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Bayesian Resolution Enhancement
of Compressed Video

C. Andrew Segall, Aggelos K. Katsaggelos, Fellow, IEEE, Rafael Molina, and Javier Mateos

Abstract—Super-resolution algorithms recover high-frequency
information from a sequence of low-resolution observations.
In this paper, we consider the impact of video compression on
the super-resolution task. Hybrid motion-compensation and
transform coding schemes are the focus, as these methods provide
observations of the underlying displacement values as well as
a variable noise process. We utilize the Bayesian framework to
incorporate this information and fuse the super-resolution and
post-processing problems. A tractable solution is defined, and
relationships between algorithm parameters and information in
the compressed bitstream are established. The association be-
tween resolution recovery and compression ratio is also explored.
Simulations illustrate the performance of the procedure with both
synthetic and nonsynthetic sequences.

Index Terms—Image coding, image restoration, post-processing,
resolution enhancement, super-resolution, video coding.

1. INTRODUCTION

MPROVING the resolution of an image impacts a wide va-
riety of applications. For example, high-resolution imagery
often enhances the precision of scientific, medical and space
imaging systems; improves the robustness of image analysis
and tracking tasks, and benefits consumer electronic and en-
tertainment applications. In each of these systems, acquiring
data with a high-resolution sensor is one method to increase im
age resolution. This makes resolution improvement straightfor-
ward. Unfortunately though, many applications cannot afford
the increased system and transmission complexity required by
high-resolution data acquisition. For these tasks, one must turn
to algorithmic techniques for increasing resolution.
Super-resolution algorithms increase the resolution of an
image without changing the resolution of the image sensor. This
is accomplished by exploiting the underlying motion of a video
sequence to provide multiple observations for each frame, and
it mitigates the requirements for transporting and storing a
high-resolution sequence. An accurate system model is the key
to the super-resolution approach. Typical models consider the
low-resolution sensor as a succession of filtering and sampling
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operations and assume that the image sequence is corrupted by
additive noise during the acquisition process. (The noise also
accounts for occlusions within the scene and uncertainties in
the motion.) Until recently, this model described a majority of
image acquisition tasks. However, with the increased use of
video compression prior to digital transmission and storage,
such an acquisition model is no longer adequate. Instead, novel
algorithms must be developed that exploit the information
available in the compressed bitstream.

The rest of this paper develops a super-resolution algorithm
for compressed video. Estimating high-resolution video from
a sequence of low-resolution and compressed observations is
the focus, and we are interested in hybrid motion-compensa-
tion and transform coding methods, such as the MPEG and ITU
family of standards [1]-[6]. These compression systems intro-
duce several disparities to the super-resolution approach. As a
first deviation, the low-resolution observations are no longer a
sequence of intensity images. Instead, the compressed bitstream
serves as the input to the super-resolution algorithm. This bit-
stream describes the original image sequence as a combination
of quantized transform coefficients and motion vectors, and it
introduces other departures into the super-resolution problem.
For example, noise introduced by the quantization operator de-
grades the low-resolution images with a frequency and spatially
varying noise process. Furthermore, the structure of the encoder
introduces a variety of coding errors such as blocking, ringing,
and temporal flicker. As a final difference, motion vectors are
present in the bitstream. These vectors provide a noisy observa-
tion of the subpixel displacement within the image sequence.

The paper is organized as follows. In the next section, we
present background for the super-resolution problem. This
includes a discussion of super-resolution as well as post-pro-
cessing methods. In Section III, we define a system model that
contains a compression process. In Section IV, we propose a
problem formulation for the super-resolution of compressed
video. The formulation relies on the Bayesian framework, and it
incorporates both the transform coefficients and motion vectors
from the compressed bitstream. In Section V, we describe a
realization of the super-resolution algorithm. In Section VI,
we illustrate the efficacy of the proposed approach through
simulation. Finally, we discuss conclusions and future work in
Section VII.

II. BACKGROUND

To be successful, a resolution-enhancement algorithm
requires that a low-resolution image contain additional infor-
mation about the original high-resolution scene. This is first
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considered in [7], where a set of still images is addressed.
These images differ from one another by a single displacement
vector, and the super-resolution algorithm solves the necessary
problems of registration and interpolation. The approach is
subsequently extended in [8], where the high-resolution images
are filtered before sampling and corrupted by noise. This
incorporates a restoration component into the algorithm, as
the blur operator must be considered. Several other methods
for the super-resolution of a set of still images have also been
suggested. In [9]-[11], the tasks of interpolation and restoration
are considered, while the registration problem is treated sep-
arately. In [12]-[14], methods are proposed that consider the
degradations concurrently. For a complete review of resolution
enhancement methods, see [15] and the references therein.

Extending the super-resolution approach to video sequences
places greater emphasis on the registration process. This is
necessary since objects move during acquisition, which makes
the displacement between two images in the sequence spatially
varying. One method for addressing the problem is to estimate
the displacements and high-resolution data independently. For
example, an estimate for the motion field is developed and
utilized for resolution enhancement in [16]; motion is estimated
with a hierarchical block-matching algorithm and followed by
a maximum a posteriori estimate for the super-resolved image
in [17], and a projection onto convex sets methodology that
assumes a pre-computed motion estimate is developed in [18].
Recognizing that the displacement estimates often limit the
super-resolution algorithm, information about the accuracy of
the estimates is incorporated into the super-resolution problem
in [19]-[21].

In this paper, we integrate yet another task into the super-res-
olution procedure. Low-resolution image sequences are
compressed prior to resolution enhancement, which introduces
additional artifacts into the observed images. Algorithms that
attenuate these coding errors belong to the field of post-pro-
cessing. As an example, filtering a decoded image with a
spatially invariant kernel is proposed in [22]. This enhancement
technique removes blocking errors. Unfortunately though, it
also attenuates semantically meaningful edge features. Ad-
dressing this flaw is the goal of many subsequent enhancement
approaches, such as [23]-[25], that reduce the amount of
smoothing in the vicinity of edges.

Recovery methods can also be utilized for post-processing.
They lead to a more rigorous approach to the problem, as prior
knowledge of both the original image and compression system
are considered. In [26], this information is derived numerically,
and the recovery procedure takes the form of a table lookup op-
eration. In the majority of approaches though, explicit models
are utilized. For example, distributions for the transform coef-
ficients and original intensities are defined in [27]-[29]. These
distributions lead to a maximum a posteriori estimate for the
post-processed image. In [30] and [31], information is expressed
by sets of valid solutions. As the sets are convex, the theory of
projection onto convex sets provides the necessary solution. As
a third approach, constrained least-squares solutions incorpo-
rate deterministic models and are considered in [32]-[34].

With a large body of work devoted to both post-processing
and super-resolution methods, it seems wise to combine the two

techniques and solve the super-resolution of compressed video
problem. This has been pursued in various forms. For example,
in [35] and [36], the quantization operator is incorporated into
a super-resolution procedure. The resulting algorithms consider
the spatially varying noise process and treat the interpolation,
restoration and post-processing problems. All necessary dis-
placement values are assumed known. As a second example,
motion vectors within the bitstream influence the registration
problem in [17] and [37]. The post-processing problem is ig-
nored though, and estimates for the motion and high-resolution
data are computed sequentially.

In this paper, we build on previous post-processing and
super-resolution work [38]-[43] and develop a novel algo-
rithm that solves the registration, interpolation, restoration,
and post-processing problem simultaneously. We utilize the
Bayesian framework to incorporate information from the
compressed bitstream, knowledge of the encoder structure and
models for the high-resolution intensities and displacement
values. This is especially appealing with hybrid motion-com-
pensation and transform coding methods, as the compressed
bitstream contains information about both the down-sampled
intensities and the inter-frame displacements.

III. SYSTEM MODEL

Images that are captured in rapid succession typically con-
tain similar image content. That is, we can model the image
sequence as

ey

where f; (x,y) and fi (z,y) are spatial locations in the high-
resolution images at times [ and k, respectively, dj «(z,y) and
d},.(z,y) denote the z and y components of the displacement
that relates the pixel at time k to the pixel at time [, and n] , (z, y)
is an additive noise process that accounts for image locations
that are poorly described by the displacement model.

The relationship in (1) is also expressed in matrix-vector form
as

fi = C(dy 1)k + 07, (2)

where vectors f; and f are formed by lexicographically or-
dering each image frame, C(d; ) is the two-dimensional ma-
trix that describes the displacement across the entire frame, d;
is the column vector defined by lexicographically ordering the
values [d7 , (z,v) Y, (z,y)]T, and n], is the registration noise
process. When each image frame is of dimension PM x PN ,
then f;, f;,, and nj . are column vectors with length PM PN and
C(d, ) has dimension PMPN x PMPN.

Many applications do not allow for the direct observation of
the high-resolution frames in (1) and (2). Instead, only a low-
resolution frame is available, which is related to the original
high-resolution frame by

gr = AHf; +n; 3)
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where g is a vector that contains the low-resolution image
with dimension M'N X 1,f}, is the high-resolution image, ny
is a vector that describes the acquisition noise, A is an M N x
P M PN matrix that subsamples the high-resolution image, and
Hisan PM PN x PM PN matrix that filters the high-reso-
lution image [44]. Combining (2) and (3), the relationship be-
tween any low-resolution observation and a frame in the high-
resolution image sequence is defined as

g = AHCO(dyi)fi + 1y 4

where n; ;, contains both the registration and acquisition errors.

In classical imaging scenarios, the noise appearing in (4) is
the dominant noise in the low-resolution observation. However,
this may not be the case when the sequence of low-resolution
images is compressed before transmission. Compression
reduces the bandwidth required for transmission, and it further
degrades the observations. In this paper, we consider a system
where compression is the dominant source of noise. This
allows us to focus on integrating the compressed bitstream into
a super-resolution algorithm. (Please note that the resulting
procedure can be easily extended to systems with additional
noise components, which we address in later sections.)

A. Video Compression

Hybrid motion compensation and transform based coding
algorithms are common methods for compressing a sequence
of images. In these techniques, which include all of the MPEG
and ITU video coding standards, each image is first divided into
equally sized blocks. Then, the blocks are encoded with one of
two available methods. As a first approach, a linear transform
such as the discrete cosine transform (DCT) is applied to
the block. The transform coefficients are then quantized and
efficiently transmitted to the decoder, where an estimate of
the uncompressed image is generated. As a second coding
approach, a prediction for the block is found in previously
encoded frames. The location of the prediction is represented
with a motion vector, which defines the spatial offset between
the current block and its prediction, and is transmitted to the
decoder. Computing the prediction error, transforming it with
a linear transform, quantizing the transform coefficients, and
transmitting the quantized information refine the prediction.

The compressed observation of the low-resolution frame is
therefore expressed as

yr=T7'Q|T g - Z C(ve,)yi || + Z C(vk,i)yi
vi Vi

®)

where y. is the vector that contains the decoded image for frame
k, vy, is the vector that contains the transmitted motion vectors
that predict frame k from previously compressed frame 7, matrix
C (v,;) represents the prediction process with a matrix, Q-]
represents the quantization procedure, and T and T~ are the
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forward and inverse-transform operations, respectively. Com-
bining (4) and (5), we state the relationship between any low
and high-resolution image as

yi=T'Q [T(AHC (dii) £ — ¥y +ni6)] + ¥V (6)

where the motion-compensated estimate defined by
>v; C(Vi,i)yi is denoted as yV for notional convenience.

B. Noise Models

The quantization operator in (6) introduces compression
noise into the decoded frames. These errors correspond to
information discarded during quantization, and they describe
a deterministic process. The resulting compression errors are
stochastic though, since we are dealing with random quantities.
Here, we express the compression noise in the spatial domain.
Since the noise in the transform and spatial domains is related
as

nSpatlal — T—lnTransform (7)

noise in the spatial domain is a linear sum of independent noise
components. The resulting noise process then approaches the
Gaussian distribution, as the Central Limit Theorem is satisfied.

Since we are assuming that the quantization noise is domi-
nant, we approach the quantity

T'Q [T (AHC(dy . )f, — yV +ny )] ®)
by
AHO(d)fr — yMY + e ©
where

eq. ~ N(0,Kqg,) (10)

and K ; is the covariance matrix of the quantization noise in
the spatial domain at frame /. Combining (6) and (9), we then
have

y: = AHC(dlk)fk +€q,i- (11D

Defining the covariance matrix K¢ ; thus becomes the crit-
ical step in modeling the compression system. Since errors in
the spatial domain are related to errors in the transform domain
by the inverse-transform operation, we can express the needed
covariance matrix as

T

KQ,I = ':[‘71I<T1ransform,lr]:‘71 (12)

where Kyansform,; i the diagonal matrix containing the ex-
pected noise power for each transform coefficient. In order to
estimate the variances, it is reasonable to assume an indepen-
dent uniform distribution within each quantization level when
the quantization step size is small. Furthermore, the uniform as-
sumption also holds when the magnitude of the quantized trans-
form coefficient is large. This is true since the distribution of the
transform coefficients typically contain significant tails, which
leads to a uniform distribution within the quantization intervals
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distant from the mean. Whenever the assumption of a uniform
distribution is viable, the noise variance 0,2 for transform index
[ is defined completely by the bitstream and expressed as

2
of =1L
12
where ¢; is the quantizer step-size.

Of course, other definitions for Krransform,; could be
constructed to address the inaccuracies of assuming a uniform
distribution within the quantization interval. This requires
additional information about the distribution of the original
transform coefficients, and it may necessitate an additional
estimation procedure. Besides improving the accuracy of
the covariance matrix though, other reasons for modifying
Kransform,i are also envisioned. For example, if the noise in-
troduced during compression is not the dominant noise process,
then the compressed bitstream does not completely specify
the covariance matrix. Instead, information about these other
corrupting processes must also be included. This identifies how
the noise model in (4) is incorporated.

Finally, it is interesting to note that when the diagonal en-
tries of Kyansform,! are equal, the resulting covariance matrix
describes an independent and identically distributed (IID) noise
process in the transform domain. For the large class of linear
transforms where T~ is proportional to TT (such as the DCT),
the noise in the spatial domain is also IID under these condi-
tions. However, when the noise is not identically distributed in
the transform domain (but still independent), it then becomes
correlated in the spatial domain. In the case of standards based
coding, both of these situations occur in practice. Intra-coded
frames employ perceptually motivated quantization strategies.
This leads to coarser quantization of the high-frequency trans-
form coefficients and a Kryansform,: that is not IID. When trans-
mitting the residual between the original frame and a motion
compensated prediction though, the quantization strategy often
utilizes the same quantization step size for each coefficient. The
compression noise in this case is IID in both the transform and
spatial domains.

In addition to the quantization intervals, information about
the subpixel displacements also appears in the compressed
bitstream. This data is encapsulated in the motion vectors that
provide a noisy observation of the original displacements. The
significance of these vectors is determined by several variables.
For example, the intensity values of the low-resolution sequence
have an impact. When these values describe significant image
features, such as large-scale edges or corners, then the motion
vector and actual subpixel displacement are often similar. When
smooth image regions are considered though, the motion vector
and actual displacement may vary significantly. As a second
difference, encoders utilize motion vectors to increase the
compression ratio. Thus, it may be advantageous to select a

(13)

motion vector that poorly describes the current image if it
reduces the bit-rate. The quality of the motion vectors is then
apparent in the error residual transmitted to the decoder.

To model the accuracy of the motion vectors, we define the re-
lationship between the motion compensated prediction and the
original image frame as

vV = AHC(dy ) fy + MMv,i (14)

where

1g . ~ N0, Ky ). (15)

The motivation for this model is that it encapsulates the influ-
ence of the original and compressed image frames on the signifi-
cance of the motion vectors. Additionally, it makes the meaning
of the covariance matrix Kyy; intuitive. It is the covariance
matrix for the displaced frame difference that is internal to the
decoder.

Like the previous covariance matrix, an estimate for Kyrv
can be extracted from the compressed bitstream. This covariance
matrix is found from the transmitted displaced frame difference,
and the variance at each transform index [ could be defined as

2 2 QI2
o; =c¢ + == 16
i 1t 15 (16)
where ¢; is the transform coefficient decoded from the bitstream
and ¢; is the width of the quantization interval. The relationship
in (12) then maps the variance information to the spatial domain.
Other definitions could also be constructed. As with the covari-
ance matrix Kq; though, when information about additional
noise processes is available, it should also be incorporated into

Kyrv ;. This includes the noise model in (4).

IV. PROBLEM FORMULATION

The system model in (6) is used for the formulation of an al-
gorithm that recovers high-resolution frames from a sequence of
low-resolution and compressed frames. The approach is based
on the fact that information about a single high-resolution frame
appears in multiple low-resolution observations. When this in-
formation is not redundant, as provided with subpixel displace-
ments in the mapping of frame f; to f;, the introduction of
aliasing by the sampling procedure AH, and the preservation
of aliasing during compression, then each observation provides
additional information about the high-resolution image frame.

The Bayesian maximum a posteriori (MAP) estimate pro-
vides the appropriate framework for recovering high-resolution
information from a sequence of compressed observations
[43]. Since information about both the intensities and dis-
placements in the original image sequence are present in
the compressed bitstream, we advocate the joint estimate
in (17), shown at the bottom of the page, where fk and

fi, f)TB,TF = arg Yfﬂaﬁi{p(fk; Drg,1rr | Y7, 78, VB, TF)}
ks

= arg max
f,,D

p(YrB,1F, VB 1F | fi, DB, 7R )p(fi, DTB,TF)
(17)
p(YTB,TF: VTB,TF)
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leB,TF are estimates of the high-resolution image and dis-
placement field, respectively, Drg rr is the matrix defined

as (dk,kaB; . 7dk,k+TF); YTB,TF is the matrix defined
as (Yk—TB:-.-,Yk+TF); VTB,TF is the matrix defined as
(VEk—TB, - - - VE+TF), Vk is the column vector (v}, ... v} )T

that allows an encoding method to transmit multiple motion
vectors for each block, TF and TB indicate the number of
frames utilized by the recovery algorithm along the forward
and backward directions of the temporal axis, and p(-,-) and
p(-, |-, ) denote the joint and conditional probability density
functions, respectively.

By observing that p(Y g tr, Vra,1r) does not depend on
the optimization variables, and with the use of the monotonic
log function, the MAP estimate becomes

fi, Do, Tr = arg rfﬂaﬁi{lOgP(YTB,Tn Vg, F | fi, DrB,TF)
ks

+ logp(fr) + logp(DrB,1rr)} (18)

where f}, and Dp Tr are assumed to be independent.

V. PROPOSED ALGORITHM

Obtaining a frame with enhanced resolution according to
(17) requires definitions of the probability density functions
p(Yre,1r, V17 | fi, DTR,7R), p(fi) and  p(Drg,Tr).
These functions incorporate information about the compression
system, as well as a priori knowledge of the original high-res-
olution images sequence into the recovery framework. In this
section, we propose models for the density functions that are
applicable to a wide variety of coding scenarios. Moreover, we
show that these models lead to a tractable method for solving
(18).

A. Fidelity Constraints

The first density function in (17) defines the relationship be-
tween information in the compressed bitstream and the original
high-resolution image sequence. We now take into account that

p(Yre e Ve, 1r | fi, Dre,or) = p(Y e 17 | f, D1B,1F)

p(Vre,1F | fi, Dre,7F, YTB,TF). (19)

The first conditional distribution on the right hand side of (19)
can be approximated as follows. First, note that when f;, and

D+p TF are given, then the variables y; can be assumed to be
independent. Thus, we have

p(Yre 1 | fi, Drsre) = [ [ p(vi] £, Drs o) (20)
l
and from (11), we have

1
p(yi | fr, DB 1F) X exp{—i(yl — AHC(dy 1)fi)”
xKqu(yi = AHC(du)fk)} @1

where K ; is the covariance of the quantization noise in the
spatial domain at frame /.
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In order to now obtain p(Vrg,rr | fx, Dt 1r, Y1B,1F) in
(19), we note that when f;,, Dt tr and Y 1 T are given, then
(14) can be used to obtain p(v; | Yrp, 1F, fr, di i ). To do so, we
have to change variables from C/(v; )V to v; and also remove
y:Vi from the left hand side of (14). However, the Hessian of
these changes does not depend on the variables fj, and d; j, that
we are trying to estimate. We then have

p(vi| Yre 1r, i, di k)
1, 4
x exp{—i(y}\w — AHC(dy )fi)"

x Ky ("™ — AHC(dz,k)fk)} : (22)

We can assume that given fj, D rr, and Y g rr, the vari-
ables v;V! are independent, and so we write

p(Vre,1r | YB,7F, fKr, DTB,TF)
= [[rvi| YrBre fi.dig)  (23)
!

where p(vi | Yrg tr, £, di 1) is given by (22).

B. Prior Models

The structure of the compression system motivates the se-
lection of the other density functions in (17). The purpose
of the first density function p(fy) is to incorporate a priori
information about the original high-resolution images into the
recovery method. Most critical here is that the original images
rarely contain any of the artifacts introduced during coding.
Common errors include ringing artifacts that are caused by the
coarse quantization of high-frequency information and blocking
errors that arise from the independent processing of blocks.
Both compression errors are penalized with the density

p(fe) oc exp{—(A1[|Qufe]|* + Ao [|QAHEL )} (24)
where Q represents a linear high-pass operation, Q2 represents
a linear high-pass operation across block boundaries, and A;
and Ao control the influence of the two norms. By increasing
the value for A1, the density describes a smoother image frame.
Increasing the value for A, denotes a frame with smooth block
boundaries.

The last distribution appearing in (17) provides an a priori
model for the displacement between image frames. Like the dis-
tribution in (24), we define the displacements to be smooth and
absent of coding artifacts. Coding errors are largely attributable
to the quantization and decimation of the motion field. To pe-
nalize these errors, the prior displacement is given by

k+TF

p(DTB,TF) X exp{ Z _()\3||Q3dl,k||2)} (25)
I=k—TB

where Q3 is a linear high-pass operator, and A3 a control pa-

rameter. We note that dependencies between the displacements

of different frames could also be incorporated into (25).
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C. Optimization Procedure
Substituting (19)—(25) into (18), we get

o k+TF
f,,D = arg ?nn { Z (yi — AHO(d, 1) f)”
7 i=k—TB

X Kgg},(y, — AHCO(dy 1)fy)
k+TF

+ 3 MV - AHCOd )"
I=k—TB

x Ky, (1" — AHC(dy k) i)

+ M| Qufil® + X2||Q:AHSL [ + )\3||Q3dl,k||2} .

(26)

The minimization of (26) can be accomplished with the
cyclic coordinate-descent optimization method [45]. In this
approach, an estimate for the motion field is first found by
assuming that the high-resolution image is known. Then, esti-
mates for the displacements are found while the high-resolution
image is assumed known. The high-resolution image is then
re-estimated with the recently found displacements, which is
then re-estimated with the most recent high-resolution estimate.
The process iterates until the estimates converge.

Treating the high-resolution image as a known parameter, the
estimate for the motion field in (26) can be found by the method
of successive approximations as follows:

lk aC( )kaTAT

it = dy — oy
odys,
x [Kg) (vi-AHO (a7 )

Kk, (1 Amo (ap) 8.)] +al
27

where &Z’kfl and &?qk are respectively the (m+ 1)th and mth es-
timates of the displacement between frame % and [, A7 defines
the up-sampling operation, and afl’k controls the convergence
and rate of convergence of the algorithm.

Once the estimate for the motion field is found, then the high-
resolution image is computed. For a fixed Dtp TF, the mini-
mization of (26) is expressed as

k+TF
frl =7 — oy { > C'(dp)H"AT
I=k—TB

X [Kéll (yl

+ Ky, (o1

- AHC(de)f‘,’:)
- AHC(de)f‘,’:)}

+ QT Quff + AzHTATQfQQAHf,?} (28)

where f,?"’l and f,? are the enhanced frames at the (n + 1)th
and nth iteration, oy is a relaxation parameter that determines
the convergence and rate of convergence of the algorithm, and
CT(dy,;) compensates an image backward along the motion
vectors.

VI. SIMULATIONS

Assessing the performance of a super-resolution algorithm is
difficult, as the solution quality depends on several tasks. These
tasks include registration, interpolation, restoration, and (in the
proposed approach) post-processing. In this section, we present
a sequence of experiments to evaluate the proposed algorithm.
A synthetically generated image sequence is considered first.
Results quantify the accuracy of the motion estimates, as well
as the resolution enhancement capability of the algorithm. In
the second set of experiments, we consider the enhancement of
a natural image sequence. This provides a more realistic gauge
of resolution improvement.

In all of the presented results, the influence of the compres-
sion ratio on the super-resolution procedure is also considered.
We utilize the MPEG-4 bitstream syntax, which describes a
hybrid motion-compensation and block discrete cosine trans-
form (DCT) compression system. The spatial dimension of the
low-resolution sequence is 176 x 144 pixels, and the temporal
rate is 30 frames per second. Besides the first image in the se-
quence, which is intra-coded, each frame is compressed as a
P-frame. This restricts the reference frame for the motion vec-
tors to be the temporally proceeding frame. The VM54 rate
control mechanism is utilized for bit allocation, and all frames
are encoded. For both image sequences, the bit-rates of 256 kbps
and 1 Mbps are considered. This corresponds to a “low” and
“high” quality coding application, respectively.

Parameters in the bitstream define the covariance matrices
Kg, and Kyvy,;, and we utilize the methods described in
(13) and (16) for these experiments. Remaining parameters are
chosen heuristically. Values are \; = Ay = 1073, A3 = 103,
and oy = .125 and afi"k = 10~5. The matrices Q; and Qj are
block circulant and denote circular convolution of the image
with the discrete Laplacian. The matrix Qq realizes a difference
operator across the 8 x 8 block boundaries. In the iterative
procedure that we utilize, given at iteration 7 the values of the
high-resolution image fk and the displacement vector dl k>
we fix d; 5 in (28) to dl & and iterate that equation until the
difference between two consecutive high-resolution image esti-
mates, £V and 9, satisfy || "V — £!4||2 /||f°!||2 < 107C.
Then, the new high-resolution image estimate f" s set to
fre™. Using this new estimate of the original h1gh -resolution
image, we calculate the high-resolution displacements using
(27) until the difference between two consecutive estimates
satisfy [|dj§" — d;’1,§|| /||d°1d||2 < 1079, The entire process
terminates when ||f7,""1 202/ 12 < 1077,

In all experiments, the algorithm is initialized with the fol-
lowing procedure. First, the encoded images are bilinearly inter-
polated. This provides the initial estimate for the high-resolution
intensities f . Displacement information is then calculated from
the decoded image frames. The procedure in (27) is employed
for this task and cast within a multiscale framework. Parameters
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Fig. 1.

(b)

Single frame from original high-resolution video sequence.

()

Fig.2. Single frame from the (a) original low-resolution synthetic sequence. Frame after decoding the resulting (b) 256-kbps and (c) 1-Mbps MPEG-4 bitstreams.

PSNR values for (b) and (c) are 29.8 dB and 37.4 dB, respectively.

for the motion estimate are the same as above, and the derivative
in (27) is computed numerically. Throughout the experiments,
this numerical procedure consists of simple difference opera-
tions. When expressed on a pixel-by-pixel basis, it is found with
the equations fi.(v + df  (z,y) + 1) — fi(z + df (2, y) — 1)
and fy,(y + Jﬁ’,k(m, y)+1)—fe(y+ dAzk(:v, y) — 1). Pre-filtering
the intensity data with a Gaussian filter mitigates inaccuracies
from this simple difference estimate, and it also addresses any
large-scale displacements. The variance of the filter is defined
as 352/2, where S is the sample factor. During initialization,
displacements are first found on the coarse 11 x 9 pixel grid
(S = 16), and the results upsampled and scaled by a factor
of two with bilinear interpolation. The interpolated values serve
as the initial condition for motion estimation at the finer scale.
In the procedure, we utilize the scale factors 16, 8, 4, and 1 and
initialize the displacement information to be zero at the coarsest
scale. Once the displacements are found for the decoded image
frames, the information is bilinearly interpolated and scaled to
the dimensions of the high-resolution data. This serves as the
initial estimate for (Aia k-

A. Synthetic Simulations

For the first set of experiments, we utilize a single frame
from the “mobile” image sequence. The spatial dimension of

the frame is 704 x 576 pixels, though we restrict our processing
to the central 352 x 288 pixel region to reduce computational
expense. The resulting image is shown in Fig. 1. Having ex-
tracted the image, we synthetically create an image sequence
by shifting the frame according to

£ = C (dmod(k,a).E) fE (29)
where fg is the extracted image, mod(k,4) is the modulo
operator that divides k& by 4 and returns the remainder, and
do.z,d1 E,d2 g, and d3 g represent, respectively, no dis-
placement, a horizontal pixel displacement, a vertical pixel
displacement and a pixel displacement in both the horizontal
and vertical directions.

The image sequence defined by (29) contains two impor-
tant attributes. First, displacements between the frames are
completely known. This facilitates a quantitative evaluation of
the displacement estimate. Second, since the low-resolution
image sequence is constructed by discarding every other pixel
in the horizontal and vertical directions, each pixel in the
original image is observable within four frames of the image
sequence. This serves as the best-case scenario for resolution
enhancement. Thus, we can evaluate the algorithm under ideal
enhancement conditions.
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Convergence plots for nonsynthetic experiments: (a) subpixel displacement and (b) high-resolution intensity values. Both converge for the 256-kbps and

1-Mbps estimates. The curves terminating at iteration 33 and 32 correspond to the 256-kbps and 1-Mbps experiments, respectively.

After extracting the high-resolution image sequence, it is
decimated by a factor of two in the horizontal and vertical di-
rections. The low-resolution image sequence is then processed
with an MPEG-4 encoder operating at 256 kbps and 1 Mbps. A
frame from each sequence appears in Fig. 2, where the amount
of degradation is quantified by the peak signal-to-noise ratio
(PSNR)

PSNR = 255% - MN/|le||? (30)
where MN is the number of pixels in the low-resolution image.
For the 256-kbps and 1-Mbps images in Fig. 2, the PSNR is 29.8
and 37.4 dB, respectively. Both bitstreams are then processed
by the proposed algorithm with TF = 1 and TB = 2, and the
algorithm converges to a joint estimate for the high-resolution
frame and subpixel displacements. Convergence plots appear in
Fig. 3.

Evaluation of the displacement estimate is our first task. We
calculate the Euclidean distance between the estimated and
known displacement value for each pixel. (Note that there are
three error measurements per pixel since TF = 1 and TB = 2,
so the number of displacement errors is three times the image
size.) These errors are then pooled over the entire frame by
computing the average squared value. The resulting values are
6.34 x 102 pixels? and 4.85 x 102 pixels? for the 256-kbps
and 1-Mbps bitstreams, respectively. This indicates a motion
estimate that is closely aligned with the actual values.

Evaluating the displacement estimates is the first step in as-
sessing the proposed algorithm. Next, we consider the super-
resolution estimates. We interpolate the decoded frames using
the traditional bilinear and bicubic methods, and compare the
results to the proposed method. PSNR values for the three high-
resolution images provide a method for comparison. For the low
bit-rate sequence, the bilinear, bicubic and super-resolution ap-
proaches result in a PSNR of 28.2 dB, 28.4 dB, and 28.5 dB,
respectively. This is an interesting result, as it illustrates a pe-
culiarity of the super-resolution for compressed video problem.

‘While the motion estimates are known to be reliable here, redun-
dancies between frames have been removed during encoding to
lower the bit-rate. Thus, the use of additional frames for resolu-
tion enhancement (by the proposed method) provides little gain
over the single frame interpolation methods.

Encoding the synthetic sequence at 1-Mbps provides a
bitstream more amendable to resolution improvement. PSNR
values for the bilinear, bicubic, and proposed methods are
30.1 dB, 30.3 dB, and 35.8 dB, respectively. This corre-
sponds to an improvement of over 5.7 dB and 5.5 dB, when
compared to the bilinear and bicubic methods, respectively.
The improvement is easily visible. The bilinear, bicubic and
super-resolution estimates for a frame from the high-resolution
sequence are presented in Fig. 4(a)—(c), respectively. By
inspecting the images, it should be apparent that the proposed
algorithm increases the resolution. This is evident in a number
of locations in the image. For example, notice the legibility
of the text in the calendar. The numbers are intelligible and
well formed, as is the “January” month heading. For a second
example, inspect the vertical and diagonal strips in the central
top part of the frame. The pattern is quite degraded in the
bilinear and bicubic estimates. However, it is visible and sharp
in the super-resolution result.

B. Nonsynthetic Experiments

In the second set of experiments, we decimate and encode the
entire “mobile” image sequence. This set of images differs from
the synthetic set in two important ways. As a first difference,
subpixel displacements between image frames are no longer de-
fined explicitly. The displacements now correspond to inherent
motion within the scene, as introduced by the camera and ob-
jects. As a second difference, all pixels in the high-resolution
frame may not appear in the low-resolution sequence. Instead,
a pixel may never be observable (if there is no motion within
the scene), or it may only be observable in temporally distant
observations. Fusing additional frames into the high-resolution
estimate somewhat mitigates this problem.
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(©)

Fig. 4. High-resolution estimates from 1-Mbps synthetic experiment. Result after (a) bilinear interpolation, (b) bicubic interpolation, and (c) the proposed
algorithm. The proposed method enhances the resolution throughout the image. Notice the sharpness of the numbers and text as well as the vertical features in the
central-upper part of the frame. PSNR values for the frames are (a) 30.1 dB, (b) 30.3 dB, and (c) 35.8 dB.
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Fig. 5. Convergence plots for nonsynthetic experiments: (a) subpixel displacement and (b) high-resolution intensity values. Both converge for the 256-kbps and
1-Mbps estimates. The curves terminating at iteration 25 and 17 correspond to the 256-kbps and 1-Mbps experiments, respectively.

After extracting the high-resolution image sequence, it is dec-
imated by a factor of two in the horizontal and vertical direc-
tions. The low-resolution image sequence is then processed with
an MPEG-4 encoder operating at 256 kbps and 1 Mbps. These

are the same bit-rates considered previously. However, please
note that this does not assure a similar corrupting process. The
compression process varies the level of degradation according to
the composition of the images and underlying motion. Frames
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(b)

Fig. 6. High-resolution estimates from 256-kbps nonsynthetic experiment. Result after (a) bilinear interpolation, (b) bicubic interpolation, and (c) the proposed
algorithm. As in the synthetic experiments, frames in the compressed sequence are highly similar and preclude resolution-enhancement. PSNR values for the

frames are (a) 28.5 dB, (b) 28.6 dB, and (c) 29.0 dB.

from the 256-kbps and 1-Mbps nonsynthetic sequence are sim-
ilar to the synthetic simulations, though PSNR values of 30.2
and 39.9 dB indicate less degradation. This suggests more re-
dundancy between frames in the original image sequence (and
less potential for resolution improvement).

Evaluating the simulations begins with the displacement
values. To measure this error, we process a frame from both
bitstreams with the proposed algorithm. Parameters in the
bitstream define the covariance matrices Kqg; and Ky,
as before, and we integrate nine frames into the result by
setting TB = TF = 4. (Convergence plots appear in Fig. 5.)
This produces eight displacement estimates. The original
high-resolution frame is then compensated with each of the
estimates and compared to the actual frame for that time instant.
Histograms of the errors are computed, and the variance of
the errors is 61.6 and 72.3 intensity values? for the 256-kbps
and 1-Mbps bitstreams, respectively. This reflects a number of
inaccuracies within the displacement estimate, which include
the occlusion of objects entering and leaving the frame as well
as the temporal noise present in the acquired sequence.

With larger residual errors, it is important to assess the
resulting decrease in the amount of resolution recovery. This
is the second point of the experiment, and we begin with the
256-kbps bitstream. PSNR values for the bilinear, bicubic and
super-resolution methods are computed as before, and they are

equal to 28.5, 28.6, and 29.0 dB, respectively. These values
are similar to the synthetic results, and it is observed that the
encoder introduces redundancies between frames. However, the
proposed method is still able to impart a benefit. Visual results
are provided in Fig. 6, and inspection of the image shows an
improvement within the super-resolved estimate. This im-
provement is best described as a suppression of high-frequency
artifacts, which is a form of post-processing.

The 1-Mbps bitstream provides the information necessary for
resolution recovery. PSNR values for the bilinear, bicubic and
proposed algorithm are 30.3, 30.5, and 33.2 dB, respectively.
This suggests a marked amount of resolution improvement by
the proposed method, and visual results support this conclu-
sion. An example frame appears in Fig. 7(a)—(c), which shows
the results of bilinear interpolation, bicubic interpolation, and
the proposed super-resolution method, respectively. As can be
seen from the figure, several areas benefit from the proposed
method. For example, the numbers in the calendar are sharper
in the super-resolved estimate. Additionally, the vertical and di-
agonal stripes at the central part of the frame are improved. A
second example appears in Fig. 8, where we show results from
processing a different frame region encoded at 1 Mbps. The mo-
tion within this image is more complicated, and it is therefore
encoded with more redundancy. Nevertheless, we still observe
improvements in the super-resolved estimate. In the figure, the
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Fig. 7.

High-resolution estimates from 1-Mbps nonsynthetic experiment. Result after (a) bilinear interpolation, (b) bicubic interpolation, and (c) the proposed

algorithm. The proposed algorithm improves the overall quality of the frame by enhancing resolution and attenuating coding noise. PSNR values for the frames

are (a) 30.3 dB, (b) 30.5 dB, and (c) 33.2 dB, respectively.

circles on the ball are better defined while the tip of the train is
less jagged.

Comparing the super-resolution estimates from the synthet-
ically generated and actual image sequence leads to several
conclusions. As a first observation, we see that the synthetic
images suffer more corruption during compression. This is
attributed to a lack of redundancy between frames, which
requires more bits to represent, and is apparent in a .2 dB
decrease in the bilinear and bicubic interpolation estimates. At
the higher compression ratio though, the encoder introduces
additional redundancy into the sequence. Thus, we observe little
resolution improvement and perceive the result of post-pro-
cessing. Interestingly, the PSNR improvement for the actual
image sequence is higher than the synthetic result. We credit
this increase to the use of an additional five frames in the
recovery procedure.

The 1-Mbps sequence provides a good example for resolu-
tion recovery. In the synthetic simulations, we see visual evi-
dence of resolution improvement and a PSNR increase of 5.7
and 5.5 dB above the bilinear and bicubic interpolation methods,
respectively. This sequence is biased toward the super-resolu-
tion algorithm, as frames in the sequence exhibit minimal re-
dundancy and the displacements contain little entropy. Thus,
the PSNR differences suggest a measure of maximum resolu-
tion improvement. Simulations with the actual image sequence

realize an improvement below the synthetic experimental value.
The improvement in PSNR is 2.9 and 2.7 dB when compared to
the bilinear and bicubic results, respectively. This corresponds
to approximately half of the improvement realized during the
synthetic experiments. It also provides a discernible amount of
resolution enhancement, increasing the legibility of text and the
visibility of objects.

VII. CONCLUSION

Super-resolution from compressed video requires a solution
to the registration, interpolation, restoration and post-pro-
cessing tasks. In this paper, we have presented a methodology
for solving these problems concurrently. This is especially
appealing when considering hybrid motion-compensation and
transform based coding methods, as the techniques provide an
observation for both the necessary registration and intensity
parameters. Our algorithm utilizes the Bayesian framework to
incorporate information from the bitstream as well as to model
synthetic coding artifacts, and it relies on a cyclic coordinate
descent optimization for realization. Relationships between the
algorithm parameters and information in the bitstream are also
considered.

Simulations explore the efficacy of the algorithm for the
resolution enhancement task. A synthetic sequence (composed
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High-resolution estimates from 1-Mbps nonsynthetic experiment. Result after (a) bilinear interpolation, (b) bicubic interpolation, and (c) the proposed

algorithm. The proposed algorithm improves the overall quality of the frame by enhancing resolution and attenuating coding noise. PSNR values for the frames

are (a) 31.0 dB, (b) 31.1 dB, and (c) 31.5 dB, respectively.

of shifted versions of a single frame) is evaluated first, and it
illustrates the impact of compression on the super-resolution
problem. Severely compressed sequences are shown to be poor
candidates for resolution improvement, as the compression
process increases the similarities between observations. More
moderate bit rates provide a discernible improvement in signal
quality. A second set of experiments processes an actual image
sequence. Here, the motion is unknown and must be estimated
from the decoded frames. When compared to the synthetic ex-
periments, this decreases the level of resolution enhancement.
However, results from the proposed method are still improved
when compared to traditional bilinear and bicubic interpolation
methods.
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