use of a loss func-
tion, whose choice is critical for the training procedure to
be successful. Because the inverse problems here are formu-
lated as a regression problem, the MSE is typically used as
a cost function

	 .()y xl g
2

mse = -z � (2)

At each step of the training procedure, the parameters z of
the model are updated by an optimization algorithm that
commonly implements a variant of gradient descent, such
as stochastic gradient descent [41]. These optimization algo-
rithms typically require critical choices for some hyperpa-
rameters, such as learning rate, learning rate decay schedule,

and regularization strength. Once the optimal parameters
z are learned, we are equipped with a trained model that
has learned a fixed, functional relationship between its input
and output. We can then estimate the original x from the
observed y simply by computing ()yx g= zt with the use of
the trained network. We note that this simple and efficient
inference step is one of the major advantages of neural net-
works over traditional analytical methods that may require
complex inference procedures.

However, note that pixel-wise MSE, although compu-
tationally attractive, does not fully reflect the difference in
visual quality between two images, as is well known in the
image processing literature. Using the MSE as the sole loss
function in solving ill-posed inverse problems cannot ade-
quately distinguish between the possibly multiple similar so-
lutions the problem might admit. One approach in addressing
this issue is to add a new loss component to the lmse defined
in (2), which in some sense regularizes the oversmoothing
behavior of .lmse In addition to using the Euclidean distance
in pixel space, we compute the Euclidean distance in a pre-
defined feature space (·)}

	 (()) () .y xl gfeat } }= -z
2

� (3)

The illustration of this approach is depicted in Figure 8. A dis-
cussion of how the feature-space loss may improve perceptual
quality is provided in [42]. An example of a chosen feature space
(·)} is given by the feature maps of the convolution layer located

right before the fully connected layer in a deep CNN for classifi-
cation. The motivation behind the use of a high-level layer close
to the final labeling stage is that these layers should capture a
very robust representation of the input image. While the details
of the input image are lost as a result of the multiple convolu-
tion operations, its content and structural information is stored
in the feature maps. Therefore, minimizing the Euclidean dis-
tance between these high-level representations forces the neural
network to produce an output image that is structurally consistent

Training
Testing

Input
Video Sequence

Binary
Layer

Measured
Frame

Input
Layer

K Hidden
Layers

Output
Layer

Reconstructed
Video Sequence

wp × hp × t

wp × hp × t

W1 Wk

LKL1

Wo

Figure 7. The framework for temporal CS [38]. An encoder network learns the coefficients of the binary mask, followed by a decoder network that recon-
structs multiple video frames from a single compressively acquired frame.

29IEEE Signal Processing Magazine | January 2018 |

with the ground-truth image, but without enforcing pixel-wise
accuracy as dictated by the MSE [42]. The approach of adding a
feature-space loss to the MSE loss was used in SR tasks and was
shown to be particularly successful at reconstructing images with
fine detail and edges (see [24] and [25]).

How do neural networks solve
the inverse problem?
In the section “Neural Networks Architectures for Inverse Prob-
lems in Imaging,” we reviewed some of the commonly used
deep-learning architectures for solving inverse problems in
imaging. In this section, we provide some insight as to how these
specific choices of models affect the network’s approach to solv-
ing inverse problems. We show that there exist some tricks, e.g.,
imposing architectural constraints to the model, or incorporat-
ing the neural network directly into an analytical method, which
allows a departure from the common notion of a “black-box”
model and guide our model to provide improved solutions to the
imaging problem.

Learning higher-level representations
with encoder-decoder CNNs
In the section “Neural Networks Architectures for Inverse
Problems in Imaging,” we have seen two major types of CNN-
based architectures used for solving inverse problems in imag-
ing. The first type is composed of multiple convolutional layers
that produce feature maps of fixed size. The other type of CNNs
described consists of an encoding-decoding architecture, in
which case the spatial size of the feature maps first decreases and
then increases again to match the output image size.

For inverse problems for which the input and output images
are of the same size, it may seem unnecessary to first downsam-

ple and then upsample the feature maps. However, there are mul-
tiple advantages to using such an encoder-decoder framework for
our inverse problems, as explained by Johnson et al. [42]. First,
decreasing the feature maps at each step of the encoder network
results in fewer algebraic operations performed by the network
which, in turn, increases the efficiency of inference. Second, due
to downsampling, the effective receptive field of the network
increases significantly. The receptive field of a unit in a neural
network refers to the size of the field of view the unit has over its
input layer. For example, the output units in fully connected neu-
ral networks have a receptive field that covers the entire input size,
as each output unit is connected to all the units in the input layer.
In CNNs, however, the receptive field of a unit is determined
by the width k of the convolution kernel. The use of successive
convolutions in an encoder-decoder CNN increases the overall
receptive field of the model. The concept of receptive field in
CNNs is of paramount importance in solving inverse problems
such as optical flow or inpainting, since having a large field of
view over the input image can significantly improve the pre-
diction at each pixel in the output image. Therefore, we can use
the large receptive fields provided by encoder-decoder CNNs
to our advantage when solving problems that require such a
wide field of view.

As briefly mentioned in the section “Neural Networks Archi-
tectures for Inverse Problems in Imaging,” studying the role of
encoder-decoder CNNs from a representation learning per-
spective can provide us with valuable insight. Encoder-decoder
CNNs can be seen as mapping an input image to a more use-
ful representation, which is then used by the decoder to recon-
struct the final image. For example, for the image inpainting
problem, it may be desirable for the neural network to learn
to extract semantic information regarding the input, especially

DNN
Pretrained Discriminative CNN

gφ (.)

gφ (y)

ψ (gφ (y))

ψ (x)

x

y

lmse = igφ (y) – xi2
lfeat = iψ (gφ (y)) – ψ (x)i2

Figure 8. When solving inverse imaging problems, one has the option to use a loss function in the feature space in addition to the loss function in the
original pixel space. In this framework, the features learned by a pretrained discriminative CNN are used to compute the MSE loss in feature space.

30 IEEE Signal Processing Magazine | January 2018 |

when large regions are missing from the input image. Pathak
et al. [31] show that their encoder-decoder CNN can learn to
successfully reconstruct large missing regions from an input
image. Using a contractive/expansive network has provided
successful results even for imaging tasks for which it is unclear
as to which representation ends up being learned in the bottle-
neck part of the network. See, e.g., Mao et al. [30], who use an
encoder-decoder CNN to denoise images, or Jin et al. [33] who
use a similar form of encoder-decoder CNN with skip connec-
tions as refinement to their solution for biomedical imaging
reconstruction tasks.

Training DNNs to learn new representations
of natural images
The encoder-decoder CNNs previously described implic-
itly learn a higher-level representation of images to solve an
inverse problem. Instead, one might want to explicitly train the
neural network to learn relevant features of natural images,
which can then be later used to solve image reconstruction
tasks. This type of learning can be achieved in multiple ways.
We have already seen in the section “Training Procedure of
DNNs for Inverse Problems” that using a loss function in a
feature-space obtained from the representations learned by a
deep discriminative CNN can significantly improve the qual-
ity of the output solution [42]. In addition, one may choose to
learn features that are directly tailored to the inverse problem
being solved. For example, prior to performing an end-to-end
mapping between LR and HR patches, Zeng et al. [37] pro-
pose to first use autoencoders to learn the manifolds of LR
and HR patches. The autoencoders used in this case are not
denoising autoencoder, but instead compact autoencoders, in
which the intermediate hidden layer is of smaller dimension
than the input and output layer dimensions. This forces the
intermediate hidden layer to learn only the most salient fea-
tures of LR and HR patches. Once these intermediate repre-
sentations are learned, Zeng et al. [37] use a fully connected
neural network to find the optimal mapping between the two
learned manifolds. At test time, the representation of the LR
patch is mapped to the representation of the HR patch, from
which the trained autoencoder then recovers the underlying
HR image.

Instead of using autoencoders, Bruna et al. [43] use a CNN-
based architecture to learn new representations of LR patches.
They train a CNN to accept an LR patch and output its cor-
responding low-dimensional features such that the representa-
tion of the LR patch in this learned feature space is close to the
representation of the corresponding HR patch provided by one
of the layers of a deep pretrained CNN for classification. At
test time, they use the learned statistics of the CNN to solve for
the most plausible HR image, which is sampled from a Gibbs
distribution conditioned on the LR patch. This idea of learning
the relevant statistics of natural images and using them to solve
an inverse problem in imaging is further explored in our dis-
cussion of generative models for inverse problem in the section
“Recent Developments: Increasing the Perceptual Quality of
Images Predicted by Neural Networks.”

Facilitating the learning process:
Gradual refinement with deep residual CNNs
We have seen that encoding-decoding neural networks offer
promising approaches for solving inverse problems, such as
image inpainting and optical flow, as these models can benefit
from a semantic understanding of the input image. In other
cases, such as image SR or CS, it may not be appropriate to
use encoder-decoder frameworks like the ones previously
described. For both of these applications, the input image
already has a lower spatial dimension than the output image
we wish to predict, and applying additional downsampling to
the input may be more harmful than beneficial to the model.
Instead, because the input image is already close to the desired
output solution, we could approach the inverse problem as one
of performing a gradual refinement of the input. In this case,
we can think of each convolution in the CNN, or each residual
block, as applying a small amount of refinement to the input.
For example, Mao et al. [30] visualized the learned filters of
Jain and Seung’s denoising vanilla CNN [14] and found that
each convolution operation seems to denoise the input layer
just a little more. In some cases, this gradual refinement can be
related to iterative noise removal strategies employed by some
analytical methods. For example, Zhang et al. [28] show that
a two-layer residual CNN performs operations that are math-
ematically equivalent to the operations implemented at each
step of the trainable nonlinear reaction diffusion denoising
algorithm [44].

Similar interpretations can be made in the context of SR. A
common approach to construct the training data set in SR is to
use an interpolated version of the LR patch as the input to the
model instead of the original LR patch. The neural network
then learns to refine the estimate provided by the interpolation
step, instead of actually learning an upscaling function to out-
put the HR patch (see, e.g., [16] and [26]). The idea of refining
an image has also been seen in Yao et al.’s [27] work on CS,
where a fully connected neural network first outputs an ini-
tial estimate of the reconstruction, and a CNN then performs
a refinement over the initial solution to output the final recon-
structed image. Similarly, Jin et al. [33] choose to use a U-Net
CNN as described in the section “Encoder-Decoder CNNs:
Downsampling and Upsampling Feature Maps,” to refine their
solution obtained from a direct inversion step to solve for their
various biomedical imaging reconstruction tasks.

Neural networks and analytical methods
In the sections “Learning Higher-Level Representations with
Encoder-Decoder CNNs” and “Facilitating the Learning
Process: Gradual Refinement with Deep Residual CNNs,”
we have shown that the choice of our architectures can have
a significant impact on the operations learned by our model.
One strong argument in favor of analytical methods in lieu
of neural networks is that we can explicitly incorporate our
knowledge about the unknown quantities into the solution
process when developing analytical methods, whereas neural
networks tend to be more obscure models over which we have
very little control. We discuss in the rest of this section multiple

31IEEE Signal Processing Magazine | January 2018 |

ways to incorporate domain expertise within the neural net-
work framework. We describe how, with carefully designed
choices, we can guide our neural networks to learn operations
similar to those implemented by analytical models. This may
be seen as a way to incorporate domain expertise within the
DNN framework. Similarly to the residual learning approach
described in the section “Facilitating the Learning Process:
Gradual Refinement with Deep Residual CNNs,” guiding the
neural network to perform known analytical steps may facili-
tate the learning procedure of the models, hence resulting in
better solutions.

Nonblind deconvolution, e.g., is an inverse problem for
which we are provided with domain knowledge (more specifi-
cally here the knowledge of the degradation system operating
on the original image) that should not be ignored when design-
ing the inverse system. Xu et al. [45] propose to inject their
knowledge of the blur kernel directly into the weights of their
neural network architecture. More specifically, they use the
singular value decomposition of the pseudo-inverse of their
blur kernel to initialize the weights of their large 1-D convolu-
tion kernels. This provides their model with a good starting
point to learn an operation similar to nonblind inverse filter-
ing. Wang et al. [46] choose to design a multilayer neural net-
work that mimics the operations implemented by the unfolded
LISTA for SR. The authors use their knowledge of each step
implemented by the LISTA algorithm [47] to fix their initial
weights to precomputed values. Both Xu et al. [45] and Wang
et al. [46] show that making an explicit choice of weight ini-
tialization using knowledge of another algorithm improves
the final performance of their model compared with random
weight initialization.

LISTA [47] represents a simple case of an unfolding algo-
rithm [48] that aims to combine the advantages of both analyti-
cal approaches and neural networks. The basic idea is to start
with an analytical approach and an associated inference algo-
rithm, and unfold the inference iterations as layers in a deep
network. After the size of the network is fixed, it is trained
to perform accurate inference. In [48], the unfolding frame-
work is shown to be able to interpret conventional networks as
mean-field inference in Markov random fields, and obtain new
architectures by instead using belief propagation as the infer-
ence algorithm.

A similar approach is taken by Yang et al. [49], who designed
a DNN for reconstructing magnetic resonance images from
CS measurements. Each layer in their deep network graph is
explicitly implemented to mimic the step of the ADMM [50]
optimization procedure. The neural network parameters to be
learned include a nonlinear transformation of the CS measure-
ments, the shrinkage function, the regularization function, in
addition to the various hyperparameters of the ADMM algo-
rithm. All of these unknowns are optimized as a result of the
training of the neural network. Yang et al. [49] showed that
choosing a neural network in this way could achieve higher
reconstruction performance than state-of-the-art methods.

Some authors have also enforced a fixed operation with non-
trainable weights within the network to influence the model to

operate in a particular way. For example, the encoder-decoder
CNN designed by Fischer et al. [32] for optical flow estima-
tion uses a correlation layer at the end of the encoder part of
their network architecture. After computing two separate sets
of feature maps for each of the two input video frames, the
correlation layer explicitly computes the correlations between
the two sets. The result of this correlation is then used by the
decoder part of their network. Fischer et al. [32] hypothesize
that explicitly incorporating this correlation layer, instead of
having the network learn the operation, facilitates the learn-
ing process. Similarly, in their work on blind deconvolution,
Schuler et al. [51] perform end-to-end training of a deep lay-
ered architecture of which the first layers, corresponding to the
feature extraction step, are learned through training a CNN,
but the other two modules of the architecture are fixed and
correspond to operations implemented by traditional image
deconvolution. Their deep network learns to deblur the input
image by iteratively alternating between the three modules.

Using neural networks as denoisers in variable
splitting-based optimization methods
Recently, a new approach to directly combine analytical opti-
mization methods with DNNs has been proposed. With the
use of variable splitting techniques, such as the ADMM and
the HQS methods [50], the inverse problem is split into two
subproblems: a fidelity term subproblem and a regularization
subproblem. The inverse problem is solved by alternating opti-
mization. Recent research has proposed the use of DNNs to
tackle the regularization subproblem. More specifically, in the
context of the variable splitting methods, the regularization
step can be interpreted as a denoising procedure, in which the
restored image at a particular step of the algorithm is mapped
to a more plausible image with the guidance of the prior term.
Instead of hand-engineering the prior term, DNNs have been
recently proposed performing the regularization step. Zhang
et al. [52], e.g., show that their set of learned denoisers can be
incorporated into their optimization framework to solve other
problems besides image denoising, such as image deblurring
and image SR. The set of denoiser-CNNs essentially act as
prior terms that regularize the optimization-based restora-
tion procedure for the inverse problem at hand. Similarly,
because Chang et al.’s [53] encoder-decoder CNN is trained
in an adversarial learning context (discussed in the section
“Using Generative Adversarial Networks to Learn Posteriors
for the Inverse Problem”), it acquires a prior knowledge that is
directly extracted from the statistics of the images seen in the
training data set, and not dependent on the type of the inverse
problem we are trying to solve. This allows the authors to apply
their trained model to other inverse problem tasks, such as CS,
image inpainting, and image SR.

Making careful design choices for solving inverse problems
Special caution must be taken when using CNNs for regres-
sion tasks. Architectural choices that may work for a classi-
fier CNN may harm the learning process of a CNN trained
for solving an inverse problem using regression. For example,

32 IEEE Signal Processing Magazine | January 2018 |

while using a pooling layer in CNNs is highly recommended
for classification and object recognition tasks, it is not for most
of the inverse problems discussed in this article. An example
of a commonly used pooling operation in classification tasks is
that of max-pooling. This operation consists of taking the larg-
est element of each n n# nonoverlapping region of the feature
map. Using pooling in discriminative tasks such as automatic
image classification guarantees that small changes in the input
do not affect the output label. This is important in classifica-
tion because we want the model to predict a label based on
what is in the input image, not based on where it is located [6].
In the case of our inverse problems, however, pooling may have
a destructive effect. If, for example, pooling windows of size
2 2# are used, %75 of the information provided by the input
feature maps is lost. We cannot allow such information loss
when solving a regression inverse problem.

The choice of the kernel size and the depth of the CNN
may depend on the specific inverse problem we are trying
to solve. Authors often prefer using small kernel sizes (e.g.,
3 3#) to increase the efficiency of the model and reduce the
number of total parameters. This approach typically works
well, provided that the resulting CNN is deep enough to have
a large enough effective receptive field. To determine the pre-
cise number of layers, and hence the desired effective recep-
tive field, Zhang et al. [28] first found the most effective patch
size for which analytical models performed best, and com-
puted the number of layers that the CNN should contain to
achieve this effective receptive field size. Note that, although
computationally efficient, restricting the neural network to
small receptive fields may not always be appropriate for all
inverse problems.

Recent developments: Increasing the perceptual
quality of images predicted by neural networks
The models described previously approach inverse imaging
problems, by and large, by estimating a deterministic function
that maps the observed output y back to the original underly-

ing data .x However, as we indicated in the “Introduction” and
in the section “Training DNNs to Learn New Representations
of Natural Images,” these models can be greatly enhanced by
their combination with sound and well grounded probabilistic
modeling and inference. This coupling will lead to not only
solving our inverse problem but also to generative capabilities,
i.e., we will be able to generate images similar to the ones we
have in our database.

Using generative adversarial networks
to learn posteriors for the inverse problem
In recent deep-learning literature, powerful generative mod-
els have been successful at approximating image distribu-
tions, and so they have provided users with the capability to
generate realistic-looking images. In the rest of this section,
we investigate the use of such generative models as a means
of regularizing our inverse problem solution process. Genera-
tive adversarial networks (GANs) [54] were first developed in
a purely generative context, where a generator G was trained
to output an image ()Gx z= from a random noise vector .z
GANs provide a way to learn the complex density associated
with natural image distributions without having to explicitly
define it but through the transformation of a latent variable
.z GANs learn the natural image distribution ()p x through

an indirect interaction with the training distribution via a dis-
criminator network .D During training, G generates an image

()Gx z= from a random vector ,z and the discriminator D
classifies the image x as real (i.e., drawn from the training
data) or synthesized (from G). The generator’s goal is to cheat
the system and try to produce images that the discriminator
can not distinguish from the ones in the training data. Instead
of starting with a random vector ,z we could instead condition
our generator G on our observed image ,y which would then
output a reconstruction () .yx G=t Similarly to the generative
case, the discriminator D determines whether the prediction
made by the generator xt looks real or not. The so-called con-
ditional GAN (cGAN) framework is illustrated in Figure 9.

Input
Image Generator

Discriminator

P (Training Data)?

Output
from

Generator

Ground-Truth
Output from

Training
Data

or

Input
mage Generator

Discriminator

P (Trainin

Output
from

Generator

Ground-Truth
Output from

Training
Data

or

Figure 9. The GAN framework for inverse problems. Given an observed image, the generator outputs a prediction for the output image, and the discrimi-
nator determines whether its input was synthesized by the generator, or comes from the training data.

33IEEE Signal Processing Magazine | January 2018 |

It is fairly straightforward to adapt the optimization of the
models described in this article to a GAN setting. The model

(·)gz takes the place of the generator .G The discriminator D
is typically chosen to have the standard architecture of a clas-
sification CNN. Both parameters of G and D are optimized
simultaneously, through the use of the adversarial loss

	 [(())] [(((())))],log logx yl D D G1E EGAN
() ()x~ y~x yp pdata data

= + - � (4)

where ()D x is the label provided by the discriminator D
when it receives a real image as input and (())D G y is the
label obtained when a synthesized image, (),G y is input to
.D This loss drives the discriminator network to correctly

classify the samples as real or synthesized,
and pushes the generator to synthesizing
images that look real with the goal of fool-
ing the discriminator [6]. Once the networks
are trained, D is discarded and only G is
used. In cGANs, the adversarial loss is usu-
ally optimized in addition to the pixel-wise
MSE loss. Similarly to the loss in feature
space described in the section “Training
Procedure of DNNs for Inverse Problems,” the adversarial loss
acts as a regularizer to the negative perceptual effects that may
result from optimizing the pixel-wise MSE. We note here that
the generator G does not explicitly model the distribution of
images (|),p x y but instead implicitly models it through its in-
teraction with the discriminator during training. The cGANs’
ability to indirectly learn the complex distribution of natural
image densities has shown to significantly increase the quality
of images generated for SR (see [24], [25], and [55]) and image
inpainting (see [31]).

Solving SR and CS problems in an unsupervised context
In this article, we have, until now, focused on solving an inverse
problem as a regression problem, which required the use of a
training data set with example pairs .(,)y x In this section, we
discuss some of the methods that solve the SR and CS problems
following an unsupervised learning approach.

Sønderby et al. [55] reformulate the SR problem as a
maximum a posteriori estimation problem. They show that,
by imposing several architectural constraints on their CNN-
based model, the range of functions learned by the model are
restricted to valid SR function only. To achieve this, they use
their knowledge of the downsampling operation T used for SR
and define a parametric function class that guarantees that the
output of their model ,x given y as input, is consistent with
the forward downsampling modeling .y Tx= By restricting
the set of functions in this way, the knowledge of the relation-
ship between x and y is explicitly wired into the architectur-
al design of the network. This result is quite powerful, as it
allows us to depart from the traditional supervised approach
and instead use unsupervised generative methods for solving
the SR tasks with DNNs. Approaching the task as a generative
one, the authors train their neural network architecture to out-
put HR images of high perceptual quality by optimizing their

model within a GAN framework. During training, the genera-
tor G learns to output HR images that look plausible to the eye
of the discriminator .D

The use of generative models to increase the quality of the
output images is not limited to the task of image SR. When
a generator G is trained to generate images from a random
vector ,z the generator ultimately learns a transformation
that maps a trivial distribution like a Gaussian distribution to
the complex distribution of natural images. We can use this
learned transformation for solving a CS task. Bora et al. [40]
show that given a measurement y that was obtained from a
random Gaussian measurement matrix ,A we can estimate xt
by finding the optimal zt that minimizes .()AG z y-t Given

this optimal ,zt we obtain the reconstruc-
tion through the mapping ()x G z= t (We
note, however, that solving the optimization
above may be very difficult). While tradi-
tional CS reconstruction methods make
assumptions regarding the structure of nat-
ural images, the approach described here
requires no such assumption regarding the
structure of the image. Instead, all prior

knowledge needed to reconstruct the image was indirectly
learned from a large training data set.

Variational autoencoders for inverse problems
Although we have only talked about GANs as generative mod-
els, another type of neural networks, variational autoencoders
(VAEs), have also been successful in capturing the complex
distribution of natural images. VAEs are composed of an
encoder and a decoder. The encoder outputs the parameters
of the distribution of the latent variable z given either y or x
depending on the problem, i.e., the encoder learns a conditional
distribution. Given this distribution, we can sample a random
vector z and pass it through the decoder part of the network to
output an image that looks like it is drawn from the distribution
of natural images. In their work on learning representations
for CS, Bora et al. [40] experiment with the use of the decoder
part of the VAE to map z to an image .()Gx z= While VAEs,
just like GANs, provide a way to produce an output image that
looks natural, they have been less popular than GANs in their
use for solving inverse problems in imaging.

Limitations of the use of neural networks
for inverse problems in imaging

The knowledge of neural networks is constrained
to the data seen during training
The functional relationship between input and output of the
model are highly based on the image pairs (,)y x seen dur-
ing training. We usually do not have access to a data set that
contains labeled real-world images x and their corresponding
transformations ,y and therefore we have to resort to artifi-
cially generating the data set. There are multiple issues with
this approach. First, the neural network reconstruction ability
will be highly dependent on the choice of T used to create the

With carefully designed
choices, we can guide our
neural networks to learn
operations similar to
those implemented by
analytical models.

34 IEEE Signal Processing Magazine | January 2018 |

data set. Kim et al. [26]’s work confirmed this by training a
deep CNN to solve an image SR task for a specific upscaling
factor and testing the model on another upscaling factor unseen
during training. They found that the model
consistently performed worse when tested on
a data set with upscaling factor different from
the one used to construct the training data set.

In today’s literature, multiple approaches
to obtain deep-learning models generaliz-
able to more than one type of degradation
have been proposed. Agostinelli et al. [11], for
example, train individual denoising autoen-
coders that are each trained to clean patches
corrupted with different noise levels and
noise types. At test time, a linear combina-
tion of each of the neural networks’ proposed reconstructions is
used as the final denoised patch. The optimal weights of each
network’s contribution is obtained with a separate, previously
trained neural network.

Another, perhaps more straightforward solution, is to sim-
ply add more than one type of degradation T when construct-
ing the data set of pairs (,)y x . Constructing their training data
set in this way, Zhang et al. [28] found that, through the use
of residual connections and batch normalization, they are able
to build a single CNN model with enough expressive power
that could successfully denoise images at multiple noise levels.
They accomplished this by using the residual approach dis-
cussed in the section “Achieving Greater Depth: CNNs with
Residual Blocks and Skip Connections” in addition to using
batch normalization in their CNN architecture. Similarly, Kim
et al. [26] showed that their SR deep residual CNN trained on
multiple scaling factors could achieve comparable results when
compared with the models trained on a single scale.

Combining domain-based knowledge with
the heuristic approach of deep-learning models
The works and approaches previously described showed that
neural networks, when properly trained, are capable of achiev-
ing competitive and often state-of-the-art performance in solv-
ing many inverse problems. However, while neural networks
have been revolutionary tools for solving many machine-learn-
ing tasks in computer vision or natural language processing,
they have yet to provide a radical improvement over analyti-
cal methods for solving inverse problems in imaging. Further
improvement could be obtained if we could make explicit use
of our prior knowledge as engineers to better guide the learn-
ing of DNNs for solving inverse problems. Simple architec-
tural tricks such as adding a skip connection between input and
output to explicitly make the model learn details, as described
in the section “Achieving Greater Depth: CNNs with Residual
Blocks and Skip Connections,” is one example of how we can
insert domain-specific knowledge about our problem into the
architecture of our network. Other approaches include unfold-
ing (see the section “Neural Networks and Analytical Meth-
ods”) or incorporating the use of DNNs as an actual step of
a known analytical approach (see the section “Using Neural

Networks as Denoisers in Variable Splitting-Based Optimiza-
tion Methods”). However, the aforementioned methods are
still are not capable of explicitly bringing the large amount

of domain-knowledge that we possess
directly into the deep-learning framework.
Therefore, one of the next critical research
directions is to come up with a better way
of enforcing our engineer ing knowledge
about the inverse problem into the deep-
learning architecture and further regularize
the learning process of a neural network
with this analytical knowledge. One step
in this direction was already taken with
the recent development of generative mod-
els. By indirectly interacting with the train-

ing data set, GANs gain some understanding of what posterior
distributions we should expect at the output of the model. The
ongoing efforts in designing powerful unsupervised models,
which are often based on more theoretical and probabilistic
explanations, provide new opportunities for deep-learning
based approaches for inverse problems in imaging.

However, one might argue that in some cases the heuristic
approach of neural networks may sometimes be viewed as an
asset, instead of a limitation, when solving an inverse problem
in imaging. For example, the task of explicitly modeling image
statistics can be particularly complex, and using neural net-
works as a substitute to complete that task may provide us with
more accurate reconstructions when solving inverse problems
in imaging. As discussed in this article, there are multiple ways
to train DNNs to successfully learn the relevant natural image
statistics and use these for solving image reconstruction tasks.
Examples of this include training a network in an adversarial
setting with a GAN setup (see [24], [25], [31], and [55]), or
explicitly learning new and robust representations with encod-
er-decoder CNNs (see [30] and [32]), coupled autoencoders
(see [37]), and discriminative CNNs (see [43]), or even learn-
ing new sensing matrices for CS with fully connected neural
networks (see [38]).

Conclusions
Most of the early works that used deep-learning methods for
image processing took a regression, end-to-end learning ap-
proach, in which a specific inverse problem task to be solved
was chosen, a synthetic training data set was generated, and a
neural network of a predetermined architecture was trained in a
supervised manner. The works mentioned in the sections “Us-
ing MLPs for Inverse Problems in Imaging” and “End-to-End
Mapping with the Vanilla CNN” follow this basic procedure.

Today, this approach is still the prevalent one, but the key
differences lie in the more evolved model architectures avail-
able to us, in addition to the new optimization procedures and
tricks that significantly facilitate the training and acceler-
ate convergence. For example, we have shown in the section
“Facilitating the Learning Process: Gradual Refinement with
Deep Residual CNNs” that the use of residual blocks may
alleviate the learning problem for solving the reconstruction

One of the next critical
research directions is to
come up with a better
way of enforcing our
engineering knowledge
about the inverse problem
into the deep-learning
architecture.

35IEEE Signal Processing Magazine | January 2018 |

task at hand, and may be useful for refining an initial solution
provided by an analytical method. Encoder-decoder CNNs
with skip connections explained in the section “Learn-
ing Higher-Level Representations with Encoder-Decoder
CNNs,” have also provided our deep-learning models with
new ways to reconstruct images from given observations. In
addition to more intricate architectures, more appropriate
loss functions were recently proposed, such as the percep-
tual loss function in feature space described in the section
“Training Procedure of DNNs for Inverse Problems” or the
unsupervised GAN loss function introduced in the section
“Using Generative Adversarial Networks to Learn Posteriors
for the Inverse Problem,” which paves the way for the use of
powerful statistical models in the near future. In addition to
using DNNs in a regression framework, many methods have
made the choice to explicitly train neural networks for what
they are known to do best—feature extraction (see the section
“Training Deep Neural Networks to Learn New Representa-
tions of Natural Images”). In particular, the use of CNNs to
extract the statistics of natural images and use these learned
representations to solve an inverse problem is a promising
approach that needs to be further explored. This approach
has already been investigated and proven successful in the
context of variable splitting methods, autoencoders, or with
generative approaches.

While the techniques described in this article are suc-
cessful at solving inverse problems in imaging, sometimes
surpassing the analytical state of the art, the challenge of
bringing the large amount of prior knowledge we possess as
engineers into the deep-learning framework still remains. The
most critical issue in today’s research lies in the fact that we
are, in most of the techniques described previously, essen-
tially using a “black-box” model for solving a problem for
which we possess a considerable quantity of knowledge and
understanding. Therefore, more research reframing the use
of DNNs in a context in which we can apply some of our
domain-based knowledge is needed to simultaneously benefit
from the advantages of deep-learning and analytical meth-
ods when solving inverse problems in imaging. In the future,
this research may manifest itself in terms of the introduction
of new layers and operations in the deep-learning system
that are specifically tailored to the inverse problem at hand.
Moreover, as we aim to combine deep-learning and analytical
methods, we expect that future research will depart from the
traditional end-to-end mapping approach and instead focus
on solving a very specific step of the formulated inverse prob-
lem. Finally, we will undoubtedly see more research in the
coming years on the use of generative models to solve image
recovery tasks, as has already been manifested with the recent
introduction of GANs toward solving various inverse prob-
lems. These different future directions have in common a key
challenge that remains to be addressed, that of achieving the
optimal balance between imposing engineering knowledge
into the framework, and, simultaneously, making use of the
ever-growing potential of deep learning to solve problems for
which we do not have answers.

Acknowledgments
This work was supported in part by the U.S. Department of Ener-
gy under grant DE-NA0002520, Office of Naval Research award
N00014-15-1-2735, National Science Foundation IDEAS pro-
gram, the Defense Advanced Research Projects Agency ReImag-
ine, and the Spanish Ministry of Economy and Competitiveness
through projects TIN2013-43880-R and DPI2016-77869-C2-2-R.

Authors
Alice Lucas (alicelucas2015@u.northwestern.edu) received her
B.S. degree in applied math, engineering, and physics from the
University of Wisconsin-Madison in 2015. She is currently pur-
suing her Ph.D. degree in the Electrical Engineering and
Computer Science Department at Northwestern University,
Evanston, Illinois. Her research at the Image and Video
Processing Laboratory involves the use of deep-learning models
for various image processing tasks, currently focusing on the
task of video superresolution.

Michael Iliadis (michaililiadis2016@u.northwestern.edu) re-
ceived his B.S. degree in digital systems from the University of
Piraeus, Greece, in 2008, his M.S. degree in computer science
from the University of Bath, United Kingdom, in 2009, and his
Ph.D. degree in computer science from Northwestern University,
Evanston, Illinois in 2016. He spent the summers of 2013 and
2014 at TCL Research America as a research intern. In 2016, he
joined Sony U.S. Research Center, San Jose, California, where
he is currently a research scientist. He holds five U.S. patents.
His current research interests include machine (deep) learning,
sparse modeling, compressive sensing, superresolution, face
recognition, and semantic segmentation.

Rafael Molina (rms@decsai.ugr.es) received his B.Sc.
degree in mathematics (statistics) and his Ph.D. degree in opti-
mal design in linear models from the University of Granada,
Spain, in 1979 and 1983, respectively. His research interest
focuses mainly on using Bayesian modeling and inference in
problems, such as image restoration (applications to astrono-
my and medicine), superresolution of images and video, blind
deconvolution, computational photography, source recovery in
medicine, compressive sensing, low-rank matrix decomposi-
tion, active learning, fusion, and classification. He is currently
a professor of computer science and artificial intelligence at
the University of Granada.

Aggelos K. Katsaggelos (aggk@eecs.northwestern.edu)
received his diploma degree in electrical and mechanical engi-
neering in 1979 from the Aristotelian University in Thessaloniki,
Greece, and his M.S. and Ph.D. degrees, both in electrical engi-
neering, from the Georgia Institute of Technology, Atlanta, in
1981 and 1985, respectively. He is currently a professor of elec-
trical engineering and computer science and holds the Joseph
Cummings chair in the Department of Electrical Engineering
and Computer Science at Northwestern University, Evanston,
Illinois. He has published seven books, more than 250 journal
papers, 500 conference papers, and 40 book chapters in the
areas of multimedia signal processing and communications,
computational imaging, and machine learning. He holds 26
international patents.

36 IEEE Signal Processing Magazine | January 2018 |

References
[1] A. C. Bovik, The Essential Guide to Image Processing. New York: Academic, 2009.

[2] A. C. Bovik, The Essential Guide to Video Processing 2nd ed. New York:
Academic, 2009.

[3] A. K. Katsaggelos. (2015). Fundamentals of Digital Image and Video
Processing. [Online]. Available: https://www.coursera.org/learn/digital

[4] A. K. Katsaggelos, R. Molina, and J. Mateos, Super Resolution of Images and
Video: Synthesis Lectures on Image, Video, and Multimedia Processing. San
Rafael, CA: Morgan & Claypool, 2007.

[5] Z. Chen, S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Variational Bayesian
methods for multimedia problems,” IEEE Trans. Multimedia, vol. 16, no. 4, pp. 1000–
10017, 2014.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA: MIT
Press, 2016.

[7] S. Zhang and E. Salari, “Image denoising using a neural network based non-linear
filter in wavelet domain,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing, Mar. 2005, pp. 989–992.

[8] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can plain neural
networks compete with BM3D?” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, 2012, pp. 2392–2399.

[9] C. J. Schuler, H. C. Burger, S. Harmeling, and B. Scholkopf, “A machine learning
approach for non-blind image deconvolution,” in Proc. IEEE Conf. Computer Vision
Pattern Recognition, 2013, pp. 1067–1074.

[10] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural net-
works,” Adv. Neural Inform. Process. Syst., vol. 25, pp. 341–349 Dec. 2012.

[11] F. Agostinelli, M. R. Anderson, and H. Lee, “Adaptive multicolumn deep neural
networks with application to robust image denoising,” in Proc. Neural Information
Processing Systems Conf., 2013, pp. 1–9.

[12] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an
unknown mapping and its derivatives using multilayer feedforward networks,” Neural
Netw., vol. 3, no. 5, pp. 551–560, 1990.

[13] V. Papyan, Y. Romano, and M. Elad, “Convolutional neural networks analyzed via
convolutional sparse coding,” arXiv preprint, arXiv:1607.08194, 2016.

[14] V. Jain and H. Seung, “Natural image denoising with convolutional networks,” in
Proc. Neural Information Processing Systems Conf., 2008, pp. 1–8.

[15] D. Eigen, D. Krishnan, and R. Fergus, “Restoring an image taken through a win-
dow covered with dirt or rain,” in Proc. IEEE Int. Conf. Computer Vision, 2013, pp.
633–640.

[16] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep con-
volutional networks,” IEEE Trans. Pattern Anal. Machine Intell., vol. 38, no. 2, pp.
295–307, Feb. 2016.

[17] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video super-resolution with
convolutional neural networks,” IEEE Trans. Computational Imaging, vol. 2, no. 2, pp.
109–122, 2016.

[18] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-
iterative reconstruction of images from compressively sensed measurements,” in Proc.
IEEE Conf. Computer Vision Pattern Recognition, June 2016, pp. 449–458.

[19] M. Hradiš, J. Kotera, P. Zemčík, and F. Šroubek, “Convolutional neural networks
for direct text deblurring,” in Proc. British Machine Vision Conf., 2015, vol. 10, pp.
1–13.

[20] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann
machines,” in Proc. 27th Int. Conf. Machine Learning, 2010, pp. 807–814.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proc. IEEE Int. Conf.
Computer Vision, Washington, DC, 2015, pp. 1026–1034.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in Proc. Int. Conf. Machine Learning, 2015, pp.
448–456.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, June 2016, pp. 770–
778.

[24] M. Sajjadi, B. Schölkopf, and M. Hirsch, “Enhancenet: Single image super-resolu-
tion through automated texture synthesis,” arXiv preprint, arXiv:1612.07919, 2016.

[25] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A. Tejani, J. Totz, Z.
Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative
adversarial network,” arXiv preprint, arXiv:1609.04802, 2016.

[26] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very
deep convolutional networks,” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, 2016, pp. 1646–1654.

[27] H. Yao, F. Dai, D. Zhang, Y. Ma, S. Zhang, and Y. Zhang, “Dr2-net: Deep residu-
al reconstruction network for image compressive sensing,” arXiv preprint,
arXiv:1702.05743, 2017.

[28] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denois-
er: Residual learning of deep CNN for image denoising,” IEEE Trans. Image
Processing, vol. 26, no. 2, pp. 1–13, Feb. 2017.

[29] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for bio-
medical image segmentation,” in Proc. Int. Conf. Medical Image Computing and
Computer-Assisted Intervention, 2015, pp. 234–241.

[30] X. J. Mao, C. Shen, and Y. Yang, “Image denoising using very deep fully convolu-
tional encoder-decoder networks with symmetric skip connections,” arXiv preprint,
arXiv:abs/1606.08921, 2016.

[31] D. Pathak, P. Krhenbhl, J. Donahue, T. Darrell, and A. A. Efros, “Context encod-
ers: Feature learning by inpainting,” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, June 2016, pp. 2536–2544.

[32] P. Fischer, A. Dosovitskiy, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. v. d.
Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with convolutional
networks,” in Proc. IEEE Int. Conf. Computer Vision, 2015, pp. 2758–2766.

[33] K. Jin, M. McCann, E. Froustey, and M. Unser, “Deep convolutional neural net-
work for inverse problems in imaging,” IEEE Trans. Image Processing, vol. 26, no. 9,
pp. 4509–4522, 2017.

[34] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked
denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion,” J. Machine Learning Res., vol. 11, pp. 3371–3408, 2010.

[35] Z. Cui, H. Chang, S. Shan, B. Zhong, and X. Chen, “Deep network cascade for
image super-resolution,” in Proc. European Conf. Computer Vision, 2016, pp. 49–64.

[36] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial net-
work,” arXiv preprint, arXiv:1609.03126, 2016.

[37] K. Zeng, J. Yu, R. Wang, C. Li, and D. Tao, “Coupled deep autoencoder for single
image super-resolution,” IEEE Trans. Cybern., vol. 47, no. 1, pp. 27–37, 2017.

[38] M. Iliadis, L. Spinoulas, and A. K. Katsaggelos, “Deepbinarymask: Learning a
binary mask for video compressive sensing,” arXiv preprint, arXiv:1607.03343, 2016.

[39] A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to struc-
tured signal recovery,” in Proc. Communication, Control Computing (Allerton) 53rd
Annu. Allerton Conf., 2015, vol. abs/1508.04065, pp. 1336–1343.

[40] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using gener-
ative models,” arXiv preprint, arXiv:1703.03208, 2017.

[41] R. Borhani, J. Watt, and A. K. Katsaggelos, Machine Learning Refined:
Foundations, Algorithms, and Applications. Cambridge, U.K.: Cambridge Univ.
Press, 2016.

[42] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer
and super-resolution,” in Proc. European Conf. Computer Vision, 2016, pp. 694–711.

[43] J. Bruna, P. Sprechmann, and Y. LeCun, “Super-resolution with deep convolution-
al sufficient statistics,” in Proc. Int. Conf. Learning Representations, 2016, pp. 1–17.

[44] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible frame-
work for fast and effective image restoration,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 39, no. 6, pp. 1256–1272, 2015.

[45] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neural network for image
deconvolution,” Adv. Neural Inform. Process. Syst., vol. 27, pp. 1790–1798, Dec. 2014.

[46] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks for image
super-resolution with sparse prior,” in Proc. IEEE Int. Conf. Computer Vision, 2015,
pp. 370–378.

[47] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in
Proc. 27th Int. Conf. Machine Learning, 2010, pp. 399–406.

[48] J.R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding: Model-based inspira-
tion of novel deep architectures,” arXiv preprint, arXiv:1409.2574, 2014.

[49] Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep ADMM-net for compressive sensing
MRI,” in Proc. Neural Information Processing Systems Conf., 2016, pp. 10–18.

[50] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery
using variable splitting and constrained optimization,” IEEE Trans. Image Processing,
vol. 19, no. 3, pp. 2345–2356, 2010.

[51] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schlkopf, “Learning to deblur,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 38, no. 7, pp. 1439–1451, 2016.

[52] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser prior for
image restoration,” arXiv preprint, arXiv:1704.03264, 2017.

[53] J. H. R. Chang, C.-L. Li, B. Poczos, V. K. Vijaya Kumar, and A. C.
Sankaranarayanan, “One network to solve them all: Solving linear inverse problems
using deep projection models,” arXiv preprint, arXiv:1703.09912, 2017.

[54] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets,” Adv. Neural Inform. Process.
Syst., vol. 26, pp. 2672–2680, Dec. 2014.

[55] C. K. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár, “Amortised MAP
inference for image super-resolution,” in Proc. Int. Conf. Learning Representations,
2017, pp. 1–17.

� SP

