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Robust and Low-Rank Representation for Fast
Face Identification With Occlusions
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Abstract— In this paper, we propose an iterative method to
address the face identification problem with block occlusions.
Our approach utilizes a robust representation based on two
characteristics in order to model contiguous errors (e.g., block
occlusion) effectively. The first fits to the errors a distribution
described by a tailored loss function. The second describes the
error image as having a specific structure (resulting in low-rank
in comparison with image size). We will show that this joint
characterization is effective for describing errors with spatial
continuity. Our approach is computationally efficient due to the
utilization of the alternating direction method of multipliers.
A special case of our fast iterative algorithm leads to the robust
representation method, which is normally used to handle non-
contiguous errors (e.g., pixel corruption). Extensive results on
representative face databases (in constrained and unconstrained
environments) document the effectiveness of our method over
existing robust representation methods with respect to both
identification rates and computational time.

Index Terms— Face identification, robust representation,
low-rank estimation, iterative reweighted coding.

I. INTRODUCTION

FACE Identification (FI) focuses on deducing a subject’s
identity through a provided test image and is one of the

most popular problems in computer vision [1], [2]. Typically,
test images exhibit large variations, such as occlusions. Ideally,
if the training set contains the same type of occlusion as the
test image then identification becomes a rather straightforward
task. In practice, however, there is no guarantee that the
collected data would cover all different occlusions for all
identities of interest. An example of this problem is presented
in Figure 1. The image database consists of non-occluded faces
of subjects with intra-class illumination differences while the
query face exhibits a 70% random block occlusion that covers
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Fig. 1. Overview of the face identification problem investigated in this work.
The image database consists of non-occluded faces of different subjects with
small illumination changes while the query face exhibits 70% block occlusion
that covers most of the informative features of the face.

most of the informative features of the face. In applications
where prior knowledge such as the region and the object of
occlusion is not provided, an appropriate modeling of the error
between the test image and the training samples is necessary.

Early works on face identification [3], [4] attempted to deal
with illumination variations. The concept of �1-graph, which
is robust to data noises and naturally sparse, was introduced
in [5] to encode the overall behavior of the training set in
sparse representations. To handle more complex variations
such as face disguise and expressions, sparse representation-
based classification models were proposed [6]–[10]. The main
idea in these approaches is that a subject’s face sample can be
represented as a linear combination of available images of the
same subject. Then, the face class that yields the minimum
reconstruction error is selected in order to classify the subject.
One recent extension of the sparse representation-based clas-
sification model is the class-wise sparse representation [11].
In this method, the number of training classes is minimized
to alleviate the problem of representing the query by samples
from many different subjects. Another extension is the patch-
based classification approach [11], [12]. The patch based
approach employs the sparse representation-based classifier
to each patch of the face separately and the final decision
is made by fusing the patch classification results. Notice that,
in patch-based approaches the way to partition the image might
be critical for the identification performance, especially when
occlusion affects all patches [12].
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To address cases with complex occlusion and corruption
robust representation models [6], [11], [13]–[17] of the error
image1 were considered, utilizing a non-Gaussian distribution
model to minimize the influence of outliers. In these models
a Laplacian distribution (sparse error) or more general distri-
butions based on M-Estimators [15], [18] were fitted to the
errors. There are, however, two main drawbacks with such
approaches. First, the iterative reweighted algorithm used to
solve the robust representation problem is computationally
expensive when dealing with high-dimensional data [13]–[16].
Second, the performance degrades with over 50% block occlu-
sion. According to [19], this is due to the assumption that error
pixels are independent. The robust representation approaches
are usually effective in FI cases with non-contiguous2 errors
such as pixel corruption.

In cases of contiguous errors there is a spatial correlation
among the error pixels as mentioned in [19]–[21]. To exploit
this correlation, the spatial continuity of the error image was
integrated into the sparse representation-based classification
model [19], [20]. However, these models lack convergence
guarantees [21]. To address this issue Qian et al. [21] observed
that the error image with contiguous occlusion is low-rank and
proposed to estimate the error support by solving a nuclear
norm minimization problem with the use of ADMM [22].
While the low-rank assumption was well justified the method
was effective with up to 50% random block occlusion. A rea-
son might be that only the structure of the error (error support)
was exploited and not its distribution (e.g., sparsity).

Low-rank estimation has been considered in [23] where a
discriminative low-rank metric learning method was proposed
that jointly learns a low-rank linear transformation matrix
and a low-rank representation. Authors in [24] developed
a graph construction model, with robust similarity metric
(low-rank representation, which is robust to noisy data) and
balanced property for the application of semi-supervised learn-
ing. In [25], a dictionary learning algorithm with low-rank
regularization for FI was proposed with Fisher discriminant
function to the coding coefficients to make the dictionary more
discriminative.

Given corrupted training samples, one can utilize robust
PCA (RPCA) [26] or its variants, such as, supervised low-
rank (SLR) [27] and double nuclear norm-based matrix
decomposition (DNMD) [28] to recover the “clean” data.
Since these methods target to recover the original data matrix,
they are transductive. Unlike these approaches, inductive
methods aim at learning an underlying projection matrix
from training data to remove possible corruptions in a new
datum. Two popular inductive methods are the inductive
RPCA (IRPCA) [29] and inductive DNMD (IDNMD) [28],
respectively. In the experiments conducted in [29] and [28]
same occlusion and corruption was utilized in both training
and testing images (e.g., in [28] the same occlusion object
was used in both training and testing samples). The limitation

1Error image is the difference between the occluded test face and the
unoccluded training face of the same identity.

2We call variations such as block occlusion and face disguise (e.g., scarves)
contiguous errors since the error image is zero everywhere except in the region
of the occluded object.

of these approaches is that the corruption to be handled in
the new datum should be similar to corruption present in the
training data.

In this work, we propose an iterative method to solve the
FI problem with occlusions. We consider the same scenario as
in [13], [14], [19], and [21] according to which we are given
“clean” frontal aligned views with a block occlusion which
appear in any position on the test image but is “unseen” to the
training data. When corrupted training data are provided that
are not frontally aligned (e.g., scenarios in an unconstrained
environment) a tool such as RPCA and SLR is employed
to separate outlier pixels and corruptions from the training
samples as a pre-processing step. Then, the “clean” frontal
aligned faces are used for training data to perform face
identification with occluded test images.

As already mentioned, with the robust methods [13], [14],
[19], [21] high computational cost is exhibited and identifi-
cation results significantly degrade with over 50% random
block occlusion. Our approach is based on a new iterative
method which is efficient in terms of computational cost and
robust to block occlusions up to 70%. To describe contiguous
errors (e.g., a random block occlusion) the proposed method
utilizes a robust representation with two characteristics. The
first fits to the errors a distribution based on a tailored loss
function. The second models the reduced rank structure of
the error in comparison to image size. We will then show
that this joint characterization is effective for describing errors
with spatial continuity. Our approach is efficient in terms of
computational cost. Efficient minimization is performed by
reformulating the reweighted coding problem as a constrained
ADMM one, thus, avoiding costly matrix inversions.

A special case of our fast iterative algorithm leads to the
robust representation method presented in [13] and [14] which
is normally used to handle non-contiguous errors (e.g., pixel
corruption).

The rest of the paper is organized as follows. In Section II
first we present our fast iterative algorithm for FI cases with
occlusion. Then, we describe the identification scheme and
the weight function used in our method. Finally, a special
case of the algorithm for solving efficiently the FI problem
with non-contiguous errors is described. Experimental results
and discussion on the performance of the proposed algorithms
are presented in Section III, and conclusions are drawn in
Section IV.

II. ROBUST FACE IDENTIFICATION WITH

BLOCK OCCLUSIONS

In this section we propose an iterative method to address
the FI problem with block occlusions. Our approach utilizes
the robust representation of [13]–[16] with two characteristics
and uses a tailored loss function based on M-estimators. The
method handles contiguous errors that are considered low-rank
in comparison to the size of the image and is efficient in terms
of computational cost. A special case of our method is also
utilized to solve efficiently the robust representation problem
for non-contiguous errors.

Let y ∈ R
d denote the face test sample in a column-wise

vectorized form where j × k = d is the size of the image.



ILIADIS et al.: ROBUST AND LOW-RANK REPRESENTATION FOR FAST FACE IDENTIFICATION WITH OCCLUSIONS 2205

Fig. 2. Degradation Model: the test sample with occlusion can be represented as the linear combination of training samples with some intra-class variations (e.g.,
lighting) plus the error e. The error e has two characteristics; it is considered low-rank in comparison of image size and follows a distribution described by a
tailored potential loss function.

Let T = [Ti , . . . , Tc] ∈ R
d×n denote the matrix (dictionary)

with the set of samples of c subjects stacked in columns.
Ti ∈ R

d×ni denotes the ni set of samples of the i th subject,
such that,

∑
i ni = n.

As illustrated in Figure 2 we can represent the test sample
with occlusion as the superposition of training samples and a
representation error e, thus, the degradation model is,

y = Ta + e, (1)

where e ∈ R
d is the representation error and a ∈ R

n is the
representation vector. Thus, the test sample can be represented
as a linear combination of the samples in T. The face identity
is chosen based on the minimum class residual provided by
the estimated coefficients a as in [6]. The residual image e in
our model has two characteristics:

1) It includes mainly the occluded object, and therefore it is
considered low-rank in comparison to image size since
many of its rows or columns are zero. Please note, that
we will be using the term “low-rank” from here onward
in this paper to indicate errors that have reduced rank in
comparison to the size of the image.

2) It follows a distribution that can be effectively described
by a tailored potential loss function (e.g., the logistic
function utilized in [14]).

We expect that the calculation of e based on the two character-
istics mentioned above will lead to an accurate estimation of
the a coefficients and provide the correct identity. Although the
first characteristic has been employed in [21] and the second
in robust representation methods such as [14], both of them
are necessary to adequately describe the residual image and
are used together for the first time in our work. In particular,
enforcing only the second characteristic will not necessarily
lead to an error image that is structured and low-rank. To the
best of our knowledge there is no study that utilizes both
the robust representation and the structure of the error using
low-rank estimation in a unified framework.

For the problem described above, we propose the following
function to be minimized,

J (a) =
d∑

i=1

φ((y − Ta)i ) + λ∗ ‖TM (y − Ta)‖∗ + ϑ(a), (2)

where φ : R → R is a potential loss function which is selected
from a variety of M-Estimators [15], [18] and (y − Ta)i is the
i th component error. The function ϑ(a) is used as a regularizer
of the coefficients a, λ∗ > 0 and TM is an operator that
transforms its vector argument into a matrix of appropriate

size such that TM (y − Ta) ∈ R
j×k . The nuclear norm ‖·‖∗ is

the convex-relaxation of the rank function.
Thus we are looking in minimizing the following problem,

min
a

J (a). (3)

Notice, how previous works relate to our model:
1) For φ(x) = x2, λ∗ = 0 and ϑ(a) = λ||a||1 with

λ > 0, it is the sparse representation-based classifica-
tion (SRC) [6] given as,

min
a

‖y − Ta‖2
2 + λ||a||1. (4)

2) For φ(x) = x2 and ϑ(a) = λ||a||22, it is the low-rank reg-
ularized regression (LR3) [21] which is formulated as,

min
a

‖y − Ta‖2
2 + λ∗ ‖TM (y − Ta)‖∗ + λ ‖a‖2

2 . (5)

3) For λ∗ = 0, it is the robust representation pro-
blem [13]–[16] formulated as,

min
a

d∑

i=1

φ((y − Ta)i ) + ϑ(a). (6)

In previous works authors have chosen different func-
tions ϑ(a) to regularize the coefficients a. In the collabora-
tive representation-based classification with regularized least
square (CR-RLS) [9] the authors are solving the SRC problem
with ϑ(a) = λ||a||22. In [13] and [15] ϑ(a) = λ||a||1 was used
combined with different potential functions while in the reg-
ularized robust coding (RRC) [14], ϑ(a) = λ||a||22 was used.
In correntropy-based sparse representation (CESR) [16] and
structured sparse error coding (SSEC) [19], ϑ(a) was chosen
to be the indicator function of the nonnegative orthant R

n+,
such that a nonnegative a ≥ 0 regularization term was
enforced.

In this work we choose ϑ(a) so as the representation
coefficients are nonnegative, since it has been shown to provide
robust representation for FI in [16] and [19].

The robustness property of φ(·) in (2), to be described now,
in combination with ϑ(·) will force some of the coefficients
of e to be zero or very small in magnitude. It will also
force a to be concentrated in areas of the images that can
be represented well by faces in T. Furthermore, the use of the
nuclear norm will force the residual to be low-rank.

We consider potential loss functions φ(·) symmetric around
zero associated to Super Gaussian (SG) distributions [30].
The function φ(

√
x) has to be increasing and concave for

x ∈ (0,∞) [31]. This condition is equivalent to φ′(x)/x
being decreasing on (0,∞), that is, for x1 ≥ x2 ≥ 0,
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φ′(x1)/x1 ≤ φ′(x2)/x2. If this condition is satisfied, then φ(·)
can be represented as (using [32, Ch. 12]),

φ (x) = inf
ξ>0

1

2
ξx2 − φ∗

(
1

2
ξ

)

, (7)

where φ∗ (ξ) is the concave conjugate of φ(
√

x) and ξ is a
variational parameters. The dual relationship to (7) is given
by [32],

φ∗
(

1

2
ξ

)

= inf
x

1

2
ξx2 − φ(x). (8)

Equality in (7) is obtained at the optimal values of ξ , which
are computed from the dual representation (8) by taking the
derivative with respect to x and setting it to zero, which gives
ξ = φ′(x)/x . By using (7) we can write the function in (2) as,

J (a) = min
w

1

2
‖√W(y − Ta)‖2

2 + ϕ(w)

+ λ∗ ‖TM (y − Ta)‖∗ + ϑ(a), (9)

where w = (ξ1, . . . , ξd ) with ξi > 0, i = 1, . . . , d ,

W = diag(w), and ϕ(w) =
d∑

i=1
φ∗( 1

2ξi ).

Notice, before proceeding, that the weights in W are of the
form φ′(x)/x which are large for small values of x for SG
potential loss functions, so a will fit well small values of e in
magnitude.

Let us consider the augmented function by subsistuting (9)
into (3),

J (a, w) = 1

2
‖√W(y − Ta)‖2

2 + ϕ(w)

+ λ∗ ‖TM (y − Ta)‖∗ + ϑ(a). (10)

A local minimizer (a, w) can be calculated by alternating
minimization in two steps; in step one, the weights are updated
by fixing the representation coefficients a and in step two the
vector a is updated by fixing the weights in W, i.e.,

wt+1
i = φ′((y − Tat )i )/(y − Tat )i (11a)

at+1 = argmin
a

‖
√

Wt+1(y − Ta)‖2
2

+ λ∗ ‖TM (y − Ta)‖∗ + ϑ(a), (11b)

where wt+1
i and at+1 are the weights and representation coef-

ficients estimated at the t th iteration, respectively. The term
(y − Tat )i denotes the component error i at the t th iteration.
Large weights are assigned to pixels in the residual image with
small errors in the previous reconstructed iteration, while small
weights are assigned to pixels in the residual image with large
errors.

We expect the use of the nuclear norm of the residual
to force small weights in W to be assigned only on the
occluded part. Thus, outlier pixels will not contribute much
to the reconstruction at the next iteration, and at convergence,
the estimated error will mainly consist of those outliers.

Notice that we have,

J (at ) = J (at , wt+1)

≥ J (at+1, wt+1) ≥ J (at+1, wt+2) = J (at+1). (12)

A. Optimization

Let us now describe the iterative algorithm to find efficiently
at+1 in problem (11b).

In order to solve the proposed problem, first we let
y − Ta = e and since we are interested in estimating nonnega-
tive coefficients for the representation vector we also introduce
an additional variable z such that a = z. Then, the coding
step (11b) is reformulated as,

minimize
a,z,e

‖
√

Wt+1e‖2
2 + λ∗‖TM (e)‖∗ + ϑ(z)

subject to y − Ta = e, a = z. (13)

Problem (13) is solved efficiently with ADMM which is
known for fast convergence to an approximate solution [22].
As in the method of multipliers, the problem takes the form
of the augmented Lagrangian,

L(e, a, z, u1, u2, wt+1)

= ‖
√

Wt+1e‖2
2 + λ∗‖TM (e)‖∗

+ ϑ(z) + uT
1

(
y − Ta − e

) + ρ1

2
‖y − Ta − e‖2

2

+ uT
2

(
a − z

) + ρ2

2
‖a − z‖2

2, (14)

where ρ1 > 0 and ρ2 > 0 are the penalty parameters, and
u1 and u2 are the dual variables. The ADMM updates can be
expressed as,

es+1 = argmin
e

L(e, as , u1,s, wt+1), (15a)

zs+1 = argmin
z

L(z, as , u2,s), (15b)

as+1 = argmin
a

L(es+1, a, u1,s, zs+1, u2,s), (15c)

u1,s+1 = u1,s + ρ1(y − Tas+1 − es+1), (15d)

u2,s+1 = u2,s + ρ2(as+1 − zs+1), (15e)

where s denotes the ADMM iteration and finally we set
at+1 = lims→+∞ as+1.

1) Finding es+1: The update of es+1 is given by minimizing
the following problem,

es+1 = argmin
e

1

2
‖y − Tas − e‖2

2 + 1

ρ1
‖
√

Wt+1e‖2
2

+ 1

ρ1
uT

1,s

(
y − Tas − e

) + λ∗
ρ1

‖TM (e)‖∗. (16)

To calculate es+1 we consider a two-step fast approximation.
In step one we solve the weighted norm problem,

ẽ = argmin
e

1

2
‖y − Tas − e‖2

2 + 1

ρ1
‖
√

Wt+1e‖2
2

+ 1

ρ1
uT

1,s

(
y − Tas − e

)
, (17)

and in step two to satisfy the nuclear norm constraint we
project the estimated ẽ to a low-rank space, to obtain,

es+1 = argmin
e

1

2

∥
∥
∥TM

(
e − ẽ

)∥
∥
∥

2

F
+ λ∗

ρ1
‖TM (e)‖∗. (18)

Problem (17) has a closed-form solution given by,

ẽ = C−1(y − Tas + u1,s/ρ1
)
, (19)
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Fig. 3. An example of 70% occluded face. If the low-rank constraint is not used (thus, allowing only the weighting norm in (10) to be utilized) then y is
reconstructed from faces that belong to the wrong identities. On the other hand, our method which employs both the nuclear and weighting norms to describe
the error, is able to reconstruct the occluded face from images that belong to the correct identity.

where C = (
I+2Wt+1/ρ1

)
is a diagonal matrix with diagonal

entries ci = 1 + 2wt+1
i /ρ1. Since C is a diagonal matrix,

to update ẽ we only need to construct a vector with elements
equal to 1/ci and perform an element wise-multiplication
between the constructed vector and the residual vector
y − Tas + u1,s/ρ1. Thus, the update of ẽ can be calculated
fast.

The update in (19) is in essence an outlier detector similar
to the soft-thresholding operator [22]. The values of the
residual vector y − Tas + u1,s/ρ1 will be weighted according
to C−1. A small weight (close to zero) will be given to non-
outlier elements (e.g., elements of the residual vector with
small values) while a large weight (close to one) will be
given to outliers (e.g., elements of the residual vector with
large values).

Problem (18) is a nuclear norm minimization problem of
the form,

min
X

1

2
‖X − 	‖2

F + λ∗‖X‖∗, (20)

which has a closed-form solution given by [22],

X̂ = Lλ∗(	) = U	Sλ∗(
	)VT
	, (21)

where Sλ∗(
	) = sign(δi j )max(0, |δi j | − λ∗) is the soft-
thresholding operator, Lλ∗(·) is the singular value soft-
thresholding operator and 	 = U	
	VT

	 is the SVD of
matrix 	.

Thus, the two-step solution of (16) is given by,

ẽ = C−1(y − Tas + u1,s/ρ1
)

(22a)

es+1 = Lλ∗/ρ1

(
TM (ẽ)

)
. (22b)

The solution in (22) is the low-rank estimation of the weighted
error image.3

2) Finding zs+1: The update of zs+1 is obtained by solving
the following problem,

zs+1 = argmin
z

1

2
‖as − z‖2

2 + 1

ρ2
ϑ(z) + 1

ρ2
uT

2,s

(
as − z

)
.

(23)

The solution of (23) is given by,

zs+1 = (as + u2,s/ρ2)+, (24)

3Note that the solution in (22b) is obtained in a matrix form which is then
transformed to a column-wise vectorized form es+1.

where (·)+ is the function the keeps only the positive coeffi-
cients of its argument and set the rest to zero.

Notice that we only need to change the update of z for
different regularization functions ϑ(z). For example, to solve
an iterative reweighted sparse coding (IRSC) problem and
regularize the coefficients to be sparse (ϑ(z) = λ||z||1) we
have to substitute (24) with the soft-thresholding operator [22].
To solve an iterative reweighted least squares (IRLS) prob-
lem (ϑ(a) = λ||a||22) we do not need to introduce and estimate
the additional variables, z and u2. The coefficients a can be
estimated by solving a regularized least squares problem.

3) Finding as+1: The update of as+1 is obtained by solving
the following problem,

as+1 = argmin
a

1

2
‖y − Ta − es+1‖2

2 + 1

ρ1
uT

1,s

(
y − Ta − es+1

)

+ 1

ρ1
uT

2,s

(
a − zs+1

) + ρ2

2ρ1
‖a − zs+1‖2

2. (25)

Notice that equation (25) is a regularized least squares prob-
lem, whose closed-form solution is,

as+1 = P
(

TT (y − es+1 + u1,s/ρ1) + (ρ2/ρ1)z − u2,s/ρ1

)
,

(26)

where P =
(

TT T + ρ2
ρ1

I
)−1

and can be pre-calculated once
and cached offline. For large matrices P, iterative algorithms
can be used for solving this linear system of equations when
matrix inversion is not feasible.

An example of our approach is presented in Figure 3. If the
low-rank constraint is not used then y is reconstructed using
faces that belong to the wrong identities. On the other hand,
our approach with the use of the nuclear norm constraint
is able to reconstruct the occluded face using images that
belong to the correct identity (second row in Figure 3).
Also, notice the differences in weight map estimations. In the
first case small weights (black values) assigned without any
structure to any region of the face. This is not desirable since
informative pixels were detected as outliers (e.g., pixels around
the occluded object). In addition, many pixels on the occluded
object were detected as inliers. In the second case, the error
is low-rank and has a spatial continuity around the occluded
object (pixels close to zero). In this case, the weight map W is
also enforced to have a spatial continuity (since W is related to
the error) with small weights assigned to the occluded object
as desired.
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Algorithm 1 Fast & Low-Rank IRNNLS Algorithm

We would like to mention here a closely related work for
block occlusion errors namely robust low-rank regularized
regression (RLR3) [21]. There are two fundamental differences
between our work and RLR3. First, the weighted residual
W(y − Ta) instead of the residual error y − Ta was modeled
to be low-rank which is different from our method. The model
in RLR3 can handle occlusion of specific objects and size
that covers a portion of the face image entirely from left to
right (or from top to bottom) such as scarves. Our method
handles block occlusions that appear in any size and place in
the face. Second, the function to be minimized in RLR3 is not
derived from the duality theorem [32] which raises concerns
about its convergence guarantees.

The complete steps of the fast low-rank and iterative
reweighted nonnegative least squares (F-LR-IRNNLS) algo-
rithm for contiguous errors are presented in Algorithm 1.

B. Identification Scheme

In SRC [6], the face class that yields the minimum recon-
struction error is selected in order to classify or identify the
subject. Similarly, in this work the classification is given by
computing the residuals e for each class i as,

ei (y) = ‖
√

W f (y − Ti âi )‖2, (27)

where âi is the segment of the final estimated a associated
with class i and W f is the final estimated weight matrix
from Algorithm 1. Finally, the identity of y is given as,
Identity(y) = argmini {ei (y)}.

C. The Weight Function

Ideally, the weight function should distinguish inliers and
outliers given a training dictionary with non-occluded faces
and a test sample with occlusion [14]. In particular, given the
residual error at any iteration, small weights (close to zero)

Fig. 4. The left graph shows the convergence of the iterative reweighted
and low-rank algorithm (F-LR-IRNNLS). In particular, we present the change
of the weights between two consecutive iterations. As t → ∞ the error
becomes more sparse and structural, thus, small weights are concentrated on
the occluding object. The right graph shows the number of ADMM iterations
as a function of the reweighted iterations.

should be assigned to the outlier pixels (large residual error)
and larger weight (close to one) to the inlier pixels (small
residual error). Although any weight function [15], [18] of the
form w = φ′(x)/x can be used in our framework as long
as φ′(x)/x is decreasing on (0,∞), in this work we utilize
the logistic function proposed in [14]. The logistic function
performs particularly well in FI.4 The weight component wi

as a function of xi , which is decreasing on (0,∞), is given by,

wi =
exp

(
− μ

(
xi

)2 + μη
)

1 + exp
(

− μ
(

xi

)2 + μη
) , i = 1, . . . , d, (28)

where μ and η are positive scalars. As in [14], η denotes the
value of the lth largest element of the residual vector x, where
l = �γ d�, γ ∈ (0, 1). μ is given as ζ

η with ζ = 8. We also set
γ = 0.8 for the experiments without occlusion and γ = 0.6
for the experiments with occlusion as in [14].

D. Convergence Criteria

For the purpose of this paper, in order to guarantee con-
vergence of the optimization problem (13) using ADMM,
it is sufficient to enforce appropriate termination criteria.
As suggested in [22], we enforced the primal residuals to be
small such that ‖y − Ta − e‖2 ≤ ε1 and ‖a − z‖2 ≤ ε2, where
ε1 and ε2 are small positive numbers.

The termination criterion for the iterative reweighted
sequences is

∥
∥Wt − Wt−1

∥
∥

2/
∥
∥Wt−1

∥
∥

2 < ε3, where ε3 is a
small positive number. Figure 4 (left) shows the change of the
weights between two consecutive iterations for one particular
example.

E. Special Case: Robust Representation
for Non-Contiguous Errors

A special case of our method leads to the robust repre-
sentation method [13]–[16] when used for FI problem with
non-contiguous errors as given in (6). In the previous robust
methods [13]–[16] high computational cost is exhibited due to
the reweighted coding step to estimate a. To address this issue
the proposed ADMM algorithm described above is utilized

4For a complete justification of the effectiveness of the logistic function in
FI we refer the reader to [14].
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here as well to solve this case efficiently. The augmented
function of the robust representation problem is formulated as,

J (a, w) = 1

2
‖√W(y − Ta)‖2

2 + ϕ(w) + ϑ(a), (29)

which is similar to (10) but without the nuclear norm term.
Similarly to (10), a local minimizer (a, w) can be calculated
in two steps,

wt+1
i = φ′((y − Tat )i )/(y − Tat )i (30a)

ât+1 = argmin
a

‖
√

Wt+1(y − Ta)‖2
2 + ϑ(a). (30b)

A major drawback of the iterative reweighted algorithm is
that it is computationally expensive [33] due to the coding
step (30b). High computational cost is exhibited regardless
of the coefficient regularization, for example ϑ(a) = λ||a||22,
ϑ(a) = λ||a||1 or ϑ(a) is the indicator function of the nonneg-
ative orthant R

n+ [13]–[16]. The coding step is expensive since
in each iteration a new weighted system matrix

√
Wt+1T is

provided given the updated weights. Moreover, an offline pre-
calculation of the weighted inverse is not possible. Efficient
methods to solve problems in the form of (30b) such as
conjugate gradient [34] or �1 algorithms [35], [36] may require
several iterations to converge to the desired point [14]. The
active set method [37] used for solving the nonnegative least
squares problem becomes also slow due to the computation of
the pseudoinverse of the system matrix in each iteration.

To solve (30b) efficiently for the ϑ(a) functions described
earlier we utilize the proposed ADMM algorithm described
above. Thus, we avoid the explicit calculation of TT Wt+1T
inverse during the execution of the algorithm. The idea of
accelerating the iterative reweighed scheme using ADMM is
also found in [33]. However, in [33] the weights applied to
the regularization term ϑ(a) rather to the residual as in done
here. To accelerate (30b), we set y − Ta = e, a = z and the
problem is reformulated as,

minimize
a,z,e

‖
√

Wt+1e‖2
2 + ϑ(z)

subject to y − Ta = e, a = z. (31)

Notice that the
√

Wt+1T term is no longer part of the
optimization problem which allows us to solve (31) efficiently.

Problem (31) has similar ADMM updates with (13)
except es+1. To find es+1 we only have to calculate,

es+1 = C−1(y − Tas + u1,s/ρ1
)
, (32)

where C is the diagonal matrix defined in (19) and C−1 can
be calculated fast due to the diagonal structure. The updates
of zs+1 and as+1 are similar to (24) and (26) respectively and
as explained earlier P matrix can be pre-calculated once and
cached offline.5 Thus, to solve the robust representation prob-
lem we utilize an efficient method since no online inversion of
the system matrix is performed in any of the variable updates.

Our fast iterative reweighted nonnegative least
squares (F-IRNNLS) algorithm just described solves the

5As noted earlier, the offline calculation of P can be utilized when direct
inversion is feasible.

robust representation problem efficiently and the steps are
also presented in Algorithm 1.

The number of ADMM iterations required for each
reweighted iteration is presented in Figure 4 (right) for our
method. As expected the number of ADMM iterations for
F-LR-IRNNLS is greater than the F-IRNNLS due to the
calculation of the nuclear term.

F. Dealing With Corrupted Testing and Training Samples

Until now we have assumed that the training samples repre-
sent “clean” frontal aligned views and without large variations
of the same identity. However, there might be scenarios such
as face identification in an unconstrained environment where
testing as well as training samples are occluded.

To deal with this scenario we incorporate into our frame-
work techniques based on RPCA [26] to separate outlier
pixels and occlusions from the training samples. The main
idea of RPCA is that the training matrix is decomposed
into T = A + E, where A denotes the dictionary with clean
faces and E is the remaining error matrix. Out of the many
extensions of RPCA such as in [38] and [28], [39]–[41], in this
work we utilize the SLR method in [27] to separate outlier pix-
els since it is robust to variations such as expression and pose
which are very common in an unconstrained environment. One
of the main differences between the RPCA [26] and SLR [27]
methods is that an additional intra-class variation dictionary B
is estimated in the latter method using T = A + B + E. Thus,
having estimated dictionaries A and B by [27] we can modify
our degradation model (1) to,

y = Aa1 + Ba2 + e, (33)

where A ∈ R
d×n denotes a class-specific dictionary (clean

images dictionary) and B ∈ R
d×n a non-class specific

dictionary (intra-class variation dictionary). Also, a1 ∈ R
n

and a2 ∈ R
n are the representation vectors for the A and

B dictionaries respectively and e is the representation error
described earlier in our method. More compactly, the model
in (33) can be written as,

y = T′a′ + e, (34)

where T′ = [A B] ∈ R
d×2n and a′ = [a1 a2] ∈ R

2n . Dictio-
nary B in this case captures variations such as in expressions
and pose that cannot be represented by the error term e. On the
other hand, e is utilized to capture occlusions and low-rank
variations of the test image, as explained earlier in this work,
that cannot be captured by B. For the problem described above
the function to be minimized is the same as in (2) where T′
and a′ are used instead of T and a, respectively. Furthermore,
the calculation of A and B is described in [27]. In our
experiments we denote by F-LR-IRNNLS (SLR), the method
when the SLR algorithm [27] is employed as a pre-processing
step in our F-LR-IRNNLS method.

III. EXPERIMENTAL RESULTS

In this section we present experiments on four pub-
licly available databases, AR [42], Extended Yale B [43],
Multi-PIE [44] and Labeled Faces in the Wild (LFW) [45]
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Fig. 5. The three artificial images used for the block occlusion experiments.
(a) Baboon. (b) Non-square image. (c) Dog.

to show the efficacy of the proposed method. We demonstrate
identification and reconstruction results under various artificial
and real-world variations. We compare our framework with
ten other FI algorithms, SRC [6], CR-RLS [9], LR3 [21],
L12,6 and the robust algorithms SDR-SLR [27], HQ (addi-
tive form) [15], CESR [16], RRC_L1 [14], RRC_L2 [14],
SSEC [19]. We consider the following five FI cases:

1) cases with contiguous variations such as random block
occlusion with different sizes and objects, face disguise
and mixture noise which is a combination of block
occlusion and pixel corruption,

2) cases with non-contiguous variations such as illumina-
tion variations, pixel corruption, face expressions.

3) cases with random block occlusion and few training
samples.

4) cases in unconstrained environment and with corrupted
testing and training samples.

For all methods, we used the solvers provided by the authors
of the corresponding papers. We chose to solve the �1 min-
imization problem in SRC and RRC_L1 with the Homotopy
algorithm7 [46] since it resulted in the highest accuracy in
the performance comparison in [35] with reasonable time
execution. In our algorithms, we set λ∗ = 0.05, ρ1 = 1
and ρ2 = 0.1. The convergence parameters were set equal
to ε1 = 10−2, ε2 = 10−1, ε3 = 10−2. For fair comparisons
with respect to execution time and identification rates we set
the same ε3 for the RRC algorithm and the same maximum
number of iterations (t = 100). All face images were normal-
ized to have unit �2-norm and all variables initialized to zero
except for a1 = 1/n as in [14].

A. Identification Under Block Occlusions

Experiments with occluded images were conducted on three
datasets: Extended Yale B, AR and Multi-PIE.

As in [6], [14], and [21], we chose Subsets 1 and 2 of
Extended Yale B for training (in total 719 images) and
Subset 3 for testing (in total 455 images). Images were resized
to 96 × 84 pixels. We considered three different artificial
objects to occlude the test images as shown in Figure 5.
For the first object, block occlusion was tested by placing
the square baboon image on each test image. The location of
the occlusion was randomly chosen and was unknown during

6This method solves the problem, mina ‖TM (y − Ta)‖12 + λ ‖a‖2
2. The

employment of the �2 norm for the coefficients was chosen to make fair
comparisons with CR-RLS [9] and LR3 [21].

7The source code of Homotopy algorithm can be downloaded at
http://www.eecs.berkeley.edu/~yang/software/l1benchmark/

training. We considered different sizes of the object such that
the face is covered with the occluded object from 30% to 90%
of its area. Identification rates for the different levels of
occlusion are shown in Figure 6(a). For the second and third8

non-square and smooth (e.g., without textures in it) objects
shown in Figure 5(b) and (c) respectively, block occlusion
was tested by randomly placing the objects on each test
image. Identification rates are shown in Figure 6(b) and 6(c)
respectively for each of the non-square object.

Next, we evaluate the performance to block occlusion in the
AR database. We chose the 7 non-occluded AR images per
subject (each one with a different face expression) from ses-
sion 1 for training and the 7 non-occluded images per subject
from session 2 for testing. This experiment is more challenging
since training faces appear with different expressions. In each
test image, we replace a random block with the square baboon
image. We resized the images to 60×43 pixels. The occlusion
ratio increases from 30% to 50% and identification rates are
shown in Figure 6(c).

To examine the robustness of our method on a dataset
with more subjects we evaluate its performance to block
occlusion in the Multi-PIE database [44]. The database con-
tains the images of 337 subjects captured in 4 sessions with
simultaneous variations in pose, expression, and illumination.
In the experiments we used all 249 subjects in Session 1.
We used 6 frontal images with 6 illuminations9 and neutral
expression from Session 1 for training, and 10 frontal images10

from Session 4 for testing. In this dataset we also examine
the robustness of the methods for different percentages of
occlusion under the same experiment and same parameters of
the methods. In each test image, we replace a random block
with the square baboon image. The percentage of the occlusion
was randomly chosen from 30% to 60% of the image area.
Thus, each test image was chosen to have different percentage
of occlusion. Identification rates are shown in Table VI.

From the results with the baboon image we conclude that
methods robust to contiguous errors (LR3, SSEC) performed
better than the non-contiguous methods in Yale B. Our
F-LR-IRNNLS algorithm outperformed all previous methods
overall in all datasets, Yale B, AR and Multi-PIE. SSEC
performed well with 80% occlusion in Yale B but it performed
poorly in AR and with lower levels of occlusion. As explained
in [21], there are no convergence guarantees for SSEC and,
perhaps, this explains the unstable results obtained by this
method in our experiments. Finally, the performance of non-
contiguous error methods, HQ, RRCs and F-IRNNLS signifi-
cantly dropped by high levels of occlusion. This is due to the
fact that these methods cannot handle contiguous variations
effectively. In Multi-PIE dataset (Table VI with 6 samples) the
F-LR-IRNNLS algorithm performed better than the previous
methods. This also suggests that our method performs well
under datasets with many subjects and with different occlusion
rates.

From the results with the non-square object and dog image

8Note that this object (dog) was also tested in work [19].
9Illuminations 0,1,3,4,6,7.
10Illuminations 0,2,4,6,8,10,12,14,16,18.
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Fig. 6. Identification Rates on the Extended Yale B and AR under Block Occlusion with Baboon, Vase and Dog. (a) Yale B dataset with baboon image.
(b) Yale B dataset with vase image. (c) Yale B dataset with dog image. (d) AR dataset with baboon image

TABLE I

AVERAGE RUN TIME PER TEST SAMPLE ON THE EXTENDED YALE B AND AR DATASETS UNDER DIFFERENT VARIATIONS

we found out that all methods performed better than when
the baboon was used. We attribute this to the fact that the
baboon object exhibits a lot of textures and that it looks
like a face. Thus, it is much more difficult for the methods
to distinguish inliers and outliers. In particular, for the vase
image LR3 and F-LR-IRNNLS achieved similar identification
rates at all levels of occlusion. Perhaps, modeling the error to
be low-rank was sufficient for the vase image in the Yale B
dataset (the weighted norm was unnecessary). Although the
identification rates of SSEC were better than those provided
by the RRC the method performed significantly worse than
F-LR-IRNNLS. SSEC may not be effective in cases where
faces are occluded by non-square objects. Finally, as expected
the SDR-SLR method performed significantly better than SRC
and CR-RLS in all block occlusion experiments. This is due
to the fact that the additional intra-class variation dictionary
in SDR-SLR captures more effectively some of the variations
of the query.

The time performance for the block occlusion experiments
is presented in Table I (columns 3 and 4)11 for Yale B and AR
datasets with the baboon image.12 A key observation is that
while F-IRNNLS achieved identical identification rates with
RRC_L1 and RRC_L2 it is computationally more efficient by
a magnitude.

B. Identification Under Expressions & Face Disguise

In this experiment we tested our algorithms with face
expressions and occlusion with real-world objects in three
different scenarios: 1) faces with expressions 2) faces with
sunglasses and 3) faces with scarves. The training set consists

11In Table I we do not report results from the non-robust methods SRC
and CR-RLS since they are both faster than all robust methods. However,
they perform poorly in terms of identification rates in all experiments. In this
work, our scope is to compare time performance between robust methods.

12Similar time results were obtained for the non-square image.

TABLE II

IDENTIFICATION RATES (%) UNDER FACE DISGUISE

ON THE AR DATABASE

of the two neutral images (one from each session) from the
AR dataset per subject. For the first scenario (face expressions)
the 6 images per subject from sessions 1 and 2 with face
expressions (smile, anger and scream) were selected for the
testing set. For the second scenario (faces with sunglasses)
the testing set consisted of the 6 images per subject with
sunglasses from sessions 1 and 2. In the third scenario (faces
with scarves) the 6 images per subject with scarves from
sessions 1 and 2 were chosen for the testing set. The images
were resized to 60×43 pixels. Identification rates for the three
scenarios are shown in Table II for the various methods.

For the face expressions experiment all robust algorithms
achieved high performance. A key observation for this experi-
ment is that modeling the error as low-rank does not improve
the results since face expression errors do not in general form
a contiguous area.

For the sunglasses experiment we observed that our
F-LR-IRNNLS algorithm outperformed previous methods and
was able to detect the outliers effectively. In this case modeling
the error to be low-rank was adequate. This is due to the fact
that the residual image consisted mainly of the sunglasses that
made a contiguous error. SSEC performed poorly, perhaps,
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because the method does not capture well contiguous areas
that are not square. A similar conclusion was drawn above
with the random block occlusion experiment with a non-square
image.

Results with the scarves experiment demonstrate that
all methods robust to contiguous errors performed well,
as expected (since the scarf occlusion is contiguous).
Our F-LR-IRNNLS method achieved the best performance
with 78.83% identification rate while our non-contiguous
F-IRNNLS method achieved only 53.67%. This result empha-
sizes the fact that exploiting the spatial correlation in contigu-
ous variations, such as scarves, is beneficial. Time performance
is not reported here since all methods run very fast (less than
a second) due to the fact that the training dictionary in this
experiment was relatively small (200 training samples).

C. Identification Under Mixture Noise

In this experiment we evaluate the performance of our
algorithm for the case of mixture noise. In this case, both pixel
corruption and block occlusion degraded the testing images.
An example image with this degradation is shown in Figure 12.
This experiment was conducted with two datasets, Extended
Yale B and AR. Similarly to the previous Extended Yale B
settings, Subsets 1 and 2 of Extended Yale B were used for
training and Subset 3 was used for testing. With the AR dataset
we chose the 700 non-occluded AR images for training from
session 1 and the 700 non-occluded images for testing from
session 2. In both datasets, for each testing image a percentage
of randomly chosen pixels was corrupted. Corruption was
performed by replacing those pixel values with independent
and identically distributed samples from a uniform distribution
between [0, 255]. Then, we placed the baboon square image
on each corrupted test image. In Yale B dataset we performed
this experiment with 30% pixel corruption and 60% occlusion.
With the AR dataset, experiments were conducted with 20%
pixel corruption and 70% occlusion. Identification rates are
shown in Table III for the various methods.

F-LR-IRNNLS outperformed all previous methods which
indicates that in the mixture noise case, our two error con-
straints capture the error term effectively. SSEC performed
poorly due to the presence of pixel corruption. RRC_L1,
RRC_L2 and HQ were robust to pixel corruption, however,
their performance remained low since they were not effective
on describing the occlusion part. Our F-LR-IRNNLS had a
good balance on detecting the corrupted pixels and capturing
the occlusion part with the employment of the weighted and
nuclear norms. However, although F-LR-IRNNLS achieved
significantly higher performance than the previous methods,
the actual accuracy was relative low with 63.08% in YaleB
and 57.29% in AR. The result may indicate that in mixture
of noises further investigation about modeling the error is
required.

Execution times in this case are reported in Table III. A key
observation is that F-IRNNLS is by an order of magnitude
faster than RRC_L1 and RRC_L2. F-LR-IRNNLS was faster
than RRCs and slower than LR3. However, LR3 achieved
significantly lower identification rates.

TABLE III

IDENTIFICATION RATES (%) AND TIME PERFORMANCE (s) UNDER
MIXTURE NOISE: YALE B 30% CORRUPTION & 60%

OCCLUSION, AR 20% CORRUPTION &
50% OCCLUSION

TABLE IV

IDENTIFICATION RATES ON THE MULTI-PIE UNDER ILLUMINATION

D. Identification Under Illumination

Experiments with variations in illumination were conducted
on the Multi-PIE dataset. As in the block occlusion exper-
iments, we used all 249 subjects in Session 1. As in [9],
we used 14 frontal images with 14 illuminations13 and neutral
expression from Session 1 for training, and 10 frontal images14

from Session 4 for testing. Identification rates are shown
in Table IV for the various methods.

Our first observation is that all methods achieved high
identification rates. Simple SRC approaches performed well
while robust methods only slightly improved the results. The
reason with respect to our method is that for illumination
variations modeling the error image as low-rank does not hold
in this case. Similar observations can also be deduced from
results of the LR3 method in this case.

With respect to time performance, our algorithm outper-
forms the previous robust methods. In particular the execution
time in our approaches is around 1 second per test image while
for RRC_L2 is around 30 seconds. Notice that although this
was an experiment with a large training dictionary, our method
retains very low running time.

E. Identification Under Pixel Corruptions

Experiments under pixel corruption were conducted on two
datasets: Extended Yale B and AR.

As in [6], [14] we used the non-occluded faces of
Subsets 1 and 2 of the Extended Yale B for training and
Subset 3 for testing. Images were resized to 96 × 84 pixels.
In the AR dataset, to make the experiment more challenging

13Illuminations 0,1,3,4,6,7,8,11,13,14,16,17,18,19.
14Illuminations 0,2,4,6,8,10,12,14,16,18.
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Fig. 7. Identification Rates on the Extended Yale B and AR datasets under
Pixel Corruptions. (a) Yale B dataset. (b) AR dataset.

we chose to use occluded training and testing images. AR has
100 different subjects and for each subject the 13 images from
session 1 (7 non-occluded images, 3 images with sunglasses,
and 3 images with scarves) were used for training and the
13 images from session 2 for testing. Images were resized to
60 × 43 pixels.

For each test image in both datasets, a percentage of
randomly chosen pixels was corrupted by replacing those pixel
values with independent and identically distributed values
from a uniform distribution between [0, 255]. The percent-
age of corrupted pixels was varied between 50 percent and
90 percent. Identification rates are shown in Figure 7 for the
various methods.

Figure 7(a) illustrates that the robust non-contiguous meth-
ods RRC_L1 and F-IRNNLS achieved the best performance
with over 80% accuracy in 90% pixel corruption. Methods
able to handle contiguous errors such as SSEC, LR3 and
F-LR-IRNNLS performed poorly. We attribute this to the fact
that pixel corruption is not a contiguous variation and mod-
eling the error to have contiguous structure was inadequate.
To that extend, with the AR dataset we decided to report results
only on methods that handle non-contiguous errors as shown
in Figure 7(b). In this dataset the accuracy is low in 90%
corruption for all methods. As explained earlier, this was a
more challenging experiment with a large number of testing
images consisting of faces with pixel corruption on top of
occlusion.

With respect to execution time, our F-IRNNLS method
outperformed RRC_L1 and RRC_L2 in both Yale B and
AR datasets, as shown in Table I (columns 1 and 2).
To emphasize the difference in performance, the execution
time of F-IRNNLS in AR for 70% pixel corruption was
about 2 seconds. In RRC_L1 and RRC_L2 was 29.84 and
10.93 seconds, respectively. Time performance of our algo-
rithms was comparable to CESR and HQ (additive form)
and worse than LR3. However, these methods obtained lower
identification rates.

F. Identification Under Unconstrained Environment and
Occluded Testing and Training Samples

1) Identification Under Unconstrained Environment: Thus
far, we have assumed that training samples are “clean” frontal
aligned views and without large variations of the same identity.
In an unconstrained environment this assumption does not
hold and often face images of the same identity exhibit large
variations in pose, illumination, expression and occlusion.

Fig. 8. Sample images from the LFW-a dataset and the SDR-SLR decomposi-
tion applied to the dataset. (a) Training sample images from the class-specific
dictionary A. (b) Training sample images from the variation dictionary B.

Furthermore, testing images may not contain the same varia-
tions and occlusions as the training images.

To examine the robustness of our method on an uncon-
strained environement we evaluate its performance in the
LFW database. The dataset contains images of 5,749 different
subjects and in this work we used the LFW-a [47], which is an
aligned version of LFW based on commercial face alignment
software. We used the subjects that include no less than ten
samples and we constructed a dataset with 158 subjects from
LFW-a. For each subject, we randomly chose 5 samples for
training (resulting in a dictionary of 790 faces) and 5 samples
for testing. The images were resized to 90 × 90.

To deal with such environment we utilize the SDR-SLR
algorithm as a pre-processing step as explained in Section II-F.
Sample images from dictionaries A and B estimated on LFW-a
dataset are illustrated in Figure 8(a) and (b). More specifically,
in Figure 8(b) images cover variations which are not class-
specific and are used to represent complex variations of the
query. These variations may be represented by the component
B using images that do not belong to the same identity of the
test image. Any remaining variations that cannon be described
by B are captured by the term e.

Identification rates for the LFW dataset are shown
in Table V(left column) for the various methods. Our first
observation is that the method SDR-SLR achieved better
performance than our methods F-IRNNLS and F-LR-IRNNLS.
This is expected as in this experiment faces exhibit uncon-
trolled variations such as pose and expression which are learnt
from the training data utilized in SDR-SLR. However, when
the method SDR-SLR is combined with our F-LR-IRNNLS
method denoted as F-LR-IRNNLS (SLR), performance is
improved. This is due to the fact that there are some remaining
variations of the query such as occlusion that cannot be learnt
from the training data. Our method is able to represent these
remaining variations by modeling the representation error as
low-rank and fitting to the error a distribution described by a
tailored loss function.

2) Identification Under Occluded Testing and Training Sam-
ples: In order to further investigate the scenario where we
are given corrupted testing and training data in a constrained
environment this time,
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TABLE V

IDENTIFICATION RATES (%) IN THE UNCONSTRAINED DATASET LFW-a IN
THE LEFT COLUMN. IN THE RIGHT COLUMN WE DEMONSTRATE

IDENTIFICATION RATES (%) IN MULTI-PIE DATASET

UNDER OCCLUDED TRAINING SAMPLES

We also conducted an experiment on the Multi-PIE dataset
in the scenario that corrupted testing and training data are
provided in a constrained environment. To simulate the cor-
rupted (occluded) training data we considered the same train-
ing and test sets as in Multi-PIE block-occlusion experiment
described above. In particular, we used the 6 frontal images
with 6 illuminations and neutral expression from Session 1 for
training. For each of the 249 subjects we randomly chose
half of the training images to be occluded. In each image
we replace a random block with the square baboon image
with occlusion chosen randomly from 30% to 60%. We chose
the 10 frontal images from Session 4 for testing. In each test
image, we replace a random block with the square baboon
image and the occlusion was randomly chosen from 30% to
60%. Identification rates are shown in Table V(right column).

From the results we observe that as expected SDR-SLR
perform way better than the SRC and CR-RLS. However, not
all block-occlusions are sufficiently covered by B. This is due
to the fact that occlusion appears in random places and sizes
in the query as well as in training data. Therefore, it might
be very unlikely that the occlusion on the query and training
images will be of the same type. Thus, when SDR-SLR
method is combined with the F-LR-IRNNLS algorithm the
best accuracy is reported since the proposed modeling of the
error term is robust to handle occlusions of the query. Finally,
we observe that our F-LR-IRNNLS algorithm outperform the
other approaches even when SDR-SLR is not utilized. The
reason may be that our approach chooses the non-occluded
training samples to represent the query since occlusion is
effectively captured by the representation error image e.

3) Comparison With Inductive Methods: In this section we
compare our method with two inductive methods, namely
IRPCA [29] and IDNMD [28]. Both methods are able to
handle new data meaning that given a new sample an under-
lying learnt projection matrix K can be used to efficiently
remove corruptions and occlusions. A test face is recovered
from occlusions by computing Ky. Then, the “clean” test face
Ky is provided as an input to a classifier to identify the subject.
In this work we use the SRC classifier [6] for these methods
in order to make direct comparisons with our method.15 Also,

15We report results with names IRPCA and IDNMD to denote IRPCA
combined with SRC and IDNMD combined with SRC classifier, respectively.

in this case we do not perform any pre-processing step such
as SDR-SLR to clean the training data for identification in our
and other methods to make fair comparisons.

There are two main differences between IRPCA, IDNMD
and our method; i) Our method does not require the same
class of occlusions to be present in the training and test
data while inductive methods do to perform well. ii) Our
method describes the error image by using two metrics, namely
weighting and nuclear norms.

To examine the robustness of our method against the induc-
tive methods we conducted the following experiments:

First we investigate the performance on the YaleB dataset.
We chose Subsets 1 and 2 of Extended Yale B for training
and Subset 3 for testing. As in [28], 15% of training images
were occluded with the baboon image in random places.
Three occlusion rates, 30%, 50% and 60% were considered.
For testing images we considered two different scenarios;
1) test images were occluded with the baboon image randomly
placed (different random places than in the training set) 2) test
images were occluded with the dog image (training samples
were still occluded with the baboon image) to explore whether
inductive methods can handle occlusions that are not present
in the training procedure. From the results in Figure 9 (table)
for YaleB dataset we deduce the following findings:

As expected, inductive methods combined with SRC per-
form better than standard SRC methods when the same
occlusion type (baboon) is present in training and testing
images (second and third columns in Figure 9). For, low-
percentage of occlusion (30%) all methods perform well.
However, when occlusion is different in training and testing
images (baboon/dog) as shown in Figure 9 (fourth column),
SRC performs very similarly to inductive methods. This
demonstrates that when a specific occlusion object is involved
in the test but not the training image, IRPCA and IDNMD
may not perform better than SRC.

This is further explained in Figure 9 (figure). First,
we observe from this figure that when a low-percentage
occlusion is present (30%), inductive methods can recover the
test face (see Ky) well, and as a consequence can perform well
in identification. However, when the occlusion percentage is
50%, the face recovery by the inductive methods becomes
more noisy. The face becomes a lot more noisy, when the
testing occlusion (dog) is different from the occlusion used
during training (baboon). From the visualizations in Figure 9
we also observe that in our method the occluded object is well
captured in all cases (see weight maps).

IDNMD performs slightly better than IRPCA since it mod-
els each occlusion-induced image as low-rank during training.
Similar results were reported in [28]. For a more effective
comparison, we also report results in Figure 9 for LR3 [21],
since LR3 describes the error as low-rank too. It was expected
that IDNMD and LR3 would have similar performance
when training and testing images have similar occlusions.
However, when occlusions are different in training and testing
images, LR3 performs better. Our method outperforms signif-
icantly both IDNMD and LR3 methods.

The second experiment was conducted on the AR database.
We chose the 7 neutral AR images per subject from session 1
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Fig. 9. Comparisons between our method and inductive approaches. Figure: recovery results of three methods. The first row shows reconstructed faces Ta
provided by the classifier while the second row visualizes the recovered test sample Ky from the inductive methods and weight map estimations of our method.
Table: of identification rates of the methods. We denote the different training and testing occlusion scenarios as following; “baboon/baboon” is that training
and testing samples are occluded with the baboon image. “baboon/dog” is that training samples are occluded with the baboon image and testing images are
occluded with the dog image.

for training, where 15% of those were occluded with the
baboon image in random places (occlusion percentage is 50%).
The 7 neutral images per subject from session 2 were chosen
for testing. In each test image, we replaced a random block
with the dog image. Identification rates are shown in Figure 9
(fifth and sixth columns). Results are consistent with the YaleB
findings. SRC, IDNMD and IRPCA perform very similarly in
fifth column of Figure 9 (since different occlusion is pres-
ence in training and testing faces) although the identification
rates are really low. Our method again outperforms previous
methods significantly.

Finally, we investigate the performance of the algorithms
in an unconstrained environment utilizing the LFW database.
The experimental settings are similar to the experiment showed
in Table V. As with previous experiments, from the results
we observe that our proposed method outperforms previous
approaches as the error image is described more effectively
with the two metrics, weighting and nuclear norms.

G. Identification Under Few Training Samples

To examine the robustness of our method under few training
samples per subject we conducted experiments on the Multi-
PIE database [44] with uncorrupted training data. As in the
experiments under occlusion, we used 6 frontal images with
6 illuminations and neutral expression from Session 1 for
training, and 10 frontal images16 from Session 4 for testing.
Then, we randomly selected 2 or 4 samples per subject to
perform experiments under fewer training examples. In each
test image, we replace a random block with the square
baboon image, where each block randomly covered between
30% and 60% of the image area.

From the results in Table VI, we deduce that as expected
all methods perform worse when fewer training samples are
available. However, our F-LR-IRNNLS algorithm achieved
the best performance in 2 and 4 samples. SSEC achieved

16Illuminations 0,2,4,6,8,10,12,14,16,18.

TABLE VI

IDENTIFICATION RATES ON THE MULTI-PIE UNDER BLOCK

OCCLUSION AND FEW TRAINING SAMPLES

the second best performance while LR3 performed similarly
in 2 samples with the SSEC and RRC_L2. As expected,
the SDR-SLR method performed significantly better than
SRC and CR-RLS since the additional intra-class variation
dictionary alleviates the issue with the limited samples per
person. However, since the additional variation dictionary does
not capture the unknown occlusion appearing on the test
images, SDR-SLR method had lower performance than our
F-LR-IRNNLS by a big margin.

Overall our proposed method achieved higher or com-
petitive identification rates across all experiments. In addi-
tion, our method incurred lower computational costs than
the previous algorithms. In some cases the execution time
was lower by an order of magnitude than the second best
algorithm overall (e.g., RRC_L1, RRC_L2). Furthermore, our
F-LR-IRNNLS and F-LR-IRNNLS (SLR) algorithm outper-
formed with respect to identification rates all previous robust
sparse representation-based methods on images with contigu-
ous errors in all scenarios (uncorrupted training data, occluded
testing and training data and unconstrained environment).

H. Weight Map Estimations

Figure 10 shows the estimated weight maps between
RRC_L1, RRC_L2 and our F-LR-IRNNLS in experiments
with occlusions. Black values (close to zero) represent
detected outliers by the various methods. We observe that
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Fig. 10. Estimated weight maps for three iterative reweighted coding
methods. The weight maps of our F-LR-IRNNLS method capture the outlier
object of interest more accurately. With the other methods, a number of inlier
pixels are detected as outliers.

Fig. 11. Reconstruction results in 70% block occlusion.

F-LR-IRNNLS detected the outlier objects more effectively
than the other methods. Most of the black regions in the
weight maps are concentrated on the occluded area. In par-
ticular, we observe in Figure 10 (first row) that for the
F-LR-IRNNLS method small weights are only assigned to
the occluded (baboon) region as desired. On the other hand,
the weight maps of RRC_L1 and RRC_L2 are not as accurate
since outliers were detected in important pixels of the face. The
reason is that with these methods there is no spatial correlation
constraint between the weights. Similar conclusions can be
drawn from all other examples in Figure 10.

I. Face Reconstruction Results

Figure 11 illustrates the face reconstruction results and the
associated representation coefficients by the four methods.
F-LR-IRNNLS and SSEC had the best reconstruction per-
formance. The reconstructed face by LR3 was poor mainly
due to the choice of the regularizer for the representation
coefficients (�2 norm). Similar reconstruction performance
for the LR3 method was encountered in almost all of our
conducted experiments.

More reconstruction results for various methods are pre-
sented in Figure 12. With mixture noise, our F-LR-IRNNLS
achieved the best performance which demonstrates that our
modeling was more effective in this case than the other

Fig. 12. Reconstruction results for various methods: The left image
demonstrates the reconstructed face and the right image shows the estimated
error for each of the methods tested.

Fig. 13. Performance of RRC (t = 25 iterations) and our method
(t = 100 iterations) under Block Occlusion and Pixel Corruption.

methods. Face reconstruction was adequate for the case with
scarves occlusion for all methods which validates the identi-
fication rates reported in Table II.

J. Time Performance Between Our Method and RRC

In this experiment we evaluate the identification rates in
RRC [14] for the case where the maximum reweighted iter-
ations t = 25. In other words, we want to investigate the
performance degradation of RRC by keeping its execution
time similar to our method. In our method we kept t = 100.
As shown in Figure 13, we observe that the computational
time for RRC is now more competitive (although still higher
than our method). However, the identification rates dropped
significantly in both pixel corruption and block occlusion cases
for RRC with t = 25.

K. Regularization of the Coefficients

In Table VII we report performance comparisons of our
method with different regularizations of the representation
coefficients. Our main take away from the results is that
sparsity is overall slightly better than the two other regular-
izers (non-negative and �2) in terms of identification rates.
However, the non-negative regularizer provided a better bal-
ance between computational cost and identification rates.

Finally, there is significant difference in time performance
between the RRC and our method regardless of the regulariza-
tion of the coefficients. The efficiency of our method gives rise
to robust face recognition systems for which computational
time is a critical factor.

IV. CONCLUSIONS

In this work we proposed a method to describe contiguous
errors effectively based on two characteristics. The first fits to
the errors a distribution described by a tailored loss function.
The second describes the error image as structural (low-rank).
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TABLE VII

COMPARISON OF IDENTIFICATION RATES AND TIMES BETWEEN RRCs AND OUR ALGORITHMS
UNDER DIFFERENT REGULARIZATIONS OF THE COEFFICIENTS

Our approach is computationally efficient due to the utilization
of ADMM. The extensive experimental results support the
claim that the proposed modeling of the error term can
be beneficial and more robust than previous state-of-the-art
methods to handle occlusions across a multitude of databases
and in different scenarios. A special case of our algorithm
leads to the robust representation problem which is used to
solve cases with non-contiguous errors. We showed that our
fast iterative algorithm was in some cases faster by an order
of magnitude than the existing approaches.
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