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I Super resolution in Remote Sensing

With an ideal sensor we would have
high resolution multispectral images.

Unfortunately due to spectral and
spatial decimation we have:
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Spectral response of

A band (yP) of the high
resolution multispectral image
(y) we want to estimate
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IT Super resolution methods in Remote
Sensing

II.I Method of Akgun et al.

T. Akgun, Y. Altunbasak ana R.M. Mersereau,”"Super-resolution Reconstruction
of Hyperspectral Images”, IEEE Trans. on Image Processing, 2005.

fA(x) denotes a high resolution image at A wavelength.

fA(x) can be decomposed as

/ >
High resolution images to
known quantities be estimated
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Comments on the coefficients b,(A) and the decomposition:

With an example, If P=2 and

AE O, A\ ]
We could use

0 elsewhere

p) b TA<al2 o) L2 12
710 elsewhere 2

and we would have to estimate f,(x) and f,(x)

We could also use PCA
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Remember

£ (x) = 2 b,(2) £,(x)

What observations do we have?

First, each f* is convolved with a convolution filter H producing

Spatial filtering f b.A [—[f Z b

Then, f b2 is weighted (mtegrated) on A obtaining

Spectral filtering

[ =2 = (A Hf = Zn(ﬁ)[Z b, (ﬂ)Hffj

j=1

P
= Z w; Hf,
=1
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Finally, f W2 is decimated to produce the observed image
g=D(Q n(A)f"")= D(Z n(A)Hf ij
= D[Z 77(/1)[2 b.(A)Hf, D

::l)[ji'Mglhﬁ}]::jglvqflhﬂf}

Usually we do not have just one low resolution image but a
hypercube of low resolution observations and the above
equation can be written for each band g; of the hypercube. We
have
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where for each image i in
the hypercube we have

P
g = Z Wi, DHfj
Gaussian independent noise is usually included in the
model so we have

POCS with additional constraints is used to estimate f; j=1,...,P
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Instead of having just 81
one hypercube :

We may have several hypercubes \g 0 )

gl1 12111R

We could then register all hypercubes with respect to
one, for instance g!, and we would obtain

The weights could be hypercube dependent

hypercubeI\A The blur could be hypercube dependent
P
[ I . _
g = Z Wi,jDHR(l,l)fj +e i=1..0
j=1 \
Band in hypercube | Registration between hypercubes | and 1
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I1.I1 Method of Price

It is assumed that a high resolution panchromatic image x
and a low resolution multispectral image Y are available.

We will assume, for simplicity a 2x2 magnifying factor.

(i,j) denotes low resolution pixel. This low resolution pixel
consists of four high resolution pixels (u,v) with
(u,v) € H;={(2i,2j), (2i+1,2)), (2i,2j+1), (2i+1,2j+1)}.

W

Panchromatic low
resolution image

Low resolution pixel (i,j)
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Price’s model
J.C Price, Combining multispectral Data of Different Spatial Resolution, IEEE Trans. On

Geoscience and Remote Sensing, vol. 37, 3, 1199-1203, 1999

For each band b and for (u,v) € H; the following
assumption is used

\_— Known values

Both values have to be estimated

First, we estimate a; ;> and then we calculate y°(u,v) using
the above equation.

Hong Kong, August Conference on Superresolution
2005 Imaging

12



Estimating a;° in
Y (uv)=Y'(i,j)=a’ (x(u,v) =X (i, j))

1. yb(u,v) and x(u,v) are replaced by Y°(p,q) and X(p,q),
respectively, where (p,q) € L;; (a set of low resolution

neighboring pixels of pixel (i,j), usually 3x3)
2. and then

a! =argmin, > (Y'(p,q)=Y"(i, /)~ a(X(p.q) = X (i, /)
which produces "

b
da —

Z[Yb(uﬂf)—Yb(i,j)][X(u,V)—X(i,j)]/ D [X (@)= X3 NI

(u,v)el; ; (u,v)el; ;
We now estimate y®(u,v) using

Y (uv)=Y"(i, j)=a’ (x(u,v)=X(, /)
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Extension:

J.H. Park and M.G. Kang, “Spatially adaptive multi-resolution multispectral image fusion”,
INT. J. Remote Sensing, vol. 25, no 23, 5491-5508, 2004.

Let us consider again Price’s equation

Y(uv)-Y'@i j)=a’ (x(u,v)-X(@,)))

Then, Park and Kang consider for each high resolution
pixel (p,q)

Y (p.q) -y (p.q) =a’, (x(p.q) - x(p,q))
where

xPa=>  YTxuv) YEeH=-  Yy'Wuv

4 (u,Vv) neighbors of (p,q) 4 (u,v) neighbors of (p,q)
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In order to estimate a,,° in

Y (p.q) -y (p.q) = a’, (x(p.q) - x(p,q))

The following procedure is proposed:

e X(p,q) is replaced by its downsampled (to the size of the
low resolution images) and then upsampled version to its
original size. The new value is denoted by x'(u,v). Then
X'(u,v) is calculated.

e Vyb(u,v) is estimated as an upsampled version of Yb. The
new value is denoted y® and y™ is now calculated.

and a, ,” is estimated from

y (p.q) " (p.q) =a’ (¥ (p.q) - X' (p.q))
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ds

b
a o

pP.q

argmin, Yo, (0" () = 3" (w,v) —a(x (w,v) - X' (u, )’
(u,v) neighbors of (p,q)

where w,, , is a similarity measure between pixels (u,v) and
(P,9)-

Finally, y®(p,q) is calculated using

Vi(p.g)=a" (x(p.q)-x(p.a)+ " (p.q)
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II.II1 Method of Eismann et at

The panchromatic high resolution image x can be written as
X=Sty+n

where y is the high resolution multispectral image we want
to estimate, S is a sparse matrix whose rows are the spectral
response functions for the panchromatic pixel locations and
n is the noise. The above equation produces P(x]|y).

The low resolution observations Y can be expressed as
Y=Hy+¢

where € is the noise and H is a sparse matrix whose rows are
the spatial response functions for the low resolution
hyperspectral pixels. The above equation produces P(Y|y).
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Using the Bayesian paradigm, our goal becomes finding the
Maximum a Posteriori (MAP), that is

y=arg max, P(y|x,Y)
where we have

P(y|x,Y)oc P(y)P(x,Y|y)

assuming independence between x and Y given y we write

P(y|x.) ocP(Y|y)
) P(y|x.7) <@y [P ] )

The only remaining task is the definition of P(y) or the
conditional distribution P(y|x) depending on the model we
want to use.
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Using the model

P(y|x,Y)x P(y|x)P(Y] y)

R.C. Hardie, M.T. Eismannand G.L. Wilson, ‘MAP estimation for Hyperspectral
Image Resolution Enhancement Using an Auxiliary Sensor’, IEEE Trans. on
Image Processing, vol. 13, no 9, pp 1174-1184, 2004.

The authors propose to estimate P(y|x) using a joint
Gaussian distribution for (y,x) and then calculate the
conditional.

Mean and Covariance matrices are obtained from the
panchromatic and low resolution images. Covariance
matrices are improved by the use of clustering techniques.
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Using the model
P(y|x,Y) o P(y)P(x|y)P(Y|y)

M.T. Eismann and and R.C. Hardie, ‘Application of the Stochastic Mixing Model to
Hyperspectral Resolution Enhancement’, IEEE Trans. on Geoscience and Remote
Sensing, vol. 42, no 9, pp 1924-1933, 2004.

P(y) is estimated for each pixel as a mixture of Gaussian
distributions and the mean and covariance of each member
of the mixture is estimated using the Stochastic Mixing Model
(SMM), see paper for details. The element of the mixture
with the highest probability defines then the prior model.

Note that we can also use the SMM when estimating P(y|x).

M.T. Eismann and and R.C. Hardie, ‘Hyperspectral Resolution Enhancement Using
High_resolution Multispectral Imaginary with arbitray response functions’, IEEE
Trans. on Geoscience and Remote Sensing, vol. 43, no 3, pp 455-465, 2005.
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III. A new SR model in Remote Sensing

We assume that a high resolution panchromatic image x and a
low resolution multispectral image Y are available. We want to
obtain a high resolution hypercube y.

(i, j) denotes low resolution pixel. This low resolution pixel
consists of four high resolution pixels (u,v) with
(u,v) € H;={(2i,2), (2i+1,2j), (2i,2j+1), (2i+1,2j+1)}.

/ (2i,2j) /(2i+1,2j)/ Yb (l, ]) _ i Zyb (M,V) _ (Hyb)(l, ])
/ (2i,2j+1) /2i+1,2j+1)/ 4 (u,v)eH;

Low resolution band from its
corresponding high resolution band

Low resolution pixel (i,j)
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Let us assume that we have B observed low resolution
images Y1,...,YB and a high resolution panchromatic image

X.
We want to estimate the corresponding B high resolution

images v1,...,yB with the use of the information provided by
the low resolution observations and the panchromatic

image.

Let us denote by y the whole set of high resolution
images v1,...,yB we want to estimate.

The process to obtain the low resolution observations for
the high resolution images we want to estimate is

modeled by
PCY?y)=P(Y’|y") exp{—% |'Y® —DHy” IIZ}

where D models the downsampling operation
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The panchromatic image is formed as a linear combination
of the high resolution hypercube bands plus additive noise:

x(u,v) = > Xy (u,v) +¢&(u,v)

AP > (0 are known quantities weighting the contribution of

each high resolution band we want to estimate to the high
resolution panchromatic image.

There is work to be done on the estimation of these
weights. Blind deconvolution techniques?
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Lansat ETM+ Spectral Response
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LANDSAT ETM+ band b

1 (0.45 pm to 0.515 pym) 0.015606

2 (0.525 pm to 0.605 pm) 0.22924

3 (0.63 um to 0.69 um) 0.25606 The panchromatic image
4 (0.75 um to 0.9 uym) 0.49823 i . i

5 (1.55 um to 1.75 um) 0.0 provides no information on
7 (2.08 um to 2.35 um) 0.0 these two bands

We intend to reconstruct all the B bands ,? , b=1,....B

simultaneously. For Lansat ETM+ images we have three
bands to be reconstructed. So, in this case B=4.

We assume

o B
P(X|Y"...,y?) oc exp —Enx—ZW §
j=1

Hong Kong, August Conference on Superresolution 25
2005 Imaging



A priori we assume that all high resolution images are
smooth and no correlation between them exists (this needs
more work), so we write

P(y)=1ﬁp(y )ocHexp[ Po ey }

where C denotes the Laplacian operator.

We now use the Bayesian paradigm and write
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e P(Y)P()(/qu/// Not very realistic
B

Our goal then becomes finding

[nuj(n()j
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y = arg minx
y

e

. A
+ )| ’
b

; [
Fidelity to low Fidelity to the Smoothness
resolution observations panchromatic image constraints

Because of the form of the function to be optimized (of the

involved matrices), its solution can be found using non-
iterastive techniques.

Note also that the unknown parameters can be estimated
using the E-M algorithm (work in progress).
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IV. Examples

panchromatic Low resolution bands 1 to 4
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V. Conclusions

Super resolution methods in Remote Sensing have been
described.

A new super resolution method in Remote Sensing has
been proposed.

Some preliminary examples have been shown.
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