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I Super resolution in Remote Sensing

With an ideal sensor we would have 
high resolution multispectral images.

Unfortunately due to spectral and 
spatial decimation we have:

Spectral 
decimator

Spatial 
decimator
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Observed high resolution 
panchromatic image 
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A band (b) of the observed low 
resolution multispecral image 

(Yb)

High resolution 
multispectral image 

(y) we want to estimate

Upper case: low resolution
Lower case: high resolution

Y(i)=(Y1(i),…,YK(i))T

y(j)=(y1(j),…,yL(j))T
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A band (yb) of the high 
resolution multispectral image 

(y) we want to estimate



Hong Kong, August 
2005

Conference on Superresolution 
Imaging

5

II Super resolution methods in Remote 
Sensing

II.I Method of Akgun et al.
T. Akgun, Y. Altunbasak ana R.M. Mersereau,”Super-resolution Reconstruction 
of Hyperspectral Images”, IEEE Trans. on Image Processing, 2005.

fλ(x) denotes a high resolution image at λ wavelength.

fλ(x) can be decomposed as
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jj xfbxf
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known quantities
High resolution images to 

be estimated
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Comments on the coefficients bj(λ) and the decomposition:

With an example, If P=2 and

λ Є [0, λmax]
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We could use

and we would have to estimate f1(x) and  f2(x)

We could also use PCA
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What observations do we have?

First, each fλ is convolved with a convolution filter H producing
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Then, f b,λ is weighted (integrated) on λ obtaining
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Remember

Spatial filtering

Spectral filtering
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Finally, f w,b is decimated to produce the observed image
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Usually we do not have just one low resolution image but a 
hypercube of low resolution observations and the above 
equation can be written for each band gi of the hypercube. We 
have
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Gaussian independent noise is usually included in the 
model so we have 

QiDHfwg
P
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where for each image i in 
the hypercube we have

POCS with additional constraints is used to estimate fj j=1,…,P
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We may have several hypercubes

Instead of having just 
one hypercube 

Rlg l ,...,1, =

We could then register all hypercubes with respect to 
one, for instance g1, and we would obtain
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Band in hypercube l

hypercube l

Registration between hypercubes l and 1

The blur could be hypercube dependent

The weights could be hypercube dependent
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II.II Method of Price
It is assumed that a high resolution panchromatic image x 
and a low resolution multispectral image Y are available. 

We will assume, for simplicity a 2x2 magnifying factor.

(i,j) denotes low resolution pixel. This low resolution pixel 
consists of four high resolution pixels (u,v) with 

(u,v) Є Hij={(2i,2j), (2i+1,2j), (2i,2j+1), (2i+1,2j+1)}.

∑
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Panchromatic low 
resolution image

(2i,2j)

(2i,2j+1)

Low resolution pixel (i,j)

(2i+1,2j)

(2i+1,2j+1)
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,
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For each band b and for (u,v) Є Hij the following 
assumption is used

Price’s model
J.C Price, Combining multispectral Data of Different Spatial Resolution, IEEE Trans. On 
Geoscience and Remote Sensing, vol. 37, 3, 1199-1203, 1999

Both values have to be estimated

First, we estimate  ai,j
b and then we calculate  yb(u,v) using 

the above equation.

Known values
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Estimating  ai,j
b in

1. yb(u,v) and x(u,v) are replaced by Yb(p,q) and X(p,q), 
respectively, where (p,q) Є Li,j (a set of low resolution 
neighboring pixels of pixel (i,j), usually 3x3) 

2. and then
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which produces

We now estimate yb(u,v) using

)),(),((),(),(
,

jiXvuxajiYvuy bbb
ji

−=−



Hong Kong, August 
2005

Conference on Superresolution 
Imaging

14

Extension:
J.H. Park and M.G. Kang, “Spatially adaptive multi-resolution multispectral image fusion”, 
INT. J. Remote Sensing, vol. 25, no 23, 5491-5508, 2004.

Let us consider again Price’s equation  
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Then, Park and Kang consider for each high resolution 
pixel (p,q)
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In order to estimate au,v
b in

The following procedure is proposed:

• x(p,q) is replaced by its downsampled (to the size of the 
low resolution images) and  then upsampled version to its 
original size. The new value is denoted by x’(u,v). Then 
x’(u,v) is calculated.

• yb(u,v) is estimated as an upsampled version of Yb. The 
new value is denoted y’b and y’b is now calculated.   

)),(),((),(),( , qpxqpxaqpyqpy b
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and au,v
b is estimated from
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where wu,v is a similarity measure between pixels (u,v) and 
(p,q).

Finally, yb(p,q) is calculated using
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II.III Method of Eismann et at
The panchromatic high resolution image x can be written as

x=Sty+η

where y is the high resolution multispectral image we want 
to estimate, S is a sparse matrix whose rows are the spectral 
response functions for the panchromatic pixel locations and 
η is the noise. The above equation produces P(x|y).

The low resolution observations Y can be expressed as 
Y=Hy+ε

where ε is the noise and H is a sparse matrix whose rows are 
the spatial response functions for the low resolution 
hyperspectral pixels. The above equation produces P(Y|y).
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Using the Bayesian paradigm, our goal becomes finding the 
Maximum a Posteriori  (MAP), that is

),|(maxarg
^

YxyP y y=

)|,()(),|( yYxPyPYxyP ∝

)|()|()(),|( yYPyxPyPYxyP ∝

where we have

assuming independence between x and Y given y we write

The only remaining task is the definition of P(y) or the  
conditional distribution P(y|x) depending on the model we 

want to use.

or
)|()|(),|( yYPxyPYxyP ∝
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Using the model

)|()|(),|( yYPxyPYxyP ∝

R.C. Hardie, M.T. Eismannand G.L. Wilson, ‘MAP estimation for Hyperspectral
Image Resolution Enhancement Using an Auxiliary Sensor’, IEEE Trans. on 
Image Processing, vol. 13, no 9, pp 1174-1184, 2004.

The authors propose to estimate P(y|x) using a joint 
Gaussian distribution for (y,x) and then calculate the 
conditional. 

Mean and Covariance matrices are obtained from the 
panchromatic and low resolution images. Covariance 
matrices are improved by the use of clustering techniques.
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Using the model
)|()|()(),|( yYPyxPyPYxyP

M.T. Eismann and and R.C. Hardie, ‘Application of the Stochastic Mixing Model to 
Hyperspectral Resolution Enhancement’, IEEE Trans. on Geoscience and Remote 
Sensing, vol. 42, no 9, pp 1924-1933, 2004.

P(y) is estimated for each pixel as a mixture of Gaussian 
distributions and the mean and covariance of each member 
of the mixture is estimated using the Stochastic Mixing Model 
(SMM), see paper for details. The element of the mixture 
with the highest probability defines then the prior model. 

∝

Note that we can also use the SMM when estimating P(y|x).

M.T. Eismann and and R.C. Hardie, ‘Hyperspectral Resolution Enhancement Using 
High_resolution Multispectral Imaginary with arbitray response functions’, IEEE 
Trans. on Geoscience and Remote Sensing, vol. 43, no 3, pp 455-465, 2005.
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III. A new SR model in Remote Sensing
We assume that a high resolution panchromatic image x and a 
low resolution multispectral image Y are available. We want to 
obtain a high resolution hypercube y.

(i, j) denotes low resolution pixel. This low resolution pixel 
consists of four high resolution pixels (u,v) with 
(u,v) Є Hij={(2i,2j), (2i+1,2j), (2i,2j+1), (2i+1,2j+1)}.

(2i,2j)

(2i,2j+1)

Low resolution pixel (i,j)

(2i+1,2j)

(2i+1,2j+1)
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4
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Hvu
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ij
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∈

Low resolution band from its
corresponding high resolution band
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⎡ −

α
−∝= 2bbbbbb ||DHyY||

2
exp)y|Y(P)y|Y(P

Let us denote by y the whole set of high resolution 
images y1,…,yB we want to estimate.

The process to obtain the low resolution observations for 
the high resolution images we want to estimate is 
modeled by

where D models the downsampling operation

Let us assume that we have B observed low resolution
images Y1,…,YB and a high resolution panchromatic image 
x. 
We want to estimate the corresponding B high resolution
images y1,…,yB with the use of the information provided by 
the low resolution observations and the panchromatic 
image.
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)v,u()v,u(y)v,u(x
b

bb ε+λ=∑

The panchromatic image is formed as a linear combination 
of the high resolution hypercube bands plus additive noise:

λb ≥ 0 are known quantities weighting the contribution of 
each high resolution band we want to estimate to the high 
resolution panchromatic image.

There is work to be done on the estimation of these 
weights. Blind deconvolution techniques?
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Color LANDSAT ETM+ band
White 1 (0.45 µm to 0.515 µm)
Red 2 (0.525 µm to 0.605 µm)

Green 3 (0.63 µm to 0.69 µm)
Blue 4 (0.75 µm to 0.9 µm)

Color LANDSAT ETM+ band
Yellow 5 (1.55 µm to 1.75 µm)

Not shown 6 (10.4 µm to 12.5 µm)
Cyan 7 (2.08 µm to 2.35 µm)

Magenta Pan (0.51 µm to 0.9 µm)

Lansat ETM+ Spectral Response
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LANDSAT ETM+ band λb
1 (0.45 µm to 0.515 µm) 0.015606
2 (0.525 µm to 0.605 µm) 0.22924
3 (0.63 µm to 0.69 µm) 0.25606
4 (0.75 µm to 0.9 µm) 0.49823
5 (1.55 µm to 1.75 µm) 0.0
7 (2.08 µm to 2.35 µm) 0.0

The panchromatic image 
provides no information on 
these two bands

⎥
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⎡
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=

2
B

1j

jjB1 ||yx||
2

exp)y,,y|x(P K

We intend to reconstruct all the B bands yb , b=1,…,B
simultaneously. For Lansat ETM+ images we have three
bands to be reconstructed. So, in this case B=4.

We assume
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A priori we assume that all high resolution images are 
smooth and no correlation between them exists (this needs 
more work), so we write 

( ) ∏∏
==

⎥⎦
⎤

⎢⎣
⎡ β
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B
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2bb
B
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b ||Cy||
2

expyP)y(P

where C denotes the Laplacian operator.

We now use the Bayesian paradigm and write
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Not very realistic
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Fidelity to low
resolution observations

Fidelity to the
panchromatic image

Smoothness
constraints

Because of the form of the function to be optimized (of the
involved matrices), its solution can be found using non-
iterastive techniques.

Note also that the unknown parameters can be estimated
using the E-M algorithm (work in progress).
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panchromatic Low resolution bands 1 to 4

IV. Examples
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Low resolution
bilinearly

interpolated

Price´s
method

Proposed
method

band 1
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Low resolution
bilinearly

interpolated

Price´s
method

Proposed
method

band 2
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Low resolution
bilinearly

interpolated

Price´s
method

Proposed
method

band 3
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Low resolution
bilinearly

interpolated

Price´s
method

Proposed
method

band 4



Hong Kong, August 
2005

Conference on Superresolution 
Imaging

34

Low resolution
bilinearly

interpolated

Price´s
method

Proposed
method

R = band 3
G = band 2
B = band 1
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Low resolution
bilinearly

interpolated

Price´s
method

Proposed
method

R = band 3
G = band 4
B = band 2
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Low resolution band 1 Reconstructed band 1
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Low resolution band 4 Reconstructed band 4
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panchromatic Low resolution bands 1 to 4
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Low resolution
bilinearly

interpolated

Price´s
method

Proposed
method

R = band 3
G = band 2
B = band 1
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Low resolution
bilinearly

interpolated

Price´s
method

Proposed
method

R = band 4
G = band 3
B = band 2
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V. Conclusions

Super resolution methods in Remote Sensing have been 
described.

A new super resolution method  in Remote Sensing has 
been proposed.

Some preliminary examples have been shown.
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