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ABSTRACT

Gaussian Scale Mixtures (GSMs) in overcomplete oriented pyramids are, arguably, one of the most powerful avail-
able tools for image denoising: 1) they provide a new mathematical frame for modelling the variance-adaptation
problem, an approach used in image denoising for the last 25 years; 2) they are applicable to contaminating
sources of any spectral density; 3) they yield the smallest L2-norm distortion results in simulations under white
Gaussian noise, up to this date; and 4) they allow for a solution, for the first time, to the problem of denoising
images affected by unknown covariance noise. In this work, we focus first on the general properties of the GSMs.
Then, we review the different ways GSMs have been used in overcomplete oriented pyramids (MAP-z-GSM,
BLS-GSM, spatially variant GSM), and their applications: classical denoising, signal-dependent noise removal,
unknown covariance noise removal and deblurring.

Keywords: image denoising, Gaussian Scale Mixture, overcomplete multiscale representation, local variance
adaptation, higher-order image statistics, Bayesian estimation, image restoration

1. INTRODUCTION

The increase in computational power of digital devices for on-line and off-line image processing is making acces-
sible to the public some high-performance applications that before were considered computationally too costly
for being used outside the laboratory. One of the most extended applications is digital random noise removal.
In recent years, a wide variety of methods have been proposed, and substantial progress has been made in terms
of methodology and objective performance.

Examining some of the most successful recent denoising algorithms (e.g.1–5), we realize that they fulfill the two
following features: 1) They use translation invariant, overcomplete representations, with local kernels selective to
scale and orientation (such as curvelets,4 complex wavelets,6 translation invariant versions of classical separable
wavelets, like undecimated wavelet transforms7 or trapezoidal pyramids,8–10 the steerable pyramid and its
versions,5, 11–14 and other tight frames15); 2) They apply a multidimensional shrinkage function (possibly a
thresholding) based on joint observations of the coefficients in neighborhoods (e.g.2, 3, 5, 16). These two features
seem to be the result of an emerging consensus about the importance, on the one hand, of using representations
adapted to key image properties such as scale invariance and the existence of locally oriented features. And, on
the other hand, of considering higher-order statistics in the new domain, not only marginally for every subband,
but jointly for neighbor coefficients across space, scale and/or orientation.17–19

Some of these methods (e.g.1, 5, 9, 10, 13, 14, 20, 21) can be interpreted as extensions of the classical Wiener es-
timate, which assumes a global Gaussian behavior of both signal and noise. These extensions go into two
simultaneous directions: 1) from the pixel domain to multi-orientation pyramids; and 2) from the rigid descrip-
tion of the signal as globally Gaussian, to the flexibility of a local Gaussian model in the new domain, which
allows the parameters of the Gaussian to get locally and selectively (in orientation and scale) adapted.

This work has been funded by TIC2003-1504 grant and the ”Ramón y Cajal” Program (Spanish government)
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Fig. 1. (a) A Gaussian Scale Mixture is obtained by adding up a continuum of zero-mean Gaussian densities, each
one with a variance proportional to z, and with a weight given by pz(z). The result is always leptokurotic (kurtosis
≥ 3). (b) When we take rows or columns of a joint 2-D GSM, we see that the corresponding conditional densities
are smoother and wider as we move from zero. (c) The columns of the joint GSM of (b) in gray-level and normalized
to their maxima, showing the characteristic bow-tie conditional dependency between GSM components.

2. GAUSSIAN SCALE MIXTURES AND IMAGE STATISTICS

A Gaussian scale mixture (GSM) is the density of the product of a hidden positive scalar random variable (
√

z)
times a zero mean Gaussian vector (u), x =

√
zu.22 Compared to classical Gaussian mixtures (GMs), GSMs

are different in two senses. First, z is a continuous random variable (as opposed to the discrete variable selecting
the ”classes”, in the GM case). As a consequence, the density of the mixture is an integral of a continuum of
Gaussian functions, instead of a sum. Second, the involved Gaussian functions have fixed zero mean and the
same covariance, up to the scale factor z (mixtures of two zero-mean Gaussians have also been successfully used
for image denoising23). Therefore, same as Gaussian densities, they are elliptically symmetric distributions, i.e.,
their density depends uniquely on a quadratic function of x. The GSM density is:

px(x) =
∫ ∞

0

px|z(x|z) pz(z) dz =
∫ ∞

0

exp
(−xT (zCu)−1x/2

)
(2π)N/2|zCu|1/2

pz(z) dz (1)

where Cu is the covariance matrix of u, and pz(z) is the multiplier density. Figure 1(a) shows, in 1-D, the effect
of cumulating a continuum (discrete in the illustration) of zero-mean Gaussian functions each with a variance
controlled by the multiplier z. The overall effect is that we obtain a much more ”peaky” density (in fact, GSMs
can never have kurtosis lower than 3). Another feature of GSMs is the particular shape they give raise for the
conditional density of one component of the vector given another one. Figures 1(b) and (c) illustrate how cutting
slices in a GSM density and normalizing we obtain at zero a very concentrated density, which becomes more and
more spread as we go farther from zero. What this means, in terms of the information that a vector component
carries about the others, is that when one component’s amplitude is small, then very likely the others will also
be small (because, very likely, the common multiplier will be small), but if its amplitude is large, then there is
a fair amount of uncertainty about the other components (i.e., their conditional variance is high).

The reason for using GSMs in the wavelet domain for denoising is that GSMs are excellent descriptors of local
clusters of wavelet coefficients responding to natural images. It turns out that the two features illustrated in Fig. 1
are precisely two key properties of the natural image statistics when seen through an oriented pyramid. First,
the high sparseness of the wavelet responses to images (which corresponds to a ”peaky” shape of the histogram,
with heavy tails and high kurtosis) has been observed long ago,24, 25 and it is at the basis of dozens of important
contributions. Second, the particular shape of the conditional density of neighbor wavelet coefficients is equally
striking and important (the characteristic bow-tie shape18), and it also fits perfectly into the GSM model, taking
the vector x as a neighborhood of coefficients (neighbor in space, scale or orientation) around a certain reference
coefficient xc. The use of GSMs for modelling image statistics in the wavelet domain was proposed by Wainwright
and Simoncelli in 1999,26 and it has been fruitfully used since then for denoising9, 10, 13, 14, 27, 28 and deblurring.29

Figure 2 compares 1-D (up) and 2-D (bottom, conditional) histograms from a real wavelet subband responding
to the image ”boats” (left) and the result of a simulation using a GSM with parameters fitted to the observation.
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Fig. 2. Comparison of coefficient statistics from an example image subband (a vertical subband of the Boats
image) with those arising from simulation of a local GSM model. Model parameters (covariance matrix and the
multiplier density) are estimated by maximizing the likelihood of the observed set of wavelet coefficients. (a,b)
log marginal histograms. (c,d): conditional histograms of two adjacent coefficients. Brightness corresponds to
probability, except that each column has been independently rescaled to fill the range of display intensities. Figure
taken from Ref. 14.

The two statistical features described above occur in any type of wavelet. However, overcomplete wavelets
are more appropriate for image restoration than critically sampled representations, because the latter are not
translation invariant.7, 30 All the GSM-denoising methods described in this review are based on overcomplete
oriented pyramids, some of them using versions of the steerable pyramid,5, 11 some others a trapezoidal redundant
Haar pyramid.8–10

3. ESTIMATION UNDER GAUSSIAN NOISE OF KNOWN COVARIANCE

The basic idea of the GSM-based restoration methods is to exploit the Gaussianity of both the noise and the local
observation given the hidden multiplier z, for expressing the estimation in terms of the Wiener solutions that we
would obtain for fixed z values. We have followed the usual denoising approach for wavelets: 1) decompose the
image into subbands; 2) denoise each subband; and 3) recompose the subbands into the estimated image. We
have used a local GSM model to represent small neighborhoods of coefficients belonging to each subband (3× 3
size), sometimes including also a parent, i.e., a coefficient at the same spatial location as the reference coefficient
from the next coarser subband with the same orientation. Each neighborhood provides the context for locally
estimating the reference coefficient.

As we will do calculations numerically, it is convenient to sample z in a reduced number of discrete values (8-10
are usually enough), because this allows us to approximate the integrals in z with sums. We have also experienced
that it is more efficient to sample z logarithmically than uniformly. Note that the effect of this non-uniform
sampling translates into an implicit 1/z factor when computing the integrals (due to d(log z) = (1/z)dz). For
some of these models we have considered a prior of the hidden multiplier pz(z) ∝ 1/z (non-informative prior29, 31).
In these cases, the implicit 1/z factor plays the role of the pz(z) term in the integrals involving the posterior
density.

3.1. Additive independent noise

Let’s consider first an additive independent source of zero mean Gaussian noise of known autocovariance. Because
of the linearity of the pyramidal representation this translates into an added zero mean correlated Gaussian noise
vector w in our wavelet GSM vector local model: y = x + w =

√
zu + w. Note that we will use a different pair

of covariance matrices (Cu,Cw) for modelling the neighborhoods corresponding to each subband. The density
of every observed neighborhood is still an infinite mixture of Gaussian densities, but now it includes the noise
term, so it is no longer a Gaussian scale mixture:

py(y) =
∫ ∞

0

py|z(y|z) pz(z) dz =
∫ ∞

0

exp
(−yT (zCu + Cw)−1y/2

)
(2π)N/2|zCu + Cw|1/2

pz(z) dz. (2)
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We can compute zCu + Cw as zCy + (1 − z)Cw, because Cy = Cx + Cw, and we assume without loss of
generality that Cu = Cx (which implies, in turn that E{z} = 1). The covariance matrix of w, Cw, can be easily
computed as the sample covariance, for every subband, of a deterministic input image with the same sample
autocovariance as the noise (e.g., a delta for white noise)∗. Once the noise covariance is computed, we estimate
the signal covariance as Ĉu = Ĉy − Cw, setting to zero any possible negative eigenvalue.

3.1.1. Double diagonalization and Wiener estimate

In order to deal with vectors having correlated samples (in our case, both signal and noise vectors), it is compu-
tationally convenient to express our observations for each subband into a new basis for which the noise vector
is spherical (uncorrelated components all with the same variance) and the signal vector density is elliptical and
aligned with the axes (uncorrelated components, but with different variance each one).28 We will first apply
this to make the terms yT (zCu +Cw)−1y and |zCu +Cw| in Eq. 2 easy to compute, without requiring a matrix
inversion or computing a determinant for each different z value. We can write:

zCu + Cw = S(zS−1Cu(ST )−1 + I)ST = S(zQΛQT + I)ST = SQ(zΛ + I)QT ST , (3)

where SST = Cw and {Q,Λ} are the eigenvectors and eigenvalues matrices of S−1Cu(ST )−1†. Thus, Λ is
diagonal and Q is orthogonal. Being this diagonalization independent of z, it only needs to be computed once
per subband. Now, if we call v the observed vector in the new base, v = QT S−1y, yT (zCu + Cw)−1y can be
simply computed as

∑N
n=1

v2
n

zλn+1 , where N is the size of the neighborhood, and λn, n = 1...N are the eigenvalues

in Λ. Also, by using Eq. 3 the determinant |zCu + Cw| simplifies to |Cw||zΛ + I| = |Cw|∏N
n=1 (zλn + 1).

For a given hidden multiplier z both signal and noise are Gaussian, and thus we can write the optimal estimate
conditioned on z as the classical Wiener solution, which is easier to compute in the new base:

E{x|y, z} = zCu(zCu + Cw)−1y = zSQΛ(zΛ + I)−1v = MzΛ(zΛ + I)−1v, (4)

where M = SQ. Because we are only interested in the estimate of the reference coefficient xc in the neighborhood,
we particularize the previous expression:

E{xc|y, z} =
N∑

n=1

mc,n
zλn

zλn + 1
vn, (5)

where mc,n is the element of matrix M at the c (reference) row and the n column.

3.1.2. Empirical Bayes Approach: MAP-z-GSM

One way to simplify the estimation of x given the observation y is the so called empirical Bayes approach: we
first estimate, as an intermediate step, an unknown parameter or hidden variable of the model (in our case, the
hidden multiplier z). Then, disregarding the uncertainty associated to that estimate, we take it as if it was a
true value, and estimate x accordingly. This has been the approach followed in many denoising methods: they
first estimated the local signal variance, and then applied Wiener locally.1, 20, 21 If, in addition, we consider
a prior model for the local variance (e.g.,21), then a reasonable option is to maximize the posterior density
p(z|y) (MAP-z estimate). In Ref.13 we chose a log-normal prior for the hidden multiplier z (precursors of this
work are Refs. 28, 32). Using the method of moments we estimated the mean and variance of the logarithm of
z, for every subband. When differentiating w.r.t. z and equating to zero the corresponding log-posterior, we
obtained a non-linear equation in z for each neighborhood, that required a line search of the solution, which was
computationally costly. Once we have an estimate for z at every neighborhood, the problem becomes Gaussian,
and the classical Wiener solution is applied.

∗The reason for using a deterministic function instead of directly a noise sample is to obtain an exact covariance
computation, free from stochastic fluctuations.

†This calculation requires that Cw is invertible, which it is in practical cases.
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(a) (b)

Fig. 3. For (a) and (b), from left to right and top to bottom: original, contaminated with white Gaussian
noise, comparison method and our result. (a) Noise standard deviation: 100. Comparison method: optimal hard-
thresholding on an undecimated wavelet representation.7 (b) Noise standard deviation: 20. Comparison method:
local Wiener in the spatial domain.20 Figure taken from Ref. 5

3.1.3. Bayesian Least-Squares estimate: BLS-GSM

The previous method is appealing in the sense of dividing an estimation problem involving a hidden random
variable, into two supposedly simpler problems: first estimating the local z, and then estimating x given both
the observation y and the previous z estimate. However, the price of dividing a single optimization into two
independent sequential steps is losing the overall optimality. In Refs. 5, 14 a different approach was proposed
which allowed a single-step estimation of x given y. The idea is to express the Bayesian Least Squares (BLS)
solution for a neighborhood in terms of the BLS solutions conditioned on z and the posterior p(z|y):

E{x|y} =
∫
x

xp(x|y)dx =
∫
x

x
∫

z

p(x, z|y)dzdx =
∫

z

∫
x

xp(x|y, z)p(z|y)dxdz =
∫

z

E{x|y, z}p(z|y)dz, (6)

i.e., the local estimate is expressed as a weighted average of the Wiener solutions corresponding to each hidden
multiplier value, according to their posterior density. This new approach keeps the global optimality for each
subband‡, and it also increases the computational efficiency of the method, compared to MAP-z-GSM. In Ref. 5
we used a flat prior in log z for computing the posterior p(z|y) (pz(z) ∝ 1/z, a non-informative prior31), for the
considered range, and a fully oriented version of the steerable pyramid11 with 5 scales and 8 orientations. The
results (see Fig. 3, Ref. 5 and http://decsai.ugr.es/∼javier/denoise, including denoising software) confirm the
superiority in performance of this approach w.r.t. previous methods, including MAP-z-GSM.

3.2. Spatially-variant Gaussian Scale Mixtures

The biggest advantage of using a local GSM model with respect to classical Wiener is that it allows for adaptation
to the local variance. And, the main reason for using an overcomplete multi-scale multi-oriented representation
is to provide selectivity to scale and orientation. However, by decomposing the image into subbands we obtain
another desirable side-effect: the local covariance is much more homogenous in a subband than in the original
image. This homogeneity makes possible the high performance of the BLS-GSM denoising method, because it

‡However, BLS-GSM does not achieve global optimality in the image domain, due to the lack of equivalence between
the Euclidean norm in the coefficient space (overcomplete) and in the image domain.
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Fig. 4. Comparison between Spatially Variant BLS-GSM and previous methods. Top: Visual comparison results
on House image (cropped to 80 × 80). From left to right: Noisy (σw = 20); BLS-GSM5; Spatially variant BLS-
GSM.10 Bottom: PSNR output vs. PSNR input, in dB. We used the Trapezoidal Haar pyramid10 for House
and the Full Steerable Pyramid5 for Barbara. Comparison with three state-of-the-art methods: Squares: Spatially
variant BLS-GSM,10 indicating values. Circles: BLS-GSM.5 House: Diamonds2 and Crosses.33 Barbara:
Diamonds3 and Crosses.1 Figure taken from Ref. 10.

relies on the assumption that the covariance matrix of the signal in a subband is constant up to a local scale
factor z. However, if there are clearly differentiated areas in our image (like 2 different textures), we may add
some extra accuracy to the representation allowing the signal covariance to get locally adapted not only in
amplitude, but also tuning to the local spectral features. In Ref. 10 we proposed a two-level adaptive scheme,
using relatively wide areas (16× 16, 32× 32 or 64× 64 blocks of coefficients) for estimating the local covariance,
and using small GSM neighborhoods within them (3× 3) for adapting also to finer changes in local variance, as
before. Mathematically, the model only changes w.r.t. the original BLS-GSM in that now only the neighborhoods
within the same block of coefficients in every subband share the covariance of the signal C(n,m)

u , where(n,m) are
the spatial indices of the block within the subband. The noise covariance Cw is considered constant for every
neighborhood of the subband. However it is straightforward to generalize this scheme to allow for a spatially
variant noise as well, either modulating its strength, as in,14 or even allowing spatial changes in its spectral
density. Same as previous models, we used the Bayesian Least Squares approach and assumed pz(z) ∝ 1/z in the
considered range for all the blocks. Figure 4(top) shows an example of the visual improvement obtained when
using a two-level adaptive BLS-GSM compared to classical BLS-GSM. Figure 4(bottom) presents a graphical
performance comparison between the methods providing lowest quadratic error on the estimation.
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(a) (b)

Fig. 5. (a) Calibrated curve of noise standard deviation as a function of local mean, for blue channel. Superimposed
to the curve are dots representing empirical measurements of local noise standard deviation and local mean (using
the image in (b)), showing a good agreement. (b) Left: blue channel taken at 400 ISO; Middle: same at 50 ISO;
Right: difference, signal dependent noise. Figures taken from Ref. 14.

3.3. Signal-dependent noise

Many devices produce output images with significant dependency between local signal and noise. It may also
happen that the noise is independent from the signal, but not additive (e.g., multiplicative). When this happens,
the noise is interpreted as signal-dependent, under an additive-noise model. Another possibility is that the noise
statistics depend on the spatial location. For all these situations it is convenient to refine the additive independent
global Gaussian noise model, to allow for spatially variant noise statistics. In Ref.14 we showed examples of
digital cameras generating signal-dependent noise. We calibrated in laboratory the noise generation pattern of a
particular digital photo camera at a given ISO level (Canon Powershot G1, 400 ISO), using homogeneous gray-
level patches. We obtained a measurement of the noise standard deviation in the image domain as a function
of the signal level (see Fig 5(a)). For applying this to an observed image we used the local mean (a slightly
blurred version of the observation) to provide the signal level, from which we applied the curve of figure 5(a) to
obtain an estimate of the noise standard deviation at every spatial location, σw(x, y). We used this information
for estimating 1) the average noise variance in the image domain, σ2

w,T =< σ2
w(x, y) >x,y, and 2) a local noise

multiplier α(x, y) = σ2
w(x, y)/σ2

w,T , the same for all subbands at a given location §. This translates into our
signal-plus-noise GSM neighborhood model as:

y =
√

zu +
√

α(x, y)w, (7)

where the spatial coordinates (x, y) correspond to the spatial location of the reference coefficient in the neigh-
borhood. Note that < α(x, y) >x,y= 1, and, as before, w ∼ N(0,Cw). In order to compute the noise covariance
Cw for each subband we need to know the noise autocorrelation in the image domain, as in previous models. For
that purpose, in Ref. 14 we estimated the noise for several images in the lab, using for the noise-free reference the
same images taken at long exposure and low ISO level (see figure 5(b) for an example). Note also that, unlike
for the signal, now we know the scaling factor α for the noise vector, which, for this reason, is not a GSM, but
just an amplitude modulated Gaussian vector. The effect of considering a local scaling factor for the noise in
the resulting equations w.r.t. considering spatially invariant noise is simply to substitute the terms (zλn + 1) in
the corresponding equations by (zλn + α(x, y)). In Fig. 6 we show a real picture denoised using this method.

4. ESTIMATION UNDER GAUSSIAN NOISE OF UNKNOWN COVARIANCE

In many practical situations we do not have a reliable model of the noise spectral behavior, and it is expensive,
difficult or even impossible to obtain noise-free reference images from which to estimate the noise as the difference
with the noisy observation (as we did in section 3.3). Some other times the spatial statistics of the noise change

§Because of the multirresolution, α(x, y) must be shrunk accordingly for some subbands.
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Fig. 6. Denoising a digital camera photograph. Left: original image, shot at ISO=400 on a Canon PowerShot
G1, cropped to 512 × 512 pixels. Estimated noise level is approximately 27.9dB. Right: denoised image, using
the spatially variant noise model. Figure taken from Ref. 14.

over time and we have a single observation of a corrupted image. In these cases even an accurate spatio-temporal
noise model is of little use. For this kind of situations the alternative is to estimate the noise statistics directly
from the observation. When the noise is assumed to be white, the problem is relatively easy, because we just
need to estimate its variance. There are several methods for noise variance estimation (e.g.,34). However, in
many practical cases the noise is far from white, and more sophisticated methods are required to characterize its
spectrum. In Refs. 8, 9 we proposed a generalized expectation-maximization algorithm for estimating the noise
covariance for each subband of the pyramid, using our local GSM model.

4.1. Maximum Likelihood Estimate of the hidden multiplier density

We have seen in previous sections that when the noise covariance is known we can use parametric descriptions of
the hidden multiplier density pz(z), as priors, like log-normal (section 3.1.2), or even non-informative31 (flat in
the logarithm, section 3.1.3). However, it turns out that when there are some other unknown parameters in the
model, like the noise covariance Cw matrices for the subbands, an estimate of pz(z) adapted to the observation
is indispensable for reliably estimating the other unknown parameters.

An Expectation-Maximization (E-M) approach can be used to derive an iterative calculation for the pz(z) that
maximizes the likelihood of the observed neighborhoods for a given subband (assuming the neighborhoods are
independent; for this estimation we use non-overlapping neighborhoods), along the same lines as for estimating
the mass density function for classical Gaussian mixtures (see, e.g.,35). Here we first compute the maximum
likelihood condition for pz(z), and then we propose a recursive computation whose fixed point is precisely that
maximum likelihood condition for pz(z). We will show that this recursion is totally analogous as the E-M iterative
solution for classical GMs.

First, in order to simplify the numerical optimization problem, we reduce the hidden multiplier density pz(z)
to a finite number of dimensions. This allows us to differentiate the global likelihood with respect to each of these
dimensions to find the optimum. Second, to impose positivity and unity area to pz(z), we express each discretized
probability mass as P (zi) = exp(ti)/

∑
j exp(tj). This leaves one degree of freedom in vector t, but this will have

no effect on the final result, as we show next ¶. The global log-likelihood for M neighborhoods can be written as:
¶Alternatively, a Lagrange multiplier can be used to impose the constraints on P (zi).
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C(t) =
∑M

m=1 log py(ym) =
∑M

m=1 log
∑

i py|z(ym|zi)P (zi) =
∑M

m=1 log
[∑

i py|z(ym|zi) exp(ti)/
∑

j exp(tj)
]
.

We differentiate C(t) and equate to zero, for maximizing it:

∂

∂tk

⎡
⎣ M∑

m=1

log
∑

i

py|z(ym|zi) exp(ti) − log
∑

j

exp(tj)

⎤
⎦ =

M∑
m=1

(
py|z(ym|zk) exp(tk)∑
i py|z(ym|zi) exp(ti)

− exp(tk)∑
j exp(tj)

)
= 0

Operating in the previous expression, and noting that exp(tk) �= 0, we can write the ML condition for P (zi):

1
M

M∑
m=1

py|z(ym|zk)∑
i py|z(ym|zi) exp(ti)/

∑
j exp(tj)

=
1
M

M∑
m=1

py|z(ym|zk)∑
i py|z(ym|zi)P (zi)

= 1,∀k. (8)

We check now that this condition is equivalent to the condition P (zk) =< p(zk|ym) >m,∀k (whenever we impose
that no P (zk) vanishes), which can be written as

P (zk) =
1
M

M∑
m=1

py|z(ym|zk)P (zk)∑
i py|z(ym|zi)P (zi)

.

This suggests the iterative computation for P (zk):

P (zk)(new) = P (zk)(old) 1
M

M∑
m=1

py|z(ym|zk)∑
i py|z(ym|zi)P (zi)(old)

,∀k (9)

which is the same as the classical E-M algorithm to estimate the probability masses of Gaussian mixtures,35 and
whose fixed point, starting with P (zk) �= 0,∀k, is the maximum likelihood condition. It is also easy to see that,
under mild conditions, we can take this solution to the limit of infinite small sampling intervals for z to express
the solution for the continuous form in z in a totally analogous way.

4.2. Maximum Likelihood Estimate of the noise covariance
In this section we propose an iterative approximate calculation of a maximum likelihood solution for the noise
covariance Cw of the observed neighborhoods for a given subband of the pyramid representation. In this case
we keep the original continuous notation for z, although working with z discretized is totally analogous. Naming
C(Cw) the log-likelihood of the observed neighborhoods as a function of Cw, we can write:

C(Cw) =
M∑

m=1

log py(ym) =
M∑

m=1

log
[∫

z

py|z(ym|z;Cw)pz(z)dz

]
.

Differentiating this scalar with respect to each element of Cw we obtain a matrix that we force to be nule.
Calling Cz = zCy + (1 − z)Cw, Ĉz =

∑M
m=1 p(z|ym)ymyT

m/
∑M

m=1 p(z|ym), p̂z(z) = 1
M

∑M
m=1 p(z|ym), and

substituting in the Eq. 21 (see Appendix A), we obtain after some manipulation:

∂C(Cw)
∂Cw

=
M

2

∫
z

(1 − z)p̂z(z)C−1
z

[
IN×N − ĈzC−1

z

]
dz = 0N×N. (10)

Solving this equation exactly for Cw is not easy. However, we note that 1) Ĉz is the classical solution for
Gaussian mixtures (see, e.g., 35), when there is no coupling between the parameters of the Gaussian components
of the mixture; 2) despite of that, Ĉz may be a reasonable estimate of Cz; 3) the noise covariance Cw = Cz|z=0.
Therefore, it does not seem unreasonable to choose Cw = Ĉz|z=0 as an approximation to the solution of Eq. 10.
As the posteriors p(z = 0|ym) must, in turn, have been computed using a previous estimate of Cw, this is clearly
an iterative procedure (note that p̂z(z) must also be updated at each iteration):

C(new)
w = Ĉz|z=0 =

∑M
m=1 p(0|ym;C(old)

w )ymyT
m∑M

m=1 p(0|ym;C(old)
w )

. (11)

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

5914-50 V. 5 (p.9 of 15) / Color: No / Format: Letter / Date: 7/27/2005 5:48:30 AM

SPIE USE: ____ DB Check, ____ Prod Check, Notes:



If we were able to solve exactly for Eq. 10 this would be an Expectation-Maximization algorithm.9 But, as we
have substituted the maximization step by a simple increase in likelihood, it is instead a Generalized Expectation-
Maximization algorithm. We have tested that this method provides satisfactory results consistently, increasing
significantly the overall likelihood at each step in a vast majority of cases ‖, which quickly takes the solution
close to a local maximum in likelihood.

As an interpretation of Eq. 11, we see that the noise covariance is estimated as a weighted average of local
external products of the observation vectors according to the posterior probability of these observations having
been produced exclusively by noise (z = 0 condition). Observe that the overall approach relies heavily on
the non-Gaussianity of the signal: when the signal is Gaussian, the observation can be explained without the
GSM term, and all the observation can be considered Gaussian ”noise”. In general, what the method does
is to separate the leptokurtotic part of the observation (the GSM term), which we identify with the signal,
from the rest, which is assigned to the Gaussian noise term, but that can even be platokurtotic. This has the
effect of removing any homogeneous texture, for instance, highly-colored interferences. Figures 7 show some
results obtained with different types of real images presenting correlated noise. These figures demonstrate the
wide practical applicability of the method. Typical execution times for a non-optimized implementation using
Matlab(c) under a Pentium IV 2 GHz machine are around 30 seconds for 256 × 256 images.

5. ESTIMATION UNDER BLUR AND GAUSSIAN NOISE
As we have seen, the local Gaussian Scale Mixture model is very flexible, in the sense of being applicable to
noise with any spectral density, known or unknown. But we can go further and consider that there is also linear
distortion of the image. The important feature to preserve here is that the observation can be locally expressed
using a Gaussian density conditioned on the multiplier z, and this feature is preserved by a linear filtering. Our
estimate, then, will not only remove noise, but will also compensate for blur.29 The same BLS-GSM approach
of Eq. 6 is applicable, but now the Wiener solution includes a linear distortion term:

y = Hx + w =
√

zHu + w, (12)

where x is a vector of length M , large enough to include all the original samples that are involved in the
computation of the N samples of y (see Fig.8), w is also N × 1, and H is an N × M matrix implementing the
convolution with the kernel h. The density of the observed neighborhood vector conditioned on z is zero-mean
Gaussian, with covariance Cy|z = zCu′ + Cw:

p(y|z) =
exp

(−yT (zCu′ + Cw)−1y/2
)

√
(2π)N |zCu′ + Cw| , (13)

where Cu′ = HCuHT is the N × N covariance matrix of u′ = Hu. Naming the filtered clean signal x′ = Hx,
we can express the Wiener estimate, for a given z, as:

E{x|y, z} = zCxx′ (zCx′ + Cw)−1 y, (14)

where Cxx′ = CxHT is the M × N cross-covariance matrix of x and x′, the coefficients from the original
image and those from its blurry version. We explain below a method for estimating this matrix. As done in
section 3.1.1, we can simplify the dependence of this expression on z by diagonalizing the matrix zCx′ + Cw.
We do the calculations analogously, except that now we call {Q,Λ} to the eigenvector/eigenvalue expansion of
the matrix S−1Cx′S−T . Then (14) becomes:

E{x|y, z} = zCxx′S−T Q(zΛ + I)−1QT S−1y = zM(zΛ + I)−1v, (15)

where now M = Cxx′S−T Q, and v = QT S−1y. Same as before, we restrict the estimate to the reference
coefficient:

E{xc|y, z} =
N∑

n=1

zmcnvn

zλn + 1
, (16)

‖For the few cases when this does not happen, we can use directly Eq. 10 to correct the estimation following the
gradient direction.
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Observed After Blind BLS-GSM Denoising
Fig. 7. Results obtained with four real noisy images. From top to bottom: (a) a printed image captured with
a scanner; (b) an infrared video frame suffering from electronic interference; (c) a digital photography captured
under poor light conditions; (d) an optical coherence tomography (OCT). Images have been zoomed and/or
cropped for visibility of the artifacts. Figure taken from Ref. 8.
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Fig. 8. Graphical explanation of the meaning of the neighborhoods in the GSM model including linear distortion.
The background grid represents the coefficients in a subband. The light gray area represents x, the coefficients
of the original that have an influence on the observed neighborhood of coefficients, corresponding to y (in white),
through the convolution with kernel h (darker gray). The white square is the reference coefficient.

5.1. Estimation of the cross-covariance matrix

Up to now we have followed a parallel approach for the deblurring case as for the denoising. However, the real
difficulty for applying in practice the local GSM model for deblurring is the estimate of the cross-covariance
matrix between the original coefficients and the filtered (not yet noisy) coefficients, Cxx′ . In Ref. 29 we followed
a heuristic approach, that in future versions of this work should be replaced by a more rigorous estimation.
In the cited reference we used the relation between the power spectrum of the observed image and that of the
original image, Py(u, v) = Px(u, v)|H(u, v)|2 + Pw(u, v), to first obtain an approximation of the power spectrum
of the filtered image:

Px′(u, v) � ⌊|Y (u, v)|2 ∗ G(u, v) − Pw(u, v)
⌋
+

, (17)

where G(u, v) is a Gaussian convolving window for removing sampling fluctuations. Then, we estimated an
approximation of the power spectrum of the original using:

Px(u, v) � Px′(u, v)/max(|H(u, v)|2, G−1
max), (18)

where Gmax is the maximal allowed gain for the inverse filter. For the results shown in this paper (white noise
case) we chose Gmax = min(2400/σ2

0 , 180) with σ0 the standard deviation of the noise in the image domain.
Now Cxx′ can be estimated as the sample cross-covariance of the coefficients of the inverse Fourier transforms
of
√

Px(u, v) and
√

Px′(u, v). The resulting estimate Ĉxx′ can be significantly improved by modeling its bias
using an N × N linear transform: E{Ĉxx′} � Cxx′B. In order to estimate B, we assume that we would incur
the same proportional bias when estimating Cx′ from Px′(u, v): E{Ĉx′} � Cx′B = (Cy − Cw)B. Solving this
for B−1 yields the following improved estimator:

̂Ĉxx′ = Ĉxx′
[
(Cy − Cw)Ĉx′

−1
]

(19)

Figure 9 shows some results obtained with simulated degraded images, compared to the classical Wiener method.

6. CONCLUSIONS AND FUTURE WORK

We have reviewed different image restoration methods based on a local Gaussian Scale Mixture model describing
neighborhoods of coefficients in overcomplete pyramids. Starting from the classical empirical Bayes approach,
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Observed BLS-GSM Wiener

Fig. 9. BLS-GSM deblurring results. Up: High noise (σ = 20) and low blur (σb = 0.1); PSNR values are (dB):
22.1, 29.9, 28.3; Middle: High noise (σ = 20) and high blur (σb = 1.0), (21.5, 27.9, 27.0); Bottom: Low noise
(σ = 2) and high blur (σb = 1.0), (29.7, 32.5, 31.8). Figure taken from Ref. 29.

which is clearly suboptimal, we have described the evolution towards a more powerful Bayesian Least Squares
approach (BLS-GSM approach). This latter approach has been applied to different situations: independent
additive Gaussian noise, signal dependent noise, and independent noise of unknown covariance. The method can
also be refined to adapt locally not only to fluctuations in the energy of clusters of coefficients, but also to spatial
changes in their local covariance, by using spatially variant GSMs. Finally, the model allows for a generalization of
the degradation model, through the inclusion of a linear distortion term, besides the additive noise, which makes
it applicable to image deblurring. We have shown that the flexibility, performance and practical applicability
of the local GSM model in overcomplete pyramids is remarkable, compared to most previous models. However,
we should also point to its limitations, which come, most of them, from its local nature. The model assumes
that there is a single multiplier affecting simultaneously to a neighborhood of coefficients. The downside of
this approach is that it is very rigid: either a coefficient belongs to a neighborhood or not, but there are no
intermediate grades in the statistical coupling of the neighbors. This causes that best results are obtained with
very small neighborhoods (3× 3, possibly plus a parent), when we know that there is a fair amount of statistical
coupling between coefficients two or three spatial positions apart, or at different orientations, or simultaneously
at a spatially neighbor position at an adjacent scale, etc (see e.g.,19). A future model could consider a smoothly
varying z, which would be applied individually to all the coefficients. Enlarging the effective coupling region
between coefficients through a globally consistent model will improve the quality of the estimation, at the likely
price of increasing the computational cost. Another pending issue is to improve the estimation of the cross-
covariance between the original and the blurred original, for the deblurring application. This applies to any
technique requiring the estimation of the power spectral density of the original from the degraded observation.
Finally, it is also pending a BLS-optimization for the whole image, instead of for each subband.
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APPENDIX A.

∂C(Cw)
∂Cw

=
M∑

m=1

∂

∂Cw
log
[∫

z

py|z(ym|z;Cw)pz(z)dz

]
=

M∑
m=1

∫
z
pz(z)∂py|z(ym|z;Cw)

∂Cw
dz∫

z0
py|z(ym|z0;Cw)pz(z0)dz0

(20)

=
M∑

m=1

∫
z
pz(z)py|z(ym|z;Cw)∂ log py|z(ym|z;Cw)

∂Cw
dz∫

z0
py|z(ym|z0;Cw)pz(z0)dz0

=
M∑

m=1

∫
z

p(z|ym)
∂

∂Cw
log py|z(ym|z;Cw)dz.

∂

∂Cw
log py|z(ym|z;Cw) = −1

2
∂

∂Cw

[
yT

m (zCy + (1 − z)Cw)−1 ym + log |zCy + (1 − z)Cw|
]
.

∂

∂Cw
log py|z(ym|z;Cw) =

1
2
(z − 1) (zCy + (1 − z)Cw)−1

[
IN×N − ymyT

m (zCy + (1 − z)Cw)−1
]
.

Substituting into Eq. 20 it yields:

∂C(Cw)
∂Cw

=
M

2

∫
z

(1 − z) (zCy + (1 − z)Cw)−1 1
M

M∑
m=1

p(z|ym)
[
IN×N − ymyT

m (zCy + (1 − z)Cw)−1
]
dz.

(21)
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