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Abstract—Recovery of low-rank matrices has recently seen sig-
nificant activity in many areas of science and engineering, moti-
vated by recent theoretical results for exact reconstruction guaran-
tees and interesting practical applications. In this paper, we present
novel recovery algorithms for estimating low-rank matrices in ma-
trix completion and robust principal component analysis based on
sparse Bayesian learning (SBL) principles. Starting from a matrix
factorization formulation and enforcing the low-rank constraint in
the estimates as a sparsity constraint, we develop an approach that
is very effective in determining the correct rank while providing
high recovery performance. We provide connections with existing
methods in other similar problems and empirical results and com-
parisons with current state-of-the-art methods that illustrate the
effectiveness of this approach.

Index Terms—Bayesian methods, low-rankness, matrix comple-
tion, outlier detection, robust principal component analysis, sparse
Bayesian learning, sparsity, variational Bayesian inference.

I. INTRODUCTION

R ECENTLY, there has been a significant interest in prob-
lems involving the estimation of low-rank matrices. This

is motivated by recent theoretical advances [1]–[4], as well as
interesting practical problems where the underlying data resides
in a low-dimensional linear subspace. Incorporating a low-rank
constraint on the data to be processed leads to new and pow-
erful modeling options for many applications in science and en-
gineering.
A typical example is the matrix completion problem, where

an unknown (approximately) low-rank matrix is estimated from
its limited set of observed entries. Although this problem is not
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new [5], interesting and challenging problems (e.g., the Net-
flix prize) along with recently developed theoretical recovery
guarantees [1], [2] created a rapidly growing interest in this
area. Matrix completion finds application in many areas of en-
gineering, including system identification [6], sensor networks
[7], machine learning [8], computer vision [9], [10], and med-
ical imaging [11].
A second important problem is robust principal component

analysis (RPCA), where the high dimensional data is assumed
to lie in a lower dimensional subspace with some data points
corrupted with (arbitrarily) large errors. Widely used classical
methods, such as principal component analysis (PCA), often
fail to provide meaningful results in these cases. Some earlier
methods attempt to overcome these issues using robust statis-
tics [12]–[17]. Recently, theoretical performance guarantees for
RPCA have been developed in [3], where it is shown that a data
matrix can be decomposed into its low-rank and sparse com-
ponents via convex optimization. Robust PCA has many im-
portant applications, such as video surveillance (background/
foreground separation in video), face recognition [18], latent
semantic indexing [19], image alignment [20], among many
others.
Mathematically, problems involving the estimation of low-

rank matrices can be formulated in a common framework as
follows. Let be an unknown matrix with rank

. Suppose that one is given an observation ma-
trix which is a function of . In matrix completion,
the observation is a subset of its entries, that is,

. In other words, the observation is a projection
of on a subset of its entries, such that the th com-

ponent of is equal to if and zero otherwise. In
RPCA, the observation can be expressed as , where
is a sparse error matrix where only a very small number of

coefficients are nonzero with (arbitrarily) large magnitudes.
In both cases, most matrices can be recovered by solving the

affine rank minimization problem1 [1]–[4]

(1)

Although this optimization guarantees exact recovery of
under a set of conditions [1], [3], it is NP-hard and no

known polynomial-time algorithms exist (analogous to the
-norm-based recovery approaches in compressive sensing).
A popular approach is to use convex relaxation based on the
nuclear norm, given by

(2)

1A sparsity term is also incorporated in the objective function in the robust
PCA case, which is omitted here for generality.
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where is equal to the sum of the singular values of .
Under some conditions the solutions of these two problems co-
incide and recovery guarantees exist (see, for example, [1], [3],
[21]). Subsequent works [2], [22], [23] improved on the theo-
retical recovery guarantees for the matrix completion problem.
If the observed entries are corrupted by dense (nonsparse)

noise, the problem in (2) becomes

(3)

where denotes the Frobenius norm. Both nuclear norm-
based optimization problems in (2) and (3) can be recast as
a semidefinite program, and can be solved with interior-point
solvers [6], [24]. Although they provide good empirical results,
these methods can be inefficient when the matrix size is large.
A number of methods have been developed consequently for

different problems involving low-rank estimation. For matrix
completion, singular value thresholding [25] and projection
methods [26] are attractive in terms of computation, while
they nearly optimize (2). FPCA [27] introduced an efficient
nuclear norm-based regularized least-squares method, whereas
OPTSPACE [22] developed a method based on optimization
over the Grasmann manifold with a theoretical performance
guarantee for the noiseless case. Similarly to the approaches
for compressive sensing recovery, greedy approaches have
been proposed for matrix completion [28]. Finally, Bayesian
methods have also been developed [29]–[34]: a nonparametric
approach for symmetric positive definite matrices is proposed
in [29], and a variational Bayes method is developed for col-
laborative filtering in [31]. The method in [32] is based on
beta-Bernoulli processes for modeling and Gibbs sampling for
inference.
For robust PCA, the original work in [3] proposed iter-

ative thresholding methods with low complexity, but their
convergence is generally very slow. Lin et al. [35] proposed
accelerated proximal gradient (APG) methods which are faster
and generally more accurate. The augmented Lagrange Mul-
tiplier Method (ALM) [36] is, to the best of our knowledge,
the state-of-the-art method for robust PCA in terms of both
speed and accuracy. However, algorithm parameters need to be
tuned carefully to obtain the best performance. The Bayesian
method proposed in [37] addresses this issue by simultaneously
estimating the necessary parameters along with the unknowns,
but the resulting algorithm uses sampling for inference and has
high computational complexity.
In this paper, we present a novel Bayesian formulation for

low-rank matrix recovery based on the sparse Bayesian learning
principles. We specifically consider the matrix completion and
robust principal component analysis problems, but the proposed
framework can be translated to other problems involving low-
rank structures. Based on the low-rank factorization of the un-
known matrix, we employ independent sparsity priors on the
individual factors with a common sparsity profile which favors
low-rank solutions. Other elements in the problems are also
modeled using a hierarchical Bayesian framework for simulta-
neous and automated estimation.
The proposed Bayesian formulation offers several advan-

tages over deterministic approaches. Firstly, prior knowledge on
the rank of the matrix is not required; the proposed formulation
implicitly estimates the rank of the unknown matrix similarly

to the automatic relevance determination principle in machine
learning [38]. This property is not present in most of the existing
deterministic approaches. Second, algorithmic parameters are
treated as stochastic quantities in the proposed approach, and
are handled with the combination of prior distributions and
fully Bayesian inference procedures. In this regard, this type of
formulation frees the user from extensive parameter-tuning and
data- and application-dependent supervision. Finally, empirical
results demonstrate that the proposed methods provide very
good reconstruction performance compared to existing methods
while accurately estimating the unknown effective rank.
This work is closely related to some probabilistic formula-

tions in collaborative filtering [31], [39] and nonnegative matrix
factorization [40], regarding the modeling of the unknown low-
rank components. The works [31], [39] are variational Bayesian
approaches to matrix completion, where the low-rank matrix is
modeled via two factors and two sets of independent hyperpa-
rameters. On the other hand, [40] proposed to relate these factors
by a single set of hyperparameters, and a maximum a posteriori
approach is used for inference. One of the main contributions of
this work is to combine the modeling approaches in these works
to obtain an intuitive modeling structure, and to provide a vari-
ational algorithm using this modeling which renders heuristic
measures unnecessary and enables fully automated estimation
without free parameters. Another contribution of this work is to
extend the application of this low-rank modeling to the robust
PCA problem by including additional hierarchical modeling for
the sparse errors with arbitrarily large coefficients. The rela-
tion with prior art is discussed in more detail later in this paper
(Section IV-A).
The rest of this paper is organized as follows. We present

the proposed Bayesian modeling in Section II. Section III de-
velops the estimation algorithms based on variational Bayesian
inference. We present an analysis of the proposed approach in
Section IV and empirical results with synthetic and real data in
Section V, and finally conclude in Section VI.

II. BAYESIAN MODELING

In order to simultaneously estimate all latent variables, we
make use of a hierarchical Bayesian framework where all ob-
served and unknown quantities are treated as stochastic quan-
tities and their joint probability distribution is specified. For
tractable mathematical modeling, this distribution is given in a
factorized form using a generative model where each factor is a
prior or a conditional distribution used to model a specific quan-
tity. We provide the description of each distribution used in this
work in Sections III–VI.

A. Proposed Low-Rank Modeling

Our modeling is based on the low-rank parametrization of the
unknown matrix , given by

(4)

where is an matrix, and an matrix, such
that . Any matrix of rank can
be decomposed in this form, as can be seen by considering the
singular value decomposition

(5)
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where and are, respectively, and matrices
with orthogonal columns, and is a diagonal matrix of the
nonzero singular values. Algorithms based on this factorization
are commonly used for nonnegative matrix factorization [41]
and matrix completion [42], which generally aim to find solu-
tions to

(6)

The equivalence of this optimization problem to (3) can be
shown (see [21]). We formulate the problem in (6) using the
Bayesian methodology as follows. It is clear from
that is the sum of outer-products of the columns of and
, that is

(7)

where and we use and to denote the th column
and row of , respectively. Notice that each outer-product con-
tributes at most one to the rank of . Since a low-rank estimate
of is sought, our goal is to achieve column sparsity in and
, such that most columns in and in are set equal to zero.

To enforce this constraint, we associate the columns of and
with Gaussian priors of precisions (inverse variances) , that is

(8)

(9)

where denotes the identity matrix. Thus, the columns
of and have the same sparsity profile enforced by the
common precisions . As shown later, many of the precisions
will assume very large values during inference, which effec-

tively removes the corresponding outer-products from , and
hence reduces the rank of the estimate. This formulation is there-
fore the analog of sparse Bayesian learning formulation [38]
(based on automatic relevance determination [43]) successfully
used for compressive sensing reconstruction, where sparsity-in-
ducing Gaussian priors are employed on each of the coefficients
of the unknown vector.
In addition to (8) and (9), we incorporate the conjugate

Gamma hyperprior on the precisions

(10)

The parameters and are treated as deterministic whose values
are set to small values (e.g., ) to obtain broad hyperpriors.

B. Observation and Noise Models

In this work, the prior structure in (8), (9), and (10) is used as a
common low-rank matrix model for in the matrix completion
and robust PCA problems. The descriptions of the distributions
used to model other latent and observed variables are provided
in Sections III–VI.

1) Matrix Completion: In matrix completion, the observa-
tions are generated according to

(11)

or in a more compact form as

(12)

where is the dense error matrix with coefficients . The
cardinality of the set is , with the fraction of observed
coefficients. Using this model, we follow the standard assump-
tion and incorporate white Gaussian noise in the observations,
such that

(13)

with the noise precision. The noise precision is as-
signed the noninformative Jeffrey’s prior

(14)

The joint distribution, therefore, is expressed as

(15)
2) Robust PCA: In this case, the generative model can be ex-

pressed as , where is the sparse error matrix
with arbitrarily large coefficients, and is the dense error ma-
trix with relatively smaller coefficients. Using white Gaussian
noise modeling on , we obtain the following conditional dis-
tribution for the observations

(16)

As in the matrix completion case, we assign the Jeffrey’s prior
in (14) to . The modeling of the sparse component is done
by employing independent Gaussian priors on each of the coef-
ficients of the matrix , that is

(17)

where and is the precision of the Gaussian on the
th coefficient. As with the noise precision, we use Jeffrey’s

priors on

(18)

Notice that when an individual precision goes to infinity, i.e.,
, the corresponding coefficient goes to zero.

Hence, the sparsity in is achieved when a large number of
precision variables are set to high values. As in the original
formulation of sparse Bayesian learning, this is achieved in this
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work by simultaneously estimating the coefficients and the
precision variables , as shown later.
Finally, the joint distribution is expressed as

(19)

III. APPROXIMATE BAYESIAN INFERENCE

As is widely known, exact full-Bayesian inference using joint
distributions such as (15) and (19) is intractable, since
cannot be computed bymarginalizing all latent variables. There-
fore, approximation methods must be used. Common approxi-
mations include maximum a posteriori (MAP) estimation, ev-
idence-based analysis and variational Bayes. Although all of
these methods can only provide local minima, Bayesian infer-
ence (where at least one variable is integrated out) is generally
more effective in avoiding undesired local minima compared to
deterministic methods such as MAP. This is mainly due to the
fact that Bayesian methods approximate the full posterior dis-
tributions instead of providing point-estimates of its modes. Al-
though in theory sampling methods can provide the optimal ap-
proximation to the posteriors, the computational complexity is
significantly higher for high-dimensional data than that of other
methods, and convergence is generally hard to assess.
In this paper, we present an inference procedure based on

mean field variational Bayes [44], [45]. Our goal is to com-
pute posterior distribution approximations by minimizing the
Kullback-Leibler (KL) divergence in an alternating fashion for
each latent variable. Let be the vector of all latent variables
such that for the matrix completion case, and

for robust PCA. The posterior approxi-
mation of each latent variable is found using

(20)

where denotes the set with removed. The distribution
is the joint probability distribution given in (15) for the

matrix completion problem, and in (19) for robust PCA.
Using mean field approximation, we employ the posterior

factorization such that the posterior distribu-
tion of each unknown is estimated by holding the others fixed
using their most recent distributions. Thus, for each latent vari-
able, the expectations of all parameters (excluding the current
one) in the joint distribution are taken with respect to their most
recent distributions, and the result is normalized to find the ap-
proximate posterior distribution. Since all distributions in the
hierarchical model presented in the previous section are in the
conjugate exponential family, the form of each posterior ap-
proximation can be found without major difficulties. We present
the update rules resulting from this inference scheme for each
problem in Sections III-A and B.

A. Inference for Matrix Completion

1) Estimation of Factors and : With some algebra, it
follows from (20) that the approximation to the posterior distri-
butions of and decompose as independent distributions of
their rows. By combining the prior in (8) and the observation

model in (13), the posterior density of the th row of is
found as

(21)

with mean and covariance

(22)

(23)

where the matrix contains only the th rows of for which
, such that

(24)

with the posterior covariance of the th row of . Addition-
ally, the row vector contains the observed entries in the th
row of . Similarly, by combining the prior in (9) and the ob-
servation model in (13), the posterior density of the th row
of is found as a normal distribution

(25)

with parameters

(26)

(27)

where contains the th rows of for which , and
the vector is constructed from the observed entries in the th
column of . It can be observed that the covariances of the
estimate of are incorporated in the estimation of (and vice
versa).
2) Estimation of Hyperparameters : By combining

, and , the posterior density of be-
comes a Gamma distribution

(28)
with mean

(29)

The required expectations are given by

(30)

(31)

3) Estimation of Noise Precision : The Bayesian method-
ology allows for the estimation of the noise precision as well.
From (20), the posterior approximation assumes a Gamma dis-
tribution with mean

(32)



3968 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 8, AUGUST 2012

In summary, the algorithm proceeds by first estimating the
rows of and using (22) and (26), respectively, followed by
the estimation of the precisions using (29), and (if desired) the
noise precision using (32). By the properties of the variational
Bayes methods, the algorithm is guaranteed to converge to a
local minimum of the variational bound [45].

B. Inference for Robust PCA

1) Estimation of Factors and : The approximations to
the posterior distributions of and take forms similar to (21)
and (25) with the same factorization over the rows of and
, respectively. However, as opposed to the matrix completion

case, the covariances of the rows of are equal since there
are no missing values (the same applies to ). The posterior
approximation of the th row of is given by

(33)

with mean and covariance

(34)

(35)

Similarly, the posterior approximation of is another multi-
variate normal distribution given by

(36)

with parameters

(37)

(38)

The required expectations can be found as

(39)

(40)

Using these updates, the estimate of is then found by
.

2) Estimation of : Using (20), the posterior distribution
approximation of is found to be factorized on each coefficient

with distributions

(41)

with parameters

(42)

(43)

Notice that (42) can be rewritten as

(44)

where the first term is at most 1, and hence this estimation of
corresponds to a shrinkage of the difference between the

observations and the low-rank estimates controlled by the noise

precision and the hyperparameters . When a specific hy-
perparameter goes to infinity, that is, , the mean
and variance of the corresponding coefficient become zero,
resulting in sparse estimates of .
3) Estimation of Hyperparameters : Similarly to the above,

the posterior density of is found as a Gamma distribution with
mean given in (29). The only difference is in the calculation of
the expectations, which are given by

(45)

(46)

4) Estimation of Hyperparameters : The posterior density
of hyperarameters is found as a Gamma distribution with
mean

(47)

5) Estimation of Noise Precision : Finally, the posterior ap-
proximation of the noise precision assumes a Gamma distribu-
tion with mean

(48)

where

(49)

In summary, the proposed algorithm estimates the low rank
component by estimating its factors using (34) and (37), fol-
lowed by the estimation of the sparse matrix using (42), and
finally the estimation of all hyperparameters using (29), (47) and
(48), until convergence.

IV. DISCUSSION

A. Related Prior Art

The methodology presented in this work is closely related
to some methods developed for collaborative filtering, proba-
bilistic principal component analysis (PCA) and (nonnegative)
matrix factorization. In collaborative filteringmethods proposed
in [31], [39], independent Gaussian priors are placed on the
columns of and with separate sets of variances, and a vari-
ational Bayesian analysis is employed for inference. Although
these models are similar to our approach, the columns of and
are not coupled through the use of common precisions as in

our work. Employing common parameters is of crucial impor-
tance in removing redundant components from the estimated
matrix and determining the effective rank. In theory, the mod-
eling in (8) and (9) with common precisions is used to represent
the correlation between the columns of and , and it also re-
moves possible scale problems due to the use of separate sets
of precisions. To cope with scalability issues, [31] uses fixed,
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heuristically selected values for one set, and estimates the other
hyperparameter set. Finally, in contrast with our work, [31] has
reported that no sparsity in the precisions occurs during the ap-
plication of their algorithm.
The idea of coupling the columns of and is also used

in [40], which aims at solving the nonnegative matrix factoriza-
tion problem. This work, however, employs nonnegative priors
on and , and resorts to a multiplicative MAP-based es-
timation procedure for the sake of maintaining nonnegativity.
Note also that this method has not been developed to handle the
missing values as in the matrix completion problem, or the large
sparse errors as in the robust PCA problem. Some statistical ap-
proaches [16], [17], [46] use heavy-tailed distributions for ro-
bust estimation against outliers, but these do not include explicit
modeling of sparse errors and hence cannot separate these from
dense errors.
The Bayesian PCA methods [47]–[49] also have some simi-

larity with our approach (with a different prior structure); these
methods can be seen as marginalizing the matrix out from
the joint distribution and estimating only (or vice versa). Al-
though a similar approach can be developed in our formulation,
i.e., marginalize one matrix factor to estimate the other, estima-
tion of the common precisions becomes problematic since
and cannot be integrated out together from the joint distribu-
tion.
Finally, another Bayesian modeling and inference strategy

is proposed in [37] for the robust PCA. The work uses four
distinct factors for the low-rank component, two of which are
modeled using Gaussian priors similar to this work, and the
remaining two is used to model the sparse singular values of
the low-rank matrix. Sparseness is explicitly imposed using a
beta-Bernoulli hierarchical prior such that irrelevant compo-
nents can be removed. This is in contrast to our work and the
approaches presented above, where the model does not lead to
exact pruning, but rather to a “soft” pruning (by driving compo-
nents to values numerically indistinguishable frommachine pre-
cision). The sparse component is modeled in a similar fashion in
[37] with a combination of a beta-Bernoulli and normal-Gamma
prior hierarchies. Due to the complex modeling, the posterior
distributions can only be inferred using sampling strategies.

B. Estimating the Effective Rank

The proposed algorithm enforces low-rank solutions by en-
forcing column sparsity in and . During inference, most of
the hyperparameters are driven to very large values, which
will force the posterior means of the columns to go to zero, ef-
fectively removing them from the model and reducing the rank.
In our implementation, columns of and were declared irrel-
evant at convergence if the corresponding assumes a very
small value (e.g., ).

C. Sparsity of the Estimate of

As discussed in Section III-B-II, the update procedure (42) of
the coefficients is in fact a shrinkage procedure, where the
amount of shrinkage is controlled by the estimates of both the
noise precision and the hyperparameters . This resembles
closely the automatic relevance determination in the original
work of relevance vector machines [38]. During the iterative
procedure, many of the estimated precisions will approach

very high values, which makes the corresponding posteriors in
(41) very sharply peaked at zero. In the limit of , the
posterior is infinitely peaked at zero, leading to a zero estimate
of in (42). In our implementation, we prune the coeffi-
cients with large corresponding values (e.g., ) via
thresholding, leading to a sparse estimate of . In addition, we
can find another update rule from (47) as

(50)

(51)

(52)

which is a fixed-point update for . We have observed em-
pirically that using these updates instead of (47) leads to much
faster convergence and enhanced sparsity, although no theoret-
ical convergence guarantees exist. Note that this update is also
used in the original formulation of sparse Bayesian learning in
[38].

D. Computational Complexity

While the proposed algorithms have demonstrated good em-
pirical performance for a variety of matrix completion and ro-
bust PCA problems, care must be taken when applied to large
scale problems. In matrix completion, the computation of the
inverse matrices in (23) and (27) can be quite expensive; their
computation is , where is the number of columns in each

matrix (or the number of columns in each matrix).
is also equal to the estimated rank at each iteration. However,
by construction, many rows of are removed to obtain

, such that might possibly have fewer rows
than columns. Each has on the average rows and
columns (recall is the fraction of observed entries to the ma-
trix size with ). If , we can use the Woodbury
identity [50] to obtain a different form for , given by

(53)

which has the average-case complexity . In prac-
tice, we compare the number of columns and rows in
and at each iteration to automatically choose the least
complexity update. Overall, the complexity of the algorithm
is . Empirically,
however, we observed that convergence is rapid; most of the
precisions assume very large values in the very first itera-
tions, and the norms of the corresponding columns become
numerically equal to zero, so that they can be removed from
the model (similarly to [38]). Other optimizations can also be
implemented such as using the conjugate gradient method to
solve for posterior means in (22) and (26), and avoiding the
computation of the off-diagonal terms of and . These
optimizations will lead to decreased computational complexity
at the expense of recovery performance. In the robust PCA
case, an analysis similar to the above (using similar identi-
ties as (53)) gives an overall computational complexity of

per iteration. However, as
in the matrix completion case, the effective rank is generally
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Fig. 1. Estimation results with matrices of size 500 500 with varying ranks when 20% of the entries are observed. Top: No observation noise. Bottom: with
observation noise. (a, d) Relative recovery error. (b, e) Running times. (c, f) Estimated ranks. The legend is common to all figures.

reduced rapidly in the first few iterations, therefore resulting in
a very efficient inference scheme.

E. Initialization

Although randomly initializing the matrices and gener-
ally provided satisfactory results, faster convergence and better
reconstruction performance can be achieved by more carefully
selecting the initial values. In our implementations, we calcu-
late the SVD of the matrix and set
and . With this choice, the algorithm is initialized
with a (near) full-rank matrix . On the other hand, one can
initialize the algorithm with a lower rank estimate by removing
columns of and which correspond to small singular values
of . Empirical results show negligible difference in perfor-
mance if a reasonable initial rank (larger than the true rank) is
chosen, whereas the computational complexity can be signifi-
cantly reduced. Moreover, independently of the initial rank, the
algorithm successfully removes irrelevant components from the
estimate and estimates the effective rank accurately.

V. EMPIRICAL RESULTS

In this section, we provide experimental results for the matrix
completion and robust PCA problems with both synthetically
generated and real data sets. To examine the empirical perfor-
mance of the proposedmethod, we performed experiments com-
monly used in the literature and compared the proposedmethods
to some existing algorithms. The source code developed to ob-
tain the results shown in this section can be found at https://net-
files.uiuc.edu/dbabacan/www/software.html.

A. Matrix Completion

Our first example illustrates the effectiveness of the proposed
approach on determining the correct rank.We generated test ma-
trices of size 500 500 of ranks by randomly
sampling 500 matrices and from a standard normal
distribution and setting . The fraction of
observed entries is 0.2, and they are sampled uniformly at
random. For each experiment, the relative recovery error is mea-
sured as , where is the estimate of .
We present comparisons with the following algorithms:

OPTSPACE [22], SVT [25], FPCA [27] and ADMIRA [28].
All of these are deterministic methods with different optimiza-
tion strategies: OPTSPACE is based on optimization over the
Grasmannmanifold, SVT uses nuclear-normminimization with
singular-value thresholding, FPCA is a fixed-point Bregman
iterative method, and ADMIRA is an efficient greedy method
which iteratively adds components during reconstruction.
Our method, developed in Section III-A, is denoted by

VSBL. We used the procedure proposed in [22] to estimate
the initial target rank required by ADMIRA and OPTSPACE.
On the other hand, other methods automatically estimate the
rank of the unknown matrix. Notice also that in the proposed
method VSBL, all required parameters (including the noise
variance) are estimated in an automated fashion. In VSBL, we
use as the convergence criteria, where

and are estimates of in the th and th iterations,
respectively.
We consider two test cases, one with noiseless observations,

and one where observed entries are corrupted by zero-mean
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Fig. 2. Estimation results with matrices of size 500 500 of rank 10 with varying oversampling degrees of freedom. Top: No observation noise, Bottom: with
observation noise. (a, d) Relative recovery error. (b, e) Running times. (c, f) Estimated ranks. The legend is common to all figures.

TABLE I
NMAE VALUES ON THE JESTER JOKE DATA SET

white Gaussian noise with standard deviation 0.05. Each sim-
ulation result is obtained by averaging 20 random instances.
Fig. 1 shows the relative reconstruction error, running times (on
a 3 GHz Core2 Duo CPU) and estimated ranks for each algo-
rithm for both test cases. Among all algorithms, VSBL provides
the highest recovery performance for all ranks, and also esti-
mates the correct rank in all cases where the rank . As
expected, errors in both the recovery and the estimated rank in-
crease as the original rank increases. OPTSPACE and ADMIRA
generally underestimate the rank, whereas FPCA and SVT con-
sistently overestimate it. A similar behavior is observed in the
presence of observation noise: although the recovery perfor-
mance of all algorithms decreases, VSBL still exhibits a better
ability to recover the original matrix and the correct rank than
other methods.
We next consider another set of experimental conditions

where 500 500 matrices of fixed rank of 10 are generated, and
the number of observed entries is varied according to different

oversampling degrees of freedom. Note that a matrix of size
of rank depends upon degrees of freedom

(df), and the oversampling degrees of freedom (osdf) is defined
as with the number of measurements [23]. Exper-
imental results for are depicted in Fig. 2
for the same noise conditions as above. The corresponding
sampling ratios are . It is
evident that VSBL provides very accurate reconstructions and
estimates the correct rank even with very low number of obser-
vations. In terms of computation time, ADMIRA provided the
best performance in most of the simulations, whereas execution
times for VSBL were stable throughout the testing conditions
and were comparable to those of the other methods.
We next illustrate a real-world application of low-rank ma-

trix completion methods on rating prediction from existing rat-
ings. We use the Jester joke2 and MovieLens3 datasets, which
are commonly used for testing recommendation systems. The
Jester joke dataset contains user ratings on jokes where the rat-
ings range from to 10 with 200 quantization levels. The
MovieLens dataset consists of user ratings on movies with in-
teger ratings ranging from 1 to 5. Most of the entries are not
available in these datasets, and the goal is predicting the missing
entries by modeling the dataset as low-rank.
In the Jester joke data set, we generated a full rating matrix

by removing all users containing missing entries, and applied
the algorithms to randomly generated subsets of this matrix with
different number of users and fraction of observed ratings . The

2Available at http://eigentaste.berkeley.edu/jester-data/
3Available at http://www.grouplens.org/node/73/
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TABLE II
NMAE VALUES ON THE MOVIELENS DATA SETS

number of jokes is fixed to 100. As the performance measure
we use the normalized mean absolute error (NMAE), which,

for this dataset, is defined as [27], with
the estimated missing components, the set of missing entries,
and . It is known that as with most real data sets, Jester
data set is not low rank or even approximately low rank. To ac-
count for this in the proposed algorithm, we used a fixed, high
value for the noise variance to encourage low-rank
estimates other values 5 provided very similar results . Nu-
merical results (average of 10 realizations) are shown in Table I
for two values and three different number of users. It can be
observed that VSBL achieves a better prediction error than other
algorithms in all test cases.
In the MovieLens data set, we experimented with the 100 k

dataset with 100 000 ratings from 1000 users on 1700 movies,
and the 1 M dataset with 1 000 209 ratings from 6040 users on
3900 movies. In both datasets, we randomly generated subsets
of the rating matrices by sampling and of the
available ratings for each user. Note that the rating matrices are
very sparse: The 100 k dataset contains only about 5% of the
entries, and the 1 M dataset about 4%. Therefore, these datasets
are extremely challenging for matrix completionmethods which
do not take any other information into account (such as user and
genre information). The NMAE results (average of 10 realiza-
tions) are shown in Table II. It can be observed that VSBL pro-
vides lower prediction errors than other methods.

B. Robust PCA

1) Comparison With State-of-the-Art: In our first experi-
ment, we demonstrate the performance of the proposed method
using synthetic data in comparison with existing approaches.
The low-rank component is generated as in Section V-A.
The nonzero entries of the sparse matrix are located
uniformly at random and are drawn from a uniform distribution
in the range . The number of nonzero entries is set
equal to 0.05 mn. We consider both a noise-free and a noisy
case where white Gaussian noise with variance is added
to the original data. As before, the relative recovery error is
measured as and and the convergence

criterion is , where and represent
the estimates in the th iteration.
We present comparisons with the Bayesian method pro-

posed in [37] (denoted by BRPCA) and the optimization-based
method in [36] (denoted by ALM). As mentioned before,
BRPCA is based on factorizations of both the low-rank and the
sparse components, and low-rank and sparsity constraints are
imposed using a combination of beta-Bernoulli priors on each
component. The inference is performed using a Markov chain

Monte Carlo (MCMC) sampling scheme. On the other hand,
ALM is based on soft-thresholding the singular values of the
low-rank component and elements of the sparse component.
The inference is deterministic and is based on the augmented
Lagrange multiplier method. We use the exact inference method
in [36] and manually tuned its parameters to report its best
performance in terms of recovery error. The proposed method,
developed in Section III-B, is denoted as VBRPCA.
Table III shows the relative reconstruction error, running

times (on a 3 GHz Core2 Duo CPU) and estimated ranks/spar-
sity levels for each algorithm for both noiseless and noisy
cases. The average of 10 random instances is reported in each
experiment. It is clear that all methods provide very good
reconstructions with both noiseless and noisy observations;
both the low-rank and sparse components are recovered with
high accuracy in all test cases. While the running times of
ALM and VBRPCA are very similar, the proposed method
generally showed faster convergence rate, especially in large
matrix sizes. BRPCA, on the other hand, has a very high
computational complexity and therefore has longer running
times in all test cases.
Although ALM is a very attractive method due to its recovery

performance and fast convergence, it does not provide means
to estimate the dense noise level. Therefore, its convergence
threshold should be adapted to the noise variance to achieve
the optimal performance, which requires user supervision. We
empirically found out that ALM is very sensitive to this param-
eter, and generally requires careful tuning (see [37] for a related
discussion). A comparison of ALM and VBRPCA is shown in
Fig. 3, where matrices of size with , 1000,
2000, 3000, 4000 are generated with the rank of the low-rank
component equal to 0.05 m and the number of nonzeros in the
sparse component equal to 0.05 mn. Results are shown both
with noiseless and noisy observations, where in the latter case
noise variance is set equal to . It is evident that while
ALM provides very low reconstruction errors in the noiseless
case, its performance is significantly decreased and the rank
is consistently overestimated when dense noise is present. On
the other hand, the performance of VBRPCA is comparable to
ALM in the noiseless case and better in the noisy case. In ad-
dition, VBRPCA estimates the rank correctly in both cases and
requires lower computation times than ALM. It should be em-
phasized that ALM required careful manual tuning of its conver-
gence parameter in all experiments, while VBRPCA automati-
cally estimates all algorithmic parameters including the dense
noise level. BRPCA has a similar mechanism for automatic
noise estimation through a Bayesian formulation, but its results
are generally inferior to the proposed method and its computa-
tional complexity is significantly higher.
Our second example illustrates a real-world application of

robust PCA methods. We consider the foreground/background
separation problem in video as in [37]. Each column of the data
matrix is generated by concatenating pixels of one video
frame into a vector. In this application, the low-rank component
corresponds to the background of the scene, and the sparse com-
ponent is used to model the moving objects in the foreground.
It is clear that for a completely static background, the ideal es-
timate of the rank of the background is 1, but in the case of dy-
namic backgrounds (e.g., due to illumination changes), the rank
can be higher.
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TABLE III
RELATIVE RECONSTRUCTION ERRORS, ESTIMATED RANKS AND COMPUTATION TIMES FOR ROBUST PCA

Fig. 3. Comparison of ALM and VBRPCA with varying matrix sizes for robust PCA. Matrices are of size with , the rank of the low-rank
component is set equal to 0.05 m, and the number of nonzeros in the sparse component is set equal to 0.05 mn. (a) Relative reconstruction errors. (b) Running
times. (c) Estimated ranks. The legend is common to all figures.

All algorithms are applied to the video data4 consisting of
158 frames of size 192 144. Example results obtained by the
algorithms in one video frame are shown in Fig. 4. Due to the
slow motion of the people, they can be incorporated by mistake
into the low-rank component (i.e., the background), which is the
case with the ALM algorithm. This is due to overfitting in the

4The data can be found in http://homepages.inf.ed.ac.uk/rbf/CAVIAR-
DATA1/.

low-rank component, which was also observed in the synthetic
experiments with the ALM method in the presence of dense
noise. The BRPCA algorithm provides a better result, but parts
of the foreground are mistakingly classified as background. The
proposed algorithm results in a much cleaner separation, mainly
due to the fact that a lower-rank estimate for the background
is enforced compared to the other methods (the estimated rank
in this case is 1). This helps to avoid misclassification of fore-
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Fig. 4. Video background/foreground separation. (a) Original video frame, the
reconstructions by (b) ALM; (c) BRPCA; and (d) VBRPCA. Left: background
reconstruction, right: foreground reconstruction.

ground and background pixels. In this dataset, the running times
of the algorithms were around 10 min for ALM, 60 min for
BRPCA, and 11 min for the proposed method.
2) Comparison of Inference Methods: Although in this work

we developed the algorithms based on variational Bayesian
inference, other inference methods can be employed as well
based on the same Bayesian modeling shown in Section II.
Here we compare VBRPCA with two other inference schemes,
namely, maximum a posteriori (MAP) estimation and Gibbs
sampling. This comparison will provide some insight both
on the effectiveness and accuracy of the variational Bayesian
approach. Moreover, it can be used to assess the accuracy of
the variational approximation.

For both methods, using the observation model (16) and the
priors given in (8) and (9), (10), (14), (17), (18), we form the
conditional posterior distributions as

(54)

(55)

(56)

(57)

(58)

(59)

where is the set of all latent variables as before,
is the Gamma distribution with shape parameter and scale pa-
rameter (see (10)). The parameters of the distributions above
are given by

(60)

(61)

(62)

(63)

(64)

(65)

(66)

TheMAP estimates are found as the mode of these distributions,
whereas in Gibbs sampling we sample from these distributions
in an alternating fashion and collect the sampled values. In both
cases, the estimated values are denoted with a tilde .
For empirical comparison, we create synthetic datasets

similar to Section V-B-I where the low-rank component is
400 400 with coefficients drawn from a distribution,
the sparse matrix has 8000 nonzero entries (sparsity level
5%) drawn from a uniform distribution located
uniformly at random. We consider both noiseless and noisy
settings where in the latter case white Gaussian noise with
variance is added to the observations. The rank of is
varied from 10 to 60 in steps of 10.
The relative reconstruction errors and rank estimates of ,

along with average running times are shown in Fig. 5. Recon-
struction errors in the estimates of the sparse component are
similar to those of and are not shown. It can be seen that
both variational Bayesian inference and Gibbs sampling pro-
vide more accurate estimates than MAP. The MAP approach is
very sensitive to the values of the hyperparameters and , and
is prone to over- and underfitting depending on their selection.
Similar results are obtained even when the correct noise level is
provided to MAP (data not shown), indicating that MAP is un-
able to avoid undesirable local minima. An important result is
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Fig. 5. Comparison of inference methods. Top row: noiseless case, bottom row: noisy case. From left to right: relative reconstruction errors, estimated ranks, and
running times.

that the variational Bayesian inference provides results compa-
rable to those of Gibbs sampling in terms of reconstruction error,
and for , it correctly estimates the unknown rank and
the sparsity level. In addition, its running times are 2–4 orders
of magnitude lower than those of Gibbs sampling, although a
relatively low number of iterations are used for the sampling
method (10 000 for burn-in and 2000 for collection, compared
to 25 000 burn-in and 5000 collection in BRPCA [37]). Its run-
ning times are also comparable to the MAP approach, which
has lower complexity per iteration but generally requires many
more iterations for convergence.
In summary, the inference procedure developed in this work

based on variational Bayesian analysis provides very accurate
results compared to sampling while being computationally con-
siderably more efficient.

VI. CONCLUSION

In this paper, we have applied sparse Bayesian learning
principles to the low-rank matrix estimation in matrix comple-
tion and robust principal component analysis. We introduced
a formulation where the low-rank constraint is imposed on
the estimate by using a sparse representation; starting from
the factorized form of the unknown matrix, we enforce a
common sparsity profile on its underlying components using
a probabilistic formulation. The sparse error component in the
robust PCA problem is also modeled and effectively inferred by
sparse Bayesian learning principles. We modeled the remaining
unknown variables and observations within the hierarchical
Bayesian framework and developed inference methods based
on mean-field variational Bayes approximating the posteriors
of interest. This inference scheme is shown to be advantageous
both in terms of computational requirements and estimation

performance compared to other inference schemes. Empirical
results suggest that the proposed algorithms are very effec-
tive in pruning irrelevant dimensions and recover the correct
number of effective components in the matrix estimate, and
they provide competitive, and even higher, performance than
current state-of-the-art approaches in terms of reconstruction
performance.
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