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Classification techniques are routinely utilized on satellite images. Pansharpen-

ing techniques can be used to provide super resolved multispectral images that

can improve the performance of classification methods. So far, these pansharp-
ening methods have been explored only as a preprocessing step. In this work we

address the problem of adaptively modifying the pansharpening method in or-
der to improve the precision and recall figures of merit of the classification of a

given class without significantly deteriorating the performance of the classifier

over the other classes. The validity of the proposed technique is demonstrated
using a real Quickbird image.
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1. Introduction

Satellite images are of great interest due to the numerous applications they

can be utilized. Drawing maps, delimitation of parcels, studies on hydrology,

forest or agriculture are just a few examples where these images are used.

Due to physical and technological constraints, satellites usually have

sensors that capture two types of images. One sensor captures a multi-

spectral (MS) image composed of several spectral bands with low spatial

resolution (LR). The other sensor captures a high spatial resolution (HR)

image, named panchromatic (PAN) image, with a low spectral resolution.

While the first image allows to distinguish features spectrally but not spa-

tially, the second allows to distinguish features spatially but not spectrally.

Pansharpening is an image fusion approach that combines the LR MS

and PAN images to obtain an image with the spectral resolution of the MS

image and the spatial resolution of the PAN image. Many techniques have

been proposed in the literature to carry out the pansharpening procedure

(see Ref. 1 for a complete review of pansharpening methods).

Many satellite image applications involve the classification of pixels in

an image into a number of classes. In supervised classification, starting

from a small set of samples previously labeled by the user, classification is

carried out automatically by the classifiers. Bruzzone et al.2 showed that

the use of pansharpening methods that do not introduce significant spectral

distortion helps the classifier to obtain higher accuracy, especially for pixels

at the borders of objects.

While in the past pansharpening techniques have only been used as

a preprocessing step, in this work we address the problem of adaptively

modifying the pansharpening method in order to improve the precision

and recall figures of merit of the classification of a given class without

deteriorating the performance of the classifier over the other classes.

The rest of paper is organized as follows: In section 2 we describe the

pansharpening technique we use. The used classifiers are briefly explained in

section 3. The proposed method to estimate the pansharpening parameters

to improve the performance of the classifier on a given class is described

in section 4. Section 5 presents experimental results on real data. Finally,

section 6 concludes the paper.

2. Pansharpening Algorithm

In this paper we use the pansharpening method proposed by Amro et al.3

and the parameter estimation procedure described in Ref. 1. This method
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makes use of the non-subsampled contourlet transform4 (NSCT) to decom-

pose the details of the PAN and each band of the MS image into different

scales and different directions. Then, the hierarchical Bayesian framework

is used to model those observations and their relations with the original

high resolution multispectral image and Bayesian inference is applied to

estimate the HR MS image and the model parameters. Let us now explain

in detail the used pansharpening method.

The used contourlet based pansharpening algorithm takes as input the

PAN image, x, of size p = m× n, and the observed LR MS image, Y , with

B bands, Yb, b = 1, . . . , B, each of size P = M ×N pixels with M < m and

N < n. Initially, each band of the LR MS image Y is upsampled to the size

of the PAN image by bicubic interpolation. We will denote by sb each band

b of the p = m× n upsampled image.

Then, using the NTSC transform we can write the PAN and the up-

sampled MS images as:

x = xr +

L∑
l=1

D∑
d=1

xld, sb = srb +

L∑
l=1

D∑
d=1

sldb , b = 1, . . . , B (1)

where the superscript r denotes the residual (low pass filtered version)

NSCT coefficient band and the superscript ld refers to the detail bands,

with l = 1, . . . , L, representing the scale and d = 1, . . . , D, representing the

direction for each coefficient band. The pansharpening goal is to estimate

the HR MS image coefficients yldb from the observed xld and sldb coefficients.

Finally, each band of the pansharpened HR MS image will be obtained by

the inverse NSCT from the corresponding residual band of the upsampled

MS image srb and the estimated detail bands yldb .

We will model the coefficient bands using the hierarchical Bayesian

framework. This framework has two stages. In the first stage, knowledge

about the structural form of the noise in the coefficients bands and the

structural behavior of the HR MS image coefficients is used in forming

p(sldb , x
ld|yldb ,Ωld

b ) and p(yldb |Ωld
b ), respectively. These noise and image mod-

els depend on the unknown parameters Ωld
b that need to be estimated. In

the second stage a hyperprior on the parameters is defined, thus allow-

ing the incorporation of information about these hyperparameters into the

process. Let us define the probability distribution involved in each stage.

Following Refs. 3,5, we chose a prior model based on the Total Variation

(TV) for the HR MS image coefficient bands, yldb , given by

p(yldb |αld
b ) ∝ (αld

b )p/2 exp
{
−αld

b TV (yldb )
}
, (2)
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with TV (yldb ) =
∑p

i=1

√
(∆h

i (yldb ))2 + (∆v
i (yldb ))2 where ∆h

i (yldb ) and

∆v
i (yldb ) represent the horizontal and vertical first order differences at pixel

i, respectively, and αld
b is the model parameter of the MS band b coefficients

at level l and direction d. The idea behind this model is to consider the co-

efficient bands as a set of relatively smooth regions separated by strong

edges, such as the coefficients of the NSCT.

Since the MS bands coefficients and the PAN image coefficients are inde-

pendent given the HR MS image coefficients, we define p(sldb , x
ld|yldb ,Ωld

b ) =

p(sldb |yldb ,Ωld
b )× p(xld|yldb ,Ωld

b ). The conditional distribution of the upsam-

pled MS coefficients given the HR MS coefficients is defined as3

p(sldb |yldb , βld
b ) ∝ (βld

b )p/2 exp

{
−1

2
βld
b

∥∥sldb − yldb ∥∥2} , (3)

where βld
b is the inverse of the unknown noise variance of the detail band

at level l and direction d of the MS band b. The relationship between the

HRMS band coefficients and the PAN image is modeled by the conditional

probability distribution

p(xld|yldb , γldb ) ∝ (γldb )p/2 exp

{
−1

2
γldb
∥∥xld − yldb ∥∥2} . (4)

where γldb is the inverse of the unknown noise variance at each NSCT de-

composition level, l, and direction, d, of PAN image. Note that, with this

modeling, we have decoupled each one of the bands of the contourlet trans-

form and, since they are uncorrelated, we can do the estimation of each

band independently of the other bands.

In the second stage of the hierarchical Bayesian framework we define

the distribution on the parameters by using a gamma distribution

p(w|aw, cw) = Γ(w|aw, cw), (5)

where w > 0, w ∈ Ωld
b = (αld

b , β
ld
b , γ

ld
b ) denotes a hyperparameter, and aw >

0 and cw > 0 are, respectively, the shape and the inverse scale parameters

of the distribution.

Finally, combining the first and second stages of the problem modeling,

and defining Ωld
b = {αld

b , β
ld
b , γ

ld
b }, we have the global distribution

p(Ωld
b , y

ld
b , x

ld, sldb ) =p(αld
b ) p(βld

b ) p(γldb ) p(yldb |αld
b )

×p(sldb |yldb , βld
b ) p(xld|yldb , γldb ), (6)

where p(yldb |αld
b ), p(sldb |yldb , βld

b ) and p(xld|yldb , γldb ) are given in Eqs. (2), (3),

and (4), respectively.
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The Bayesian paradigm dictates that inference on the parameters

and the image, (Ωld
b , y

ld
b ), should be based on p(Ωld

b , y
ld
b |sldb , xld) =

p(Ωld
b , y

ld
b , s

ld
b , x

ld)/p(sldb , x
ld). Since p(sldb , x

ld) cannot be calculated ana-

lytically, then p(Ωld
b , y

ld
b |sldb , xld) can not be found in closed form. We

apply the variational methodology to approximate the posterior distri-

bution by another distribution, q(Ωld
b , y

ld
b ), that minimizes the Kullback-

Leibler(KL) divergence. We choose to approximate the posterior distribu-

tion p(Ωld
b , y

ld
b |sldb , xld) by the distribution q(Ωld

b , y
ld
b ) = q(Ωld

b )q(yldb ), where

q(yldb ) and q(Ωld
b ) denote distributions on yldb and Ωld

b , respectively.

The estimation of the parameters and the image is done iteratively.

First, an estimation of each parameter w ∈ Ωld
b is selected as the mean

of the posterior gamma distribution q(w) and then the estimation of the

Gaussian distribution of the HR MS coefficients, q(yldb ), is performed.

3. Classification

Once the pansharpened image has been obtained, its classification is car-

ried out. The approach we follow (which will be described later) to improve

the classification rate of one class will be tested on two classification meth-

ods which, for completeness, are briefly described now: linear discriminant

analysis (LDA) and support vector machines (SVM).

LDA is an effective subspace technique that optimizes Fisher’s score.6

Subspace methods are a particular class of algorithms focused on finding

projections of the original hyperdimensional space to a lower dimensional

space where class separation is maximized. In addition, LDA does not re-

quire the tuning of free parameters. These good attributes have resulted in

its extensive use and practical exploitation in remote sensing applications

mainly focused on image classification and band selection. LDA is related

to Fisher’s linear discriminant and, roughly speaking, both aim at finding

a linear combination of features that characterize or separate two or more

classes.

SVM is one of the most successful examples of kernel methods, being

a linear classifier that implements maximum margin separation between

classes in a high dimensional Hilbert space H. Kernel methods embed the

data observed in the input space X into a higher dimensional space, the

feature space H, where the data are more likely to be linearly separable.

Therefore, it is possible to build an efficient linear classifier inH, that trans-

lates into a nonlinear classifier in the input space. The mapping function

to perform such an embedding is denoted as Φ : X → H. Computing the

explicit mappings Φ(x) of all the observed data points can be computa-
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tional demanding, especially if the dimensionality of H is high. To avoid

this problem and build efficient algorithms, kernel methods compute the

similarity between training samples {xi}ni=1 using inner products between

mapped samples instead of computing the dot product in the higher di-

mensional space explicitly. The so-called kernel matrix Kij = K(xi,xj) =

〈Φ(xi),Φ(xj)〉 contains all necessary information to perform many classi-

cal linear algorithms in the feature space, which are non-linear in the input

space.7

It is important to note that, both for training and using the SVM for

testing, one only needs to work with a valid kernel function, which should

accurately reflect the similarity between samples. Valid kernels are func-

tions representing a dot product in H. The radial basis function (RBF),

K(x, z) = exp
(
−‖x− z‖2/2σ2

)
, σ ∈ R+ was the kernel function selected

in this work. To implement SVM for multiclass problems we used the

one-versus-all strategy given the particular characteristics of the proposed

scheme.

4. Improving the Classification Performance for a Single

Class

Once the pansharpening method described in section 2 has been used on

a LR MS image and one of the classification methods described above has

been applied, the user may be interested in boosting the performance of

the classifier on a given class. In this section we propose to recalculate

the parameters of the pansharpening method in order to obtain a new

pansharpened image with an improved classification rate for the class of

interest.

By examining the HR classified image, both visually and numerically

(using for instance the confusion matrix), the user selects a class to improve

its classification figures of merits. A new estimation of the image and pa-

rameters is performed. Utilizing the already estimated pansharpened image,

the parameters for the new reconstruction are estimated utilizing only the

pixels belonging to the class of interest in this image. Using those parame-

ters a new pansharpened image is obtained. No iteration between parameter

and image estimates is required.

This result in an estimation of the image whose spectral and spatial

characteristics are more tailored to the pixels in the class of interest and,

hence, will hopefully increase the classification performance for the elements

of the class. Note however that this may imply, as we will see in the ex-

perimental section, that the classification performance on the other classes



April 27, 2011 18:0 WSPC - Proceedings Trim Size: 9in x 6in panclas˙definitive

7

may decrease.

5. Experimental Results

Experiments were run on a Quickbird image. The MS image, depicted in

real color in Figure 1a, has a spatial resolution of 256×256 pixels with each

pixel covering a square area with a side of 2.4 m and four spectral bands:

blue (450-520 nm), green (520-600 nm), red (630-690 nm), near-IR (760-900

nm). The PAN image (see Fig. 1b) has a resolution of 1024× 1024 pixels

with a size of 0.6 m covering the whole spectral interval (405-1053 nm).

The result of the pansharpening process, with the parameters automatically

estimated using all the MS and PAN images, is shown in Fig. 1d.

Using the MS and PAN images, a small number of pixels were classi-

fied into ten different classes (cars, water, forest, . . . ). This set of pixels,

depicted in Fig. 1c, is considered our ground truth. We randomly chose

20% of the samples of each class to train the LDA and SVM classifiers and

the rest was used for testing. In order to incorporate both spectral and

spatial characteristics for each pixel into the classification process, we used

a descriptor composed of the value of each pixel under consideration and

its four nearest neighbors. Since each pixel has associated five values, four

corresponding to the MS bands and another one for the panchromatic, the

descriptor for each pixel has 25 components.

The classification quality is measured using the precision and recall val-

ues on a given class defined as

recall =
TP

TP + FN
, precission =

TP

TP + FP
(7)

where TP is the number of pixels in class correctly classified, FN is the

number of pixels in the class incorrectly classified and FP is number of

pixels not belonging to a class incorrectly classified as belonging to the class.

Table 1 presents the figures of merit for each classifier on the pansharpened

image in Fig. 1d. This image presents a very high level of spatial detail

with no chromatic distortion. The classification figures show that SVM

outperforms LDA although both classifiers perform well for all the classes

except classes 10 and 8 where they perform poorly, especially the LDA

classifier.

A class is now selected to improve its classification figures. In this case

class 10 (isolated tree) was selected although similar results were obtained

when selecting the other classes. Using only the pixels of the MS and PAN

image belonging to the selected class, the parameters were estimated us-
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ing the procedure described in section 4 and a new pansharpened image,

depicted in Fig. 1e, was obtained.

Using this image, the classifiers were trained and a new classification

step was performed obtaining the results presented in Table 2. Although the

reconstructed images using the parameters estimated from the whole image

(Fig. 1d) and the parameters estimated using only the pixels of the class

10 (Fig. 1e) are very similar from a visual point of view, the classification

figures show a higher precision and recall for the selected class 10 and,

also, for many others. Note however, that some classes, like classes 6 or 8,

perform slightly worse with those parameters.

Table 1. Recall and Precision values obtained using the pan-
sharpened image with parameters estimated from all the pixels

in the image.

LDA LDA SVM SVM

Class recall precision recall precision

1. Asphalt 0.89 0.91 0.99 0.98
2. Dense Forest 0.75 0.72 0.91 0.93

3. Forest 0.87 0.98 0.99 0.98

4. Bare Soil 0.93 0.86 0.99 0.99
5. Building 0.84 0.93 0.99 0.98

6. Grass 0.82 0.82 0.96 0.94

7. Dry Grass 0.99 0.77 0.99 0.99
8. Car 0.63 0.66 0.81 0.98

9. Water 0.93 0.74 0.97 0.98

10. Isolated Tree 0.89 0.29 0.82 0.89

6. Conclusions

In this paper we have shown that pansharpening techniques can be used

to increase the performance of classification methods when are applied to

MS images. We have addressed the problem of adaptively modifying a pan-

sharpening method in order to improve the precision and recall figures of

merit of the classification on a given class without deteriorating the perfor-

mance of the classifier over the other classes. The validity of the proposed

technique has been demonstrated using a real Quickbird image. Work is

being currently carried out to theoretically justify the used approach.
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(a) (b)

(c)

(d) (e)

Fig. 1. (a) MS and (b) PAN images. (c) Ground truth. (d) Pansharpened image using

the super resolution method described in section 2 with the parameters estimated using
the whole image. (e) Pansharpened image utilizing only the pixels of the training set in

class 10 to estimate the model parameters.
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Table 2. Recall and Precision values obtained using the pan-
sharpened image with parameters estimated only from pixels

of the class 10.

LDA LDA SVM SVM

Class recall precision recall precision

1. Asphalt 0.89 0.90 0.99 0.97

2. Dense Forest 0.72 0.73 0.92 0.93
3. Forest 0.88 0.99 0.99 0.99

4. Bare Soil 0.94 0.87 0.99 0.99

5. Building 0.82 0.93 0.99 0.98
6. Grass 0.83 0.80 0.96 0.95

7. Dry Grass 0.99 0.80 0.99 0.99

8. Car 0.54 0.56 0.75 0.94
9. Water 0.94 0.72 0.99 0.99

10. Isolated Tree 0.89 0.30 0.88 0.92
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