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Deep CNNs for Object Detection using Passive
Millimeter Sensors

Santiago López-Tapia, Rafael Molina, and Nicolás Pérez de la Blanca

Abstract—Passive Millimeter Wave Images (PMMWIs) can be
used to detect and localize objects concealed under clothing.
Unfortunately, the quality of the acquired images and the
unknown position, shape, and size of the hidden objects render
these tasks challenging. In this paper we discuss a deep learning
approach to this detection/localization problem. The effect of
the non stationary acquisition noise on different architectures is
analyzed and discussed. A comparison with shallow architectures
is also presented. The achieved detection accuracy defines a
new state of the art in object detection on PMMWIs. The low
computational training and testing costs of the solution allow its
use in real time applications.

Index Terms—Millimeter wave imaging, deep learning, object
detection, security, classification.

I. INTRODUCTION

Millimeter images are obtained by sensors capturing electro-
magnetic radiation in the 0.001-0.01 m wavelength range. Two
types of sensors can be distinguished: active, which direct the
waves to the subject and then collect and interpret the reflected
energy; and passive, which create images using the radiation
emitted by objects, in general, and human bodies in particular.

In contrast to alternatives like backscatter X-ray, passive
millimeter systems are safe, see the interesting discussion
in [1]. Furthermore, they fully respect the privacy of their
users. Unfortunately, millimeter sensors, and consequently their
images, suffer from, among others, the following problems: low
signal to noise ratio, low resolution, which can be increased
by increasing the sampling rate but at the cost of decreasing
the signal to noise ratio, and in-homogeneous signal intensity.

(a) (b) (c) (d) (e) (f)

Fig. 1: PMMWI examples. Hidden objects correspond to whiter
areas within the body. Unfortunately, not all whiter areas
correspond to hidden objects.
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Santiago López-Tapia, Rafael Molina, and Nicolás Pérez de la Blanca are
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PMMWIs (see Fig. 1) are currently being utilized as theft
and threat detection systems [2] in places like airports and
warehouses. Since April 2009, many PMMWI systems have
been installed in large USA and European airports. These
detection systems have to deal with the unknown position,
shape, size and transmission properties of the hidden objects.
Unfortunately, their false positive ratios are very high. Systems
based on PMMWIs should be able to detect concealed objects,
incur in a very low number of false positive detections, and
work in real time. It is worth mentioning here that the scientific
community has, so far, shown little interest on the challenging
tasks involved in threat detection using PMMWIs. This is likely
because of the absence of large databases of PMMWIs to work
with.

Sensor modelling and image processing techniques have
been used on PMMWIs. In [3], the main concepts related to
millimeter images are introduced, see also [4]. In [5], trends in
millimeter wave imaging technologies are examined, focusing
mainly on applications and technical parameter variations for
security surveillance and nondestructive inspections. Image
processing techniques have also been utilized on PMMWIs. The
use of compressive sensing and superresolution techniques on
these images is explored in [6], [7]. Denoising, deconvolution,
and enhancement techniques have also been applied to this
kind of images, see for instance [8]–[11]. In this paper, we
develop an image classification approach to detect and localize
objects in a context where the image noise is non stationary
and very high.

II. RELATED WORKS

K-means is used in [12] to segment PMMWIs into three
regions: background, body and threats. Unfortunately, the
method detects unconnected areas. To solve this problem,
the authors use Active Shape Models (ASM) inside the
body. However, this approach does not guarantee an adequate
segmentation. In [13], Gaussian mixture models are used to
characterize background, body, and threat regions and segment
the image. Although the reported results are better than those
in [12], this method also produces an unconnected body
segmentation. In [14], the authors apply noise elimination
and then image segmentation using Local Binary Fitting (LBF).
The authors use two algorithms for noise removal: Non Local
Means (NLM) and Iterative Steering Kernel Regression (ISKR).
Although its detection rate is around 90%, its computing time
makes it impractical for real-time applications. Furthermore,
its performance decreases significantly when used on noisy or
low quality images. In [15], a fast two-step algorithm, based
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on denoising and mathematical morphology, was proposed. On
noisy or low contrast images it achieves an acceptable detection
rate but at the cost of a high false positive detection rate. In [16],
a method to detect and recognize threats in outdoor PMMWIs
is proposed. The threat detection is carried out through global
and local segmentation: at each level (global and local), a
Gaussian mixture model, whose parameters are initialized using
vector quantization, is used and optimized through expectation
maximization. For a different initialization approach see [17].
Finally, a Bayesian decision rule decides which cluster each
pixel belongs to. The recognition process of the threat type
consists of upscaling, principal component analysis (PCA),
size normalization, extraction of a geometric-based feature
vector composed of shape descriptors, and a decision rule,
where the class is decided by minimum Euclidean distance
between normalized feature vectors. The method was able to
detect threats, but it was tested exclusively on a small set
of images and with only two types of threats. In [18], the
same segmentation process as in [16] was used, the difference
being the initialization of the Gaussian mixture model using
k-means clustering. Shape features from the detected object
(area, perimeter, major and minor axes of the basic rectangle,
rectangularity, compactness, and eccentricity) are extracted and
compared to the true features. The method shows good accuracy.
Notice that all the above approaches aim at segmenting the
concealed objects, furthermore they were evaluated on a small
set of images. In [19], [20], we introduced the UGR-PM2WI
database described in appendix B, a new and comprehensive
dataset of PMMWIs. A comparative study of the performance
of different shallow classifiers on this database was presented.
Although the proposed classifiers, and in particular Random
Forest, outperform previous approaches, it was shown that the
image noise (see Fig. 1) has a strong influence on this kind
of classifiers, making very difficult to do better than a 68%
average detection score.

All the above approaches can be grouped according to the
spatial context used in the feature extraction process: a) local
spatial context, used in object detection/localization tasks and
b) full image context, mainly used in image segmentation tasks.
In what follows, these approaches will be denoted Detection
using a Local Approach (DLA) and Segmentation using a
Global Approach (SGA), respectively.

In the Deep Learning (DL) methodology we are going to
propose, deep SGA and DLA approaches will be analyzed
and compared. Both approaches will be cast under the same
framework, the one provided by Convolutional Neural Net-
work (CNN) architectures used for supervised classification
problems. The difference between both approaches will be
characterized by the class of functions computed by the deep
CNN architectures.

The rest of the paper is organized as follows. Section III
provides a short introduction to the used CNN architectures. In
section IV, we describe how the threat detection problem can
be tackled using deep classifiers. The detection and training
procedures are also discussed in this section. In section V, we
describe the experimental set-up and show the obtained results.
Also, a comparison with the best shallow architectures is also
presented here. In section VI, we analyze the performance

of the different learning architectures, identifying the most
relevant factors providing high detection score. Conclusions
are drawn in section VII. Appendix A contains a description
of the denoising technique applied to the observed image, the
importance of its use is described in section VI. Appendix B
contains a complete description of the dataset used in the
experiments. 1.

III. DEEP ARCHITECTURES

Nowadays, Feature Learning Models (FLM) compete with
advantage against the standard classification methodology
where a feature extraction process is carried out to obtain
the information to feed a classifier. FLMs learn the best set of
features by minimizing the training error. Deep CNN models
have shown the importance of using deep architectures as
a mechanism to disentangle independent features coded in
the data through a very complex non-linear mapping of the
sample data. CNNs are currently the most successful DL
models for high level image related tasks like classification,
segmentation, detection, parsing, etc. CNNs define the state of
the art performance in many of them [21]–[27].

Although our threat detection problem could be naively
approached by the direct application of well-known image
processing techniques, the problem is much more challenging.
As shown in this paper, the presence of non-stationary noise
in the images renders extremely difficult the detection task.
The use of function classes as complex as those defined by
DL architectures is required.

Fig. 2: Example of a CNN architecture.

A. Used architectures

The LeNeT architecture introduced by Lecun [28] can be
considered as the base model from which more sophisticated
CNN architectures have been designed. A CNN model is
a feedforward neural net defined as a deep composition of
functions or layers, where each layer computes a transfor-
mation from an accepted list of transformations: convolution,
pooling, non-linear activation, full connection, regularization
and normalization. The design of a specific model consists
of two phases. Firstly, we have to fix the architecture, that is,

1The dataset is available at http://decsai.ugr.es/pi/pmmwi/
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to define the number, the order, and the characteristics of the
layers. Secondly, we must learn the free parameters associated
to the convolution and fully connected layers. In the last layer,
a final vector is obtained which is used to feed a classifier. We
use a softmax classifier, as it provides a posterior probability
estimation for each class. A simple CNN architecture is shown
in Fig. 2.

For our problem, we have analyzed five different CNN archi-
tectures. Three of them, with increasing level of complexity, for
the DLA approach and two for the SGA approach. The learning
protocols for DLA and SGA are different. DLA models are
fed with image patches while SGA ones utilize full images.

Let us start by describing the three architectures which
utilize image patches. The simplest model is an adaptation of
the LeNeT [29] architecture. We use the same type and number
of layers as the original, 2 convolutional layers, 2 pooling layers
and 2 fully connected layers, but the number of filters in the
first and second convolutional layers has been changed from
{20,50} to {32,64} filters, respectively. Also the original non-
linear sigmoidal function is changed to a ReLU [30] activation
function, f(x) = max(0, x). Batch normalization [31] has
also been introduced before each ReLU transformation to
decorrelate the outputs of the convolutional layers and, finally,
regularization with dropout [32] has been added to the last
fully connected layers. All these changes adjust the original
architecture [29] to our threat detection problem and produce
better classification figures. Fig. 3 shows a summary of the
this low deep CNN architecture (LD-CNN). This model has 12
layers and 1,621,598 free parameters. The central column of
the figure describes the order and functionality of each layer
(top-down).

Fig. 3: Description of the LD-CNN architecture. The total
number of parameters is 1,621,598. By Dropout x% we mean
that a x% of the pre-activation units are assigned to zero.

A very recent architecture named All-CNN-C [33] imple-
ments pooling and fully connected layers with convolutional
layers. This architecture allows us to train models similar to LD-
CNNs but with larger number of layers. The main advantage
of this architecture is that it only depends on convolution
operations which are very well adapted to GPU hardware. A
max-pooling layer can be seen as a convolution with kernel size
equal to the kernel size of the pooling followed by a non-linear
transformation and a downsampling operation. This means that

each max-pooling layer can be replaced by three convolution
layers. In addition, as a bonus, the pooling parameters can be
included as parameters to optimize. A fully connected layer
can also be replaced by convolutional layers with a 1 × 1
kernel and the same number of kernels as output units has the
fully connected layer. Therefore, all fully connected layers are
replaced by convolution layers.

We adopt this All-CNN-C [33] architecture to design our
medium deep CNN model (MD-CNN) shown in Fig. 4. Now
we have an architecture with almost twice the number of layers
the LD-CNN has, but in terms of effective transformations it is
only slightly deeper than LD-CNN. Two convolutional layers
implement transformations equivalent to max-pooling and the
layers in block 5 implement transformations equivalent to a
fully connected layer. The total number of free parameters is
1,371,458. Notice that, although MD-CNN is more complex
and powerful than LD-CNN, the number of parameters to be
estimated is lower.

Fig. 4: Description of the MD-CNN architecture. The total
number of parameters is 1,371,458. See dropout x% meaning
in Fig. 3. In this model a convolution layer with stride 2 is
equivalent to a pooling and sub-sampling stage.

Training very deep networks is usually difficult since the
optimization procedure frequently gets trapped in very poor
local minima. The Residual Network approach [34] overcomes
this problem by fitting on each new layer a residual function
f of the form out = f(input) + input instead of using the
standard function defined by out = f(input). Fig. 5 shows
a standard residual unit as described in [34]. In order to
perform the sum operation (f(input) + input) when input
and output do not have the same size, we project the input
into the output space using another convolutional layer (the
one in green in Fig. 5) before the element-wise sum, X is
the number of output feature maps and Y the number of
input feature maps of the unit. Adapting the architecture
proposed in [34], a very deep architecture with 20 layers,
most of them residual, has been created (DR-CNN). Fig. 6
shows the proposed architecture. The three final layers are fully
connected. In this case, a more adequate activation function
PReLU [35] (f(x) = max(−εx, x), 0 < ε << 1), which
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allows activation for negative values, is used. The main effect
of the PReLU function is to improve the behaviour of the
gradient estimation in the bottom layers. The number of free
parameters is 2,847,138.

Fig. 5: Residual unit used in Deep-Residual-CNN. The input is
transformed throughout two convolutional layers with PReLUs
to learn the residual. See in text how the sum operation is
performed.

Fig. 6: Description of the Deep-Residual-CNN (DR-CNN)
architecture. The residual units correspond to the standard
residual unit described in [34], see Fig. 5. The total number of
parameters is 2,847,138. See dropout x% meaning in Fig. 3.

Fig. 7: Segnet architecture as described in [36].

Once we have described the three CNN architectures used
for the DLA approach, we study now the two SGA methods.
Our problem can be considered a segmentation task where the
regions of interest are defined by the grouping of high-level
gray pixels using context conditions. When the main goal is
to learn features encoding the location of regions of interest,
the use of CNNs has proven to be a successful approach [36].
A typical segmentation architecture is shown in Fig. 7. The
feature learning process takes place on the left side of the
architecture (decreasing in size layers). The smallest layer on
the left represents the learned features which encode threat
locations. Since the loss function used to learn the architecture
must be evaluated on all image pixels, the layers on the right
side (increasing in size layers) decode the estimated label, in
our case, a probability of containing a threat from the learned
features. In summary, the SGA approach uses architectures
that take as input the whole image I and output for each pixel
a probability distribution P on the label set.

This approach has been used recently in image segmentation
tasks [36] on natural images. The original model, Segnet,
has 29,458,886 parameters where the encoding layers are
designed by the combination of convolution, ReLU and max-
pooling layers. In the decoding part (right side of Fig. 7), the
model carries out the spatial propagation of the high level
features using an inverse process named max-unpooling. The
combination of convolutional, max-unpooling, and ReLU layers
defines the spatial propagation of the high level features found
by the encoder until the size of the input image has been
matched. The max-unpooling mapping only assigns values to
the units whose indexes were local maxima in the corresponding
max-pooling operation of the encoding part.

The Segnet architecture was designed to solve a much
more complex (in terms of class number) problem than ours.
We adapt this approach to our task by designing two new
architectures but keeping the encoder-decoder approach. The
first model, shown in Fig. 8, has 193,827 parameters. We refer
to it as SCNN. The probability distribution for each pixel is
obtained using a sigmoidal activation on the output of the last
convolutional layer to map the values to the [0, 1] interval.

It is important to note here that autoencoders and, more
recently, Generative Adversarial Networks are generative
deep networks architectures also using an encoding-decoding
approach [37]. The main goal of these architectures is to learn
features and parameters to represent the generative distribution
of the samples. Although this learning problem is clearly much
more difficult and complex than ours, the use of deep generative
models on our data is an area worth to explore.

The second model makes use of multiscale information.
Multiscale architectures have been used to improve the per-
formance of CNNs [38]. The use of multiscale features for
PMMWI classification with shallow classifiers [19], [20] has
also provided better classification results. This insight has led
us to modify the SCNN in order to incorporate information
at three different scales (s, s/2 and s/4). We process each
scale to produce k feature maps using an SCNN on each scale.
We then combine the 3 ∗ k feature maps with 2 convolutional
layers after resizing the output of the lower scales. Finally,
for each pixel the probabilities are computed from regularized
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convolutional layer and a sigmoidal activation. To eliminate
possible redundancies between scales, we apply spatial dropout
(instead of dropping a single unit, we drop an entire feature
map) before the scale combination. We call this model SCNN-
MS, it has 355,515 parameters. Its architecture can be seen in
Fig. 9.

Fig. 8: Description of the SCNN architecture. The total number
of parameters is 193,827. The max-unpooling layer is the same
used in the segnet architecture [36].

Fig. 9: Description of the SCNN-MS architecture. The total
number of parameters is 355,515. The red area contains pixels
with high probability of being threat.

IV. THE APPROACH

Given an image, the goal is to classify it as Class +1
(positive) when it contains at least one concealed object or
Class 0 (negative) otherwise. We also need to localize where
the concealed object is on the human body.

Let D = {Ii, i = 1, · · · , NI} be the image dataset. Our goal
is to learn from D a function fD(Ii) = Xi, with the lowest

generalization error. This function assigns to each image the
set of pixels, Xi, where threats are located or an empty set
if no threat is present. This problem, as we have already
indicated, can be cast as either an object detection/localization
problem using local image patches or a segmentation one
when the whole image is used, both are approached here using
machine learning techniques. We define the function fD as the
composition of two functions; one detecting potential threat
regions and the other deciding which of the regions should be
considered a real threat. The full dataset D is used to learn
the function, fD, and its generalization error is estimated by
cross validation.

A. The training set T
We start by splitting the set of images D in five folds to

estimate the generalization error of fP by five fold cross-
validation. Four folds are used for training and one for
validation. Each fold has the same number of images with
one, two o more threats. Due to the small size of the threat
regions and the possibility of having several threats in the same
image, a possible approach to learn the detection function is
to use image patches. A patch is a rectangular image piece
centered on a pixel. By xP

j we denote the patch xP centered
on pixel j. Let PI be a mapping which selects a subset of
patches Pi

I from the image Ii, that is PI(Ii) = Pi
I . Each one

of the patches is binary labelled, (+1) or (−1), depending on
whether it contains a threat or not. The patch dataset associated
to each image fold is defined by Tj = ∪NI

k=1Pk
I j = 1, · · · , 5.

On each cross-validation iteration, the union of four of the
patch datasets is used to learn the corresponding detection
function fPj : Tj → [0, 1] and the other is used for validation.
A binary classifier is built by splitting the fPj

range using a
calibrated threshold.

Taking into account the object sizes described in appendix B,
three different patch scales can be identified as representatives
of the object sizes: 39×39, 19×19, and 9×9 pixels, respectively.
From each image we only extract the 39× 39 patches that are
fully included inside the image. The use of the largest size
patches forces the model to learn threats in different spatial
contexts. Later on we show that the joint use of the three scales
is relevant when the whole image is considered as input.

The full set of training patches extracted from four image
folds is huge (see appendix B). Then, to reduce the computa-
tional cost of the training process, we extract per image one
patch every 2×2 pixels, obtaining a total of 3, 476 patches per
image. In total we have 11, 502, 084 patches of size 39× 39.
We have found no loss in classification performance by this
training dataset reduction. The 39× 39 patches covering a full
object are positively labelled (1), the rest are negatively labelled
(-1). Patches that partially overlap an object are not included
in the training dataset. We have 372, 494 positive instances
and 9, 351, 130 negative ones. Since the number of negatives
is around 25 times the number of positives and taking into
account that most of the negative patches are very similar, we
have used for training a subset of them. Specifically, we keep
only one negative sample every 2× 2 block, so we retain 1/4
of the negative patches we have. The final number of negative
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samples, 2, 337, 782, is then around six times the number of
positive ones.

When the complete image is considered as input, the learning
process is simply a standard five fold cross-validation.

B. Learning fPj

To label the 39× 39 image patches as threat or non-threat,
we train the [LD,MD,HD]-CNN architectures. To deal with
the imbalanced training set, a sampling strategy is used. We
partition the set of negative patches and learn an ensemble of
classifiers. Let TP , TN be the subsets of positive and negative
labelled patches, respectively, and T = TP ∪TN . Let us denote
by nP and nN their cardinality, being nP << nN with nC =
nN/nP . Let TN = ∪nC

k=1T k
N be a random decomposition of

TN in nC disjoint subsets. We solve nC learning problems,
fkP , k = 1, · · · , nC , associated to the training sets defined
by {T k

N ∪ TP }, respectively. We repeat the same procedure t
times obtaining an ensemble of t × nC functions fkP which
use the positive and subsets of the negative patches. Then, the
patch classifier is defined using a threshold on the range of
the weighted average of the fkP , this is fP =

∑
k wkf

k
P with

weights wk > 0 and
∑

k wk = 1, alternatively as a weighted
majority voting on the set of classifier provided by {fkP}. In our
experiments we have used the majority voting rule to decide
whether a patch is a potential threat, and its detection score
is measured by 1

t×nC

∑
k f

k
P(xP ). In the experiments we use

nC = 6 and t = 1. This means that the TN subset is split in
six random partitions and each partition together with the TP
subset is used to fit a new model.

The segmentation approaches represented by SCNN and
SCNN-MS architectures use full images as input. In these
cases, the label is defined by a binary matrix of the same size
as the input one, with ones in pixels covered by the threats
and zeros in the rest.

C. Initialization and loss function

In all cases, the initialization of the weights of the layers is
done by random sampling from a Gaussian distribution with
mean = 0 and std =

√
2

#input unit [35] , where #input unit

represents the number of input units to each layer.
The fitting loss function used by all our models is the negative

log likelihood given by

L(x,y; θ) = −
∑
j

yj logp(cj |x), (1)

where y represents the target distribution and p(cj |x) denotes,
for all the models, the probability of class j defined by the
softmax function of the output layer.

D. Hyperparameters

The LD-CNN, MD-CNN and DR-CNN models were trained
using Stochastic Gradient Descend (SGD) with minibatches
of size 64, variable learning rate, and 0.9 momentum. The
variable learning rate policy follows a triangular scheme [39]
that consists of varying the learning rate between a minimum
and a maximum value following a triangular pattern with the

training iterations. The triangular learning rate parameters range
from 0.01 to 0.04 for the LD-CNN and MD-CNN models and
from 0.01 to 0.03 for the DR-CNN model. All these models
have been trained using a total of 4 epochs, two of them
increasing uniformly the learning rate value with the iterations
from the minimum until reaching the maximum and two more
going back, that is, we decrease the learning rate similarly
from the maximum to the minimum value. We apply batch
normalization before each nonlinear transformation. Also we
perform local brightness and contrast normalization on each
image [40], that is, we remove the mean and divide by the
standard deviation of its elements.

SCNN and SCNN-MS were also trained using SGD and
0.9 momentum, additionally we had to use the Nadam [41]
learning rate estimation for the method to converge. In these
cases, minibatches of size 16 were used. We fix Nadam hyper-
parameters to the standard values except the learning rate,
which was set to 0.02. In SCNN-MS the learning rate was set
to 0.002 after the first 16 epochs. SCNN was trained for 16
epochs, while SCNN-MS used 20 epochs. In all cases, batch
normalization before each nonlinear transformation and before
the first layer was also applied.

E. Regularization

All the models were regularized during training using weight
decay with a 0.005 fixed value. Dropout regularization was
also applied to the LD-CNN, MD-CNN and DR-CNN models.
For the LD-CNN model a 50% dropout layer before every
full connected layer was used. As suggested in [33], for the
MD-CNN model a 20% dropout layer on the input data and
50% after every subsampling phase was introduced (see Fig. 4).
In the DR-CNN models we only apply a 20% dropout to the
output of the layers 15 and 18 (see Fig. 6).

To improve the convergence of the fitting process for our
SCNN and SCNN-MS models, we corrupt the input image with
random Gaussian noise of 0 mean and 0.05 standard deviation.
Also random Gaussian noise of 0 mean and 0.0005 standard
deviation was applied to the output of each layer (except for
the last one). Spatial dropout with 50% intensity was applied
to SCNN-MS after concatenating the three scales feature maps.

F. Detection and validation

The ROC curve associated to each trained model is used to
calibrate its detection threshold, thrM ∈ [0, 1]. PrM(S) ≥ thrM,
M∈ {LD-CNN, MD-CNN, DR-CNN, SCNN, SCNN-MS}, will
declare a potential threat in S. Here S represents a patch or
the whole image.

The LD-CNN, MD-CNN, and DR-CNN models provide
probabilities on overlapping patches. To fuse this information
a non-maximum suppression step is carried out. We reject a
patch xP

j if it has an intersection-over-union overlap larger than
a learned threshold with a higher scoring patch xP

i . That is, if
PrM(xP

i ) > PrM(xP
j ) ≥ thrM, then the patch xP

j is removed
(see Fig. 10).

Let us denote by HS and PS the support region (set of
pixels) in the image associated to a hidden object and a patch
respectively. In the experiments, we consider that a patch xP
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Fig. 10: The non-maxima suppression process. Blue rectangles
indicate regions whose probabilities are above the minimum
probability threshold (darker regions correspond to higher prob-
ability). Since these regions overlap more than the overlapping
threshold, we only maintain the one with highest probability
(in the image, the darkest rectangle).

is correctly classified as positive when fP(x
P ) > thrM and

HS ∩PS(xP ) > 0.5 ∗ size(HS). A hidden object in the image
is correctly detected when there is at least one patch which
satisfies both conditions. Finally, an image is correctly classified
as positive when, at least, a hidden object has been detected.

For SGA methods, the above approach is applied to the full
image. We consider in each image the same patch structure
used for patch classification.

V. EXPERIMENTAL SETUP

Our experimental setup has been designed to answer the
following questions: a) what is the influence of the image noise
on the models?; b) how relevant is the depth to the detection?;
c) is it important to use multiscale information?; d) should
deep learning models be used to solve this task?.

We ran experiments with all the architectures in two
scenarios, raw and filtered images (see appendix A). This allows
us to evaluate when smoothing the image helps the detection
process. AUC, TP, and FP figures of merit are calculated
as the average of the five values obtained from each cross-
validation set. Means and standard deviations are included.
AUC represents the area under the ROC curve when the
validation images are classified as containing or not containing
hidden objects. TP indicates the percentage of detected hidden
objects. FP represents the average number of false positives
per image. The threshold and overlap parameters used when
non-maxima suppression was applied are also reported (see
subsection IV-F).

We performed all our experiments using Caffe [42] and
Keras [43] with Theano [44]. We used an Intel Xeon E5-2630
v3 at 2.40GHz with 8 cores and 256GB of Ram and 1 GPU
Nvidia Titan X (Pascal) with 12GB of Ram.

VI. DISCUSSION

Table I shows the obtained classification results with CNN
architectures. It also shows how the best shallow architecture:
Random Forest concatenating three scales of Haar features
(RF-HAAR-MS) [19], [20] performs. We have also evaluated
the role of regularization on the learning process for the SCNN
and SCNN-MS models (adding noise and spatial dropout).
The obtained results with no regularization, not included here,

show an important decrease in their figures of merit when
regularization is not used.

A comparison among the different classifiers trained from
image patches, [LD,MD,DR]-CNN and RF-HAAR-MS, shows
that an important improvement is obtained when very deep
models are used (DR-CNN). The LD-CNN model has a much
lower score than the shallow RF-HAAR-MS. This indicates
that a simple architecture with a low number of layers is
unable to deal with the image noise to extract good features.
The MD-CNN performs slightly better than RF-HAAR-MS
pointing out that increasing the number of layers introduces
robustness against non-stationary noise. The DR-CNN model
obtains a better score, with an AUC value of almost 79%. This
shows that deep enough models are able to extract robust and
informative features on noisy scenarios. Architectures using
preprocessed images are noted *-pre in Table I.

TABLE I: CNN results. These models are defined by a
committee of classifiers using raw and preprocesed (pre) images
respectively. For some architectures we also show the result
using preprocessed images, only the best performing ones are
shown. See the text for additional explanation on the columns.

Model AUC ×102 TP×102 FP Thr Overlap
LD-CNN 55.3± 2.2 92± 3.7 7.1± 7.0 0.7 0.4
MD-CNN 70.9± 1.7 92± 1.9 6.3± 5.9 0.6 0.3
DR-CNN 78.8± 1.8 95± 2.2 4.2± 4.1 0.5 0.3

DR-CNN-pre 69.3± 2.1 95± 1.1 6.2± 6.0 0.65 0.3
SCNN 86.2± 1.4 100 0.02± 10−5 0.65 0.5

SCNN-pre 83.4± 2.7 100 0.03± 0.04 0.65 0.5
SCNN-MS 87.4± 0.5 100 0.006± 10−6 0.65 0.5

SCNN-MS-pre 82.1± 4.2 100 0.1± 0.12 0.65 0.5

RF-HAAR-MS 75.3± 1.6 94± 0.9 4.0± 3.8 0.7 0.3

The best performing CNN methods are the ones fed with full
images instead of patches. They can deal better with the spatial
non-stationarity image noise and take advantage of analyzing
the whole image at once. SCNN performs very well, reaching
a 86% AUC, a 100% rate of positive detection and average of
0.02 false positives per image (FP). In comparison with the
patch based architectures, these figures represent an enormous
improvement. When multiscale information is considered in
SCNN-MS, an additional improvement is achieved, reaching
87.4% AUC while at the same time decreasing significantly
the FP rate by nearly one order of magnitude. As it can be
observed, the best score, in bold, shows an over 12 point
improvement over the score obtained by the best shallow
architecture, RF-HAAR-MS, with the added benefit of having
eliminated the feature extraction process. In terms of detection
errors (TP and FP), these deep learning architectures also show
an overwhelming improvement over the shallow ones. These
findings clearly point out the negative influence of the image
noise on the shallow architectures and their difficulty to remove
the noise in the classification process. On the contrary, the
deep learning models show robustness to image noise when
the number of layers increases. It is also interesting to note
that image processing does not help any CNN model. This
could be explained by noticing that any image preprocessing
technique introduces new spatial dependencies on the image
values, making a much harder task for the model to extract
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uncorrelated features. In other words, the preprocessing step
masks the signal and makes more difficult for the models to
extract uncorrelated features. Although the reported figures
correspond to applying one particular filter, see Appendix A,
we also tried other filters with similar results.

Figure 11 shows some examples of the most relevant
activation maps of the SCNN-MS model “last 2 Conv” layer
(see Fig. 9). The first column contains the input images,
columns Map [1-3] show the most relevant activation maps
contributing to the classification layer. This layer before the
sigmoidal function is applied is shown in the fifth column
(see Before-σ column). The other nine activation maps do
not contain much internal structure. They do not contribute
much to the detection process. However, if they are removed
the performance of the method decreases slightly. The last
column shows the input image with the detected threat in
green. The first two rows (True Positive) show examples where
our approach detects a true threat. It can be seen that the areas
with high activation in the column Before-σ correlate with
lack of activation in the maps. In rows three and four (True
Negative) the behavior is similar, but the intensity of the final
activation is smaller and after the sigmoidal transformation it
is eliminated. The last two rows (False Positive) show two
examples where our model fails. In this case no threat is present
but the model identifies a false positive. The discussion above
suggests that the filters look for areas of high contrast in the
images. Since our model detects all the threats in the database
(see Table I), no false negative examples are shown.

We finally report training and test times. Obviously, the
training time depends on the number of free parameters to
be estimated and the number of convolutions to be carried
out. Table II depicts the training and test computing times
for all the CNN architectures. It is interesting to note the
high influence of the architecture design on the training and
test figures. Clearly those models trained using image patches
require higher training times due to a much larger training set,
additionally the layer design has a strong influence, see the
[LD,MD,HD]-CNN models. The MD-CNN model needs much
more time than the other models due to the higher number
of convolutions associated to the higher number of filters. On
the contrary, the SCNN model is much faster in both training
and test times. This property together with its high efficiency
makes it a very good candidate for real-time applications.

TABLE II: CNN training and test times (h hours, m minutes
and s seconds). We show the one fold mean training time, the
test time over all the images, and the mean time per image.

Model Training one fold Total test Per
image test

LD-CNN 1h and 32m 47.42m 0.86s
MD-CNN 14h and 27m 746.82m 13.54s
DR-CNN 9h and 50m 73.90m 1.34s

SCNN 2m and 24s 48s 0.015s
SCNN-MS 5m and 52s 2m and 24s 0.044s

RF-HAAR-MS 19h and 12m 12m and 20s 0.22s

Fig. 11: Examples of the most relevant activation maps of the
SCNN-MS “Last 2 Conv” layer. The first column contains the
input images. Columns 2-4 display the activations of the most
relevant filters. The fifth column shows the activations of the
last convolutional layer just before the sigmoidal (σ) activation.
The last column shows in green the predicted probabilities
for each pixel over the input images (higher probabilities are
associated to greener intensities). Notice that low responses
in the feature maps correspond to high responses before the
sigmoidal and the predicted highest probability zones (see text).
Activation layers have been rescaled for better visualization.

VII. CONCLUSIONS

In this paper we have analyzed the use of CNN-DL classifiers
to detect and localize concealed objects in PMMWIs approach.
We have shown that to address the non-stationary noise present
in the images, deep architectures should be used. They show an
overwhelming improvement over the best performing shallow
ones. We have also found that the two most important factors
for this improvement have been the depth of the architecture
and feeding the models with the whole image. The combined
use of information from different scales improves the detection
score and also greatly reduces the classification errors. The
regularization process applied to our model has shown to be
crucial in order to find a model with a high detection score
(AUC, TP) and a low error rate (FP).

The obtained results allow us to conclude that our DL-
CNN architectures define a new state of the art for the task
of detecting and localizing concealed objects in PMMWIs. In
addition, we have found that deep architectures are a very good
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tool to deal with signals immersed in non-stationary noise. Our
experimental set-up uses the new UGR-PM2WI dataset, to
the best of our knowledge, the currently most comprehensive
available dataset for this task.

APPENDIX

A. Image Enhancement

(a) (b) (c) (d) (e)

Fig. 12: Results of applying different image filtering (Best
view in high resolution screen), see text for details.

A natural question to consider is whether image filtering
(smoothing, contrast enhancement, etc.) helps the detection
process. Fig. 12 shows examples of applying mean (b), median
(c), and bilateral (d) filters to the observed image, Fig. 12(a).

We observed that a better smoothing criterion is to assign
to each pixel an estimation of the most frequent value in its
neighbourhood. That is, for each pixel i, let yB

i denote a block
around yi in the observed image y, zi(1), . . . , zi(K) denote
K independent samples with replacement from yB

i . We then
redefine

qi =

∑K
k=1 zi(k)

K
, (2)

assign y = q and repeat the process L times. The final
processed image is

xi = median(yB
i ) (3)

We have found experimentally that B = 5 × 5 and L = 5
produce good processed images, see Fig. 12(e). Notice that
some contrast improvement can be observed. See the experi-
mental section to analyse how image processing influences the
performance of the proposed classifiers.

B. UGR-PM2WI Dataset

A comprehensive dataset of PMMWIs has been created. It
consists of 3309, 125 × 195 images of 33 different people.
Hidden objects are in the range of 35× 39 to 10× 10 pixels,
which in our images corresponds roughly to 2752.39cm2

and 201.64cm2, respectively. Smaller hidden objects are not
considered to be relevant.

We took pictures of different people (with different com-
plexions and heights) wearing 12 different objects in 10 body
locations: forearm, chest, stomach, thigh, ankle (front), waist
(side), armpit (side), arm, ankle (lateral), thigh (lateral), and
2 images without any objects. Images of people wearing
simultaneously two objects in different locations were also
taken. In summary, the dataset consists of 463 pictures of

people with no object, 2144 containing one object and 702
containing 2 objects.

Threats were simulated by bags containing objects/substances
with different millimeter wave responses: a cutter, 325g of gel,
a 200g clay bar, a simulated gun, 200g of sugar, 200g of frozen
peas, 150ml of cologne, 160g of gel, a bag with metal pieces,
200g of flour, a 50cl water bottle, and a 250ml hydrogen
peroxide bottle (see Fig. 13). Notice that different object sizes
were used.

Fig. 14 shows PMMWIs of subjects with simulated threats
on different locations. It is important to note that although
in the experiments objects are visible and not hidden under
clothing, this is irrelevant to PMMW sensors.

Fig. 13: Simulated threats in the dataset: a cutter (1), 325g of
gel (2), a 200g clay bar (3), a simulated gun (4), 200g of sugar
(5), 200g of frozen peas (6), 150ml of cologne (7), 160g of
gel (8) , a bag with metal pieces (9), 200g of flour (10), a 50cl
water bottle (11), and a 250ml hydrogen peroxide bottle (12).

The visual images were taken at the same time as the
millimeter ones. Objects are marked on the visual images
by the smallest bounding boxes containing them. To transfer
object bounding boxes from visible images to PMMWI ones,
a homography, estimated from the visible image plane to the
PMMWI one using a calibration pattern, was applied. These
bounding boxes will later be used to assess the performance
of the classifiers.

Fig. 14: Examples of PMMWIs with (hidden) objects. Red
boxes indicate object locations. Objects to be detected corre-
spond to whiter areas on the body.
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[9] J. Mateos, A. López, M. Vega, R. Molina, and A. Kat-
saggelos, “Multiframe blind deconvolution of passive
millimeter wave images using variational Dirichlet blur
kernel estimation,” in IEEE International Conference on
Image Processing, pp. 2678–2682, 2016.

[10] J. Yang, J. Wang, and L. Li, “A new algorithm for
passive millimeter-wave image enhancement,” in Signal
Processing Systems (ICSPS), 2010 2nd International
Conference on, vol. 3, pp. V3–507–V3–511, 2010.

[11] W. Yu, X. Chen, S. Dong, and W. Shao, “Study on image
enhancement algorithm applied to passive millimeter-
wave imaging based on wavelet transformation,” in Electri-
cal and Control Engineering (ICECE), 2011 International
Conference on, pp. 856–859, 2011.

[12] C. Haworth, B. Gonzalez, M. Tomsin, R. Appleby, P. Cow-
ard, A. Harvey, K. Lebart, Y. Petillot, and E. Trucco,
“Image analysis for object detection in millimetre-wave
images,” in Passive Millimetre-wave and Terahertz Imag-
inh and Technology, vol. 5619, pp. 117–128, 2004.

[13] C. Haworth, Y. Petillot, and E. Trucco, “Image processing
techniques for metallic object detection with millimetre-
wave images,” Pattern Recognition Letters, vol. 27, no. 15,
pp. 1843 – 1851, 2006.

[14] O. Martı́nez, L. Ferraz, X. Binefa, I. Gómez, and C. Dor-
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