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ABSTRACT 

 
The most straightforward way to describe the performance of an image intensifier tube, especially under adverse 
conditions, is to predict the image it yields.  In this work we have developed two different methods to provide realistic 
simulated images in low light level conditions: 1) Approximate Physical Model. A classical approach based on the 
simulation of the different degradation sources. It provides a good understanding of the image formation process. 2) 
Synthesis-by-analysis of real images. The observed noise is modelled through texture analysis tools and the image blur 
through the MTF. The resulting simulated images for both methods were compared with real intensified images 
(laboratory chart sights and natural images) taken under controlled conditions, close to the performance limits of an 
image intensifier tube. Both methods generated good results in terms of visual comparison for different object sizes, 
contrasts or luminances. These methods can be used as a new tool to predict the performance thresholds of the image 
intensifier. Only well-known or measurable parameters were used as input for the methods. 
 
Keywords: synthetic images, simulated images, image intensifier tubes, intensified images, MTF, texture synthesis, Low 
light level, Night Vision, Minimum Resolvable Contrast. 
 
 

1. INTRODUCTION 
 
Image Intensification is a widely used technology when working in low light level conditions. The applications range 
from night vision in the visible or near infrared to medical or scientific devices operating in different regions of the 
electromagnetic spectrum.  
 
Image intensifier (II) tubes are frequently used near their performance limits. Quite often critical tasks such as driving, 
piloting, surveillance and threat detection, medical diagnosis, tracking of nuclear particles or the imaging of astronomical 
bodies, rely heavily on the quality of the images delivered by the intensifier. Moreover, intensified cameras are 
increasingly being used for quantitative measurements. The selection of an II tube for a particular application or even the 
design of a complete imaging system based on image intensification is often a complicated task, since different 
compromises have to be achieved ensuring that the final performance of the system is not affected. 
  
The general practice is to describe the performance of the II tube by means of a few parameters following military 
standards (gain, EBI, MTF, noise, resolution). These parameters describe only partially the characteristics of the II tube’s 
response and are usually applicable merely to certain supra threshold conditions. Furthermore, even if the influence of 
each individual parameter on the final image is well known, the impact of a combination of them upon the image is far 
from being intuitive. Besides, the current industrial trend is to summarize the quality of the device in just one or two 
numbers, which is certainly insufficient for design purposes. 
 
Regarding a more theoretical approach, various mathematical models have been proposed to provide a detailed 
description of the physics of the II tube and its components1,2. Some of these statistical models are helpful to understand 



 

 

how the II tube works or to predict some performance metrics values (for instance the overall gain3,4, limiting resolution, 
MTF, signal-to-noise ratio4,5, or halo6). Some of them are useful to quantify some design trade-offs of intensified CCD 
cameras: SNR versus spatial resolution4,5 or SNR versus gain4. Most of these physical models have the drawback of 
being too complex for practical purposes. Furthermore, many of them cannot be experimentally validated, since certain 
required parameters are neither known nor can be measured once the II tube is encapsulated.     
 
In our opinion, the most straightforward way to describe the II tube’s performance for a given situation (radiance field) is 
to predict the image yielded by the II tube. This would permit a direct comparison among different II tubes, systems, 
configurations or situations within the boundaries of the luminance range in which it is employed. Moreover, a visual 
comparison of images would be more intuitive for final users. 
 
This paper aims at exploring new mathematical methods to simulate realistic images as they would be produced by a 
given II tube. Two different approaches will be described: 1) Approximate Physical Model: this represents the classical 
approach, based on the simulation of the various degradation sources, but using only known or measurable parameters as 
inputs; 2) Synthesis–by-analysis of images: this new global approach relies on the extraction of a set of significant image 
features. This set is subsequently employed to generate a realistic image having a similar visual appearance as the 
original one. To assess the efficacy of each model, the simulated images were compared with real images obtained with 
the intensifier under controlled conditions on a broad range of the object size, luminance and contrast. 
 
Simulated intensified images have other potential applications for the evaluation and testing of intensified systems. 
Collections of real images, captured in field trials, are seldom used for a rigorous prediction of the performance of image 
intensifiers. First, it is hardly ever possible to have access to the object to be imaged. Second, even when the object is 
accessible, it is expensive and time consuming to collect a sufficient number of images under controlled conditions. 
Finally, the conclusions are limited to those specific sampled situations.  
 
Laboratory trials -although still expensive, since tailored testing facilities are required- are more common to evaluate 
intensified imaging systems. The measurement of simplified objects (Minimum Resolvable Contrast) provides an 
indirect procedure to assess the detection, recognition or identification distance for well known targets (Static Range 
Performance). But it requires some simple modeling tools to extrapolate to real targets and to include atmospheric 
effects. This measurement and modeling have been used for many years with good acceptance by the military 
community. In fact, there is still ongoing research to improve the procedures. However, even for the specific purpose of 
calculating the Static Range Performance, the use of simulated images could provide a more direct and powerful method, 
specially in high-complexity scenes. 
 
Traditionally, most II tubes were integrated in vision system, playing the role of vision aid for the observer. Nowadays an 
increasing number of intensifiers are coupled to artificial vision algorithms that extract the relevant information from the 
recorded image. These algorithms need to be refined and thoroughly debugged with the help of a large number of test 
images. In this context, simulated images can provide an unlimited number of source objects or scenes in a continuous 
range of situations. 
 
There have been some previous attempts to generate simulated intensified images7. Most of them focus on supra 
threshold (luminance, contrast) conditions and are applicable only to ICCD cameras, in which the pixel-averaging 
mechanism alters the spatial structure of the image emerging from the II tube, both in terms of blur and noise. Finally, 
and as far as the authors are aware, none of them have been validated under controlled situations. 
 
We think that our approach is a novel and innovative one for various reasons: 1. We just simulate the image that would 
be delivered by the II tube (excluding the effect of the CDD); 2. The simulations focus on the system’s limit operating 
conditions (previous works assumed supra-threshold conditions); 3. Only well-known or measurable II tube parameters 
are used in the models; 4. These methods provide an overall characterization of the II tube in terms of image quality, 
instead of being restricted to specific aspects like the luminance response or the noise; 5. The methods use the physical 
magnitudes of the scene; 6. They are generic methods, although they can also be customized to specific applications; 7. 
They are simple models, which entail the assumption of certain approximations; 8. The whole procedure is validated 
using a set of images recorded experimentally under controlled conditions (II tube-oriented metrology laboratory). 
 



 

 

The present work is structured as follows. Section 1.1 illustrates the operating principle of an image intensifier and the 
main characteristics and features of intensified images. Sections 2.1 and 2.2 describe the two methods implemented in 
this study for the generation of simulated images: the Approximated Physical Model and the Synthesis-by-Analysis of 
real images. Section 2.3 focuses on the experimental recording of real intensified images, which are compared to the 
results of the simulations in section 3. Section 4 analyzes the potential applicability of the models developed and 
implemented in this study. 
 
1.1. intensified images 
 
Incident photons at II tubes impinge upon the photocathode and a fraction of them are converted into photoelectrons. 
Electrons are accelerated across a potential difference onto the microchannel plate. Secondary electrons are created by 
the collision of the primary electron with the microchannel’s walls. These secondary electrons emissions cascade down 
the length of the II tube. A second potential difference accelerates these electrons toward the phosphor screen, which 
fluoresces as a result of the collision. The outcome of the process is an amplified image output signal, due to the fact that 
around 104 photons are generated on the phosphor screen for each photon captured by the photocathode5. This 
remarkably high amplification, which is described by the luminous gain factor, allows the image intensifier to generate 
images of very dim scenes (as star-light illuminated scenes). In these low-light-level conditions, radiation is affected by 
photon noise, which can be described by Poisson statistics. Every amplification stage propagates the existing noise 
according to its gain while incorporating an additional noise component (due to the non-uniformities of the gain). This 
noise propagation in image intensifiers is usually modeled as a cascaded system4,5. Despite its complexity, the global 
noise associated to the system is usually described by a single parameter: the Signal-to-Noise Ratio (or the Noise 
Equivalent Irradiance). On the other hand, the spatial response of image intensifiers can be described by means of the 
MTF8. Both the spatial blur and the finite integration time of the phosphor screen produce an overlapping of close events 
(in space or time) that reduces the overall noise in the intensified image. Noise and blur are the main causes of image 
degradation. Blur affects noise, as it changes its spatial correlation. Given that this work seeks to deliver an accurate 
prediction of intensified images, based on the visual impact of the degradation sources on the images, the 
abovementioned spatial correlation has to be taken into account (unlike other models for image synthesis, which make 
use only of first-order statistics).   
 

2. METHODS 
 
2.1. Approximate Physical model (APM).  
 
The first part of this study was to develop a physical model capable of predicting image appearance under different 
situations. We were particularly interested in simulating images in limiting situations: luminance, contrast, spatial 
resolution near its threshold values, since in these particular regions existing models have been very little tested. 
Following a similar approach to other models7, the Approximate Physical model is based on the description of the 
various degradation sources as image filters. To guarantee the practical usefulness of the model, some approximations 
are required to ensure that we only include well-known and measurable parameters.  
 
The model is described in figure 1. Given the luminance distribution at the scene Lsc, the resulting illuminance 
distribution at the photocathode can be calculated as follows: 
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where 
Lsc  = scene luminance distribution (cd/m2) 

=#F F-number of the system objective lens   
TobjTatm,  = Atmosphere transmittance and objective lens transmittance 

m  = Magnification of the optical sub-system preceding the II tube. 
 
Once the illuminance distribution at the photocathode is obtained, the mean number of emerging photoelectrons is 
directly dependent on the photocathode’s sensitivity: 
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Where S is the photocathode’s sensitivity (this is the only parameter included in the simulation that is related to the II 
tube specifications provided by the manufacturer), Apix represents the pixel area, as measured at the photocathode’s 
plane (m2) and eN  indicates the average number of photon-generated electrons at the photocathode per unit time and per 
pixel.  Besides photoelectrons, the spontaneous emission of electrons by the photocathode also needs to be taken into 
consideration. This phenomenon can be modeled by means of an additional illuminance factor, which is usually wrapped 
in a parameter commonly known as EBI (Equivalent Background Input). 
 
From here onward no further distinction will be made between photoelectrons and spontaneously-emitted electrons. We 
will consider the overall electron emission to follow a Poisson-type distribution, for which the variance of the number of 
photons in each point is equal to the average number of photons. 
 

>=< eN2σ        (3) 
 
In practice, once the image has been generated (in terms of the average number of electrons >< Ne  in each point), a 
random deviation following a Poisson distribution is applied to each individual value. 
 
As previously mentioned, the electrons emerging from the photocathode multiply in the II tube through various 
mechanisms and in several stages before they are converted again into photons. Each of these processes introduces an 
additional noise component due to the non-uniformity inherent to the amplification procedure, as well as a certain 
degradation in image quality due to the widening of the electron beam along the II tube path. While the amplification 
process can be described by means of the gain (G), the overall noise is characterized by the value of the signal-to-noise 
ratio (SNR) and the spatial image degradation is quantified by means of the modulation transfer function (MTF).  
However, these three parameters are highly coupled in II tubes: the value of the SNR depends on G and it is also affected 
by the MTF. A rigorous approach would imply the assessment of the gain, the noise and the MTF separately and on an 
element-by-element basis. For instance, the gain amplifies the resulting noise from previous stages, whereas the MTF of 
each stage reduces all the existing noise. Nonetheless, and since our approach aims at including only well-known or 
measurable II tube parameters, this model is limited to using global II tube values for G, MTF and SNR, which 
represents a considerable simplification compared to the element-by-element approach. 
 
Considering that our simulations focus on low luminance levels, a constant gain factor, equal to the maximum value of 
the gain for that particular II tube, has been assumed. This assumption, which is equivalent to saying that the automatic 
gain control remains inactive, has been later backed by our experimental results (figure 4, series 1).  This way, the 
electron count for each point can be directly multiplied by this constant gain factor in order to assess the resulting 
number of photons or digital counts. A measurement of the overall gain (defined as digital counts to input illuminance 
ratio) has been used instead of a luminous gain factor (defined in STANAG standards as output luminance to input 
illuminance ratio), because this work aims at focusing on a quantitative analysis. 
 
There are other noise sources affecting the final image quality, besides Poisson-related noise.  Measuring the SNR while 
adhering to STANAG standards is a complex experimental task and its final result is subject to a high uncertainty. 
Moreover, practical experience has shown that the amount of spatial noise varies according to the square root of the 
luminance. Therefore, for the present application we have opted to make use of a simpler magnitude, the Noise Factor 
(NF), which experimental measurement is of a more robust nature, and makes the noise parameter independent of the 
luminance. The noise factor used in this study is defined as the existing standard deviation (σ ) divided by the square 
root of the average signal value.  

signal
NF signalσ

=        (4) 

 
The Poisson distribution has a noise factor equal to one. The final image has more noise and subsequently a Noise Factor 
greater than one. The spatial correlation introduced by the MTF reduces the noise factor of the image. In this paper, the 



 

 

Noise Reduction Factor (NRF) produced by the particular MTF of the II tube is previously measured on simulated 
Poisson images, with uniform luminance.  
 

),( MTFPoissonNFNRF =       (5) 
 

After that, the II tube noise is added to the Poisson noise as a multiplicative Gaussian distribution. Its sigma value is 
calculated based on the local luminance, the Noise Reduction Factor (due to the II tube’s MTF) and the measured Noise 
Factor itself:  

)( LLNRF
NF

tube
⋅

=σ        (6) 

where LL is the local luminance. 
 
That is, the value of the multiplicative noise factor in each point associated to the existing electrons is high compared to 
the noise present in the final image, due to the fact that the MTF-related noise reduction has already been taken into 
account. Finally, the MTF is applied to the final image in the form of a linear filter. 

 

 
 

Figure 1. Approximate Physical Model (APM) 
 
2.2. Synthesis-by-analysis of images method (SBA) 
 
The Approximate Physical Model described above includes many approximations, and depends on a large number of 
parameters, which can be inaccurate or not valid for the whole luminance range. That is why a new method was 
developed, in order to avoid the dependence on approximations or parameters.  
 
This completely different approach relies on a previous analysis of a particular set of real images in order to extract the 
necessary descriptors that will be used during the subsequent synthesis stage. As shown in figure 2, the observed noise is 
modeled using existing texture-analysis tools whereas the image blur is computed based on the measured global MTF 8. 
The final simulated image is the result of blurring the initial image by applying the measured MTF and subsequently 
adding the synthetic-texture modeled noise. This heuristic approach provides a black box in between the luminance 
distribution of the scene and the final image. No further assumptions regarding how the real image is created are 
required. 
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2.2.1. Texture Synthesis-by-analysis 
 
A simplified texture synthesis-by-analysis tool based on Gabor functions (Portilla et al.9) was used to generate 
perceptually-accurate synthetic images. 
 
The synthesis-by-analysis methods rely on the extraction of a set of significant image features, which are subsequently 
employed to generate a realistic image having a similar visual appearance as the original one. There are various texture-
synthesis methods available in the literature, ranging form those purely statistical methods to the more structured ones. 
Ideally, a texture synthesizer should fulfill the following requirements: wide range of applications, compactness, low 
computational cost, full automatism and robustness. Several successful methods have employed the approach of 
analyzing the texture’s autocorrelation function, to be subsequently imposed to a random 2-D signal.  However, these 
algorithms present important drawbacks; for instance, they show a slow convergence (which implies that the final image 
presents a noisy aspect) and they are very time-consuming (high computational cost). These disadvantages can be 
minimized only if one or more significant parameters is fixed in advance, although this step is quite problematic to 
automate. 
 
The approach followed by Portilla et al.9 consists of sampling the autocorrelation function through a multiscale Gabor 
representation.  This sampling type has proven to be compact and visually efficient, as it is based on a priori information 
about the behavior of the human visual system. Furthermore, this method has shown to be robust, it uses noniterative 
simple operations as linear filtering and histogram matching, and provides good results over a wide range of input 
textures. This model focuses on nonstructured, gray-level textures. Texture is modeled as a 2-D random field, which 
enables a purely-statistical treatment. 
 
The Multiscale Gabor Scheme10 schematically imitates the visual coding in the early stages of the HVS by applying a set 
of 4x4 (four frequency levels, four orientations) Gabor filters to the digital images.  This scheme is suitable for a fast 
pyramidal image decomposition in both the spatial, as well as in the spatial-frequency domains. The result of applying 
one of these filters to the input image is called a Gabor channel. The very low-spatial-frequency region of the image is 
covered by an additional low-pass residual (LPR) channel. This original configuration has been maintained for the 
present work as a precaution against possible directional structures in the image. However, so far the sampled II tubes 
have shown a complete absence of directional structures, which could imply that a unique average orientation might be 
sufficient. Regarding the four different radial frequencies, they have proven to be well-suited to capture all the relevant 
information for the textures resulting from the spatial noise associated to the II tube-generated images.  
 
The energy of each of these 16 channels, together with a compressed version of the modulus of the LPR channel (5 
parameters), provide a rough approximation to the power spectral density of the texture, although it has proven to be 
visually a very efficient one. The equivalent bandwidths of the channels, used in the original study8 was not considered 
here due to the stochastic nature of the noise. 
 
Unlike the original work by Portilla et at.9, where a compressed version of the 256-gray-level histogram (16 values) was 
included as well in the model, here the image histogram is simply fitted to a Gamma-function described by only 2 
parameters. The reason behind the choice of a Gamma function instead of a Gaussian distribution (as in the original 
work) is that the histogram for images generated by II tubes shows a certain luminance-dependent kurtosis. As a 
consequence, the output image’s histogram doesn’t follow a Poisson distribution (unlike it happened with the impinging 
photons) and the assumption of a Gamma distribution has proven to yield a better fitting. To improve the efficiency of 
the subsequent synthesis stage (histogram fitting), three additional parameters are included in the model to describe the 
range, in terms of digital counts, in which the texture is found.  In summary, the texture under analysis is characterized 
by just 26 parameters: energy of each Gabor channel (16) + LPR (5) + Histogram (5).  
 
The basic idea behind texture synthesis is to employ the result of the original texture analysis (summarized in the 
abovementioned 26 parameters) as source data in order to generate secondary textures having the same visual appearance 
as the original one.  In this sense, synthetic Gabor channels are generated, similarly to those obtained for the original 
texture, and through their fusion the new texture is obtained. 2-D noise following a Gamma probability distribution is 
generated, to which texture analysis is applied in order to obtain 16 noise channels. Each of these channels is multiplied 
by a certain factor in order to make the channel’s energy the same as that for the corresponding channel in the original 



 

 

texture. The 16 synthetic channels and the LPR are mixed together into a single image. The original histogram (the 
Gamma function described by its parameters) is imposed to the resulting image.  
 

 
 

Figure 2. Synthesis by Analysis of images (SBA) 
 
2.2.2. Image generation 
 
In II tubes there is a strong dependence of the noise’s intensity on the scene’s luminance. Therefore, the simple addition 
of the texture to the MTF-degraded image doesn’t yield satisfactory results. The texture needs to be modulated, as 
described below. 
 
II tubes show a very large interscene dynamic range (106), along which the noise varies significantly both in power and 
spatial statistics. In this sense, figure 3 shows the considerable variation of the texture descriptors within the II tube’s 
dynamic range, both for a GEN-II and for a GEN-III tube. Texture analysis need to be carried out for different luminance 
levels. Texture synthesis should be based on texture descriptors for a particular luminance level, which can be 
interpolated from the analyzed luminances. 
 
The intrascene dynamic range is typically less than 10, specially near the II tube performance limits where the image 
contrast is low. As can be seen in figure 3, the texture descriptors present a slow evolution inside a scene. The 
fundamental assumption in this method is the fact that the spatial noise in any intensified image can always be described 
in terms of a single texture (a unique set of parameters). This simplifies its practical implementation. But, as the amount 
of spatial noise varies according to the square root of the luminance, the noise’s standard deviation varies substantially 
across a given scene –the local histogram changes-. To take this fact into account the texture’s standard deviation is 
modulated by the luminance value at each point, to achieve the standard deviation corresponding to the noise factor: 
 

LLNFtarget ⋅=σ        (7) 
 
where LL represents the local luminance. The Noise Factor (NF) is obtained empirically during the synthesis stage. 
Those points which local luminance is equal or below that of the scene’s background will remain unaltered. According to 
equation (7), the higher the local luminance, the higher the associated spatial noise. In practice, the modulation is applied 
by: 
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where MT is the modulated texture, T is the synthetic texture which mean value isT  and standard deviation is textureσ . 
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The object is degraded by the MTFs of optics and II tube. And finally, the obtained modulated texture is added to it 
(figure 2). 
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Figure 3. Radial texture descriptors along the full dynamic range (in arbitrary units) for two image intensifiers.  
 

2.3. Image capture 
 
Real images of various objects were captured to be used as reference, enabling benchmark testing of the simulated 
images. Additional images of the luminance background having no object were recorded to obtain the values of the input 
parameters required for the simulations: signal-to-noise features as well as texture descriptors. The II tube used to record 
these images was a GEN III (ITT F9800P) mounted on a monocular night vision sight (ITT PocketScope). The low-
luminance source was specifically designed to supply a uniform and stable spectrum having a color temperature of 
2856±20 K (calibrated following European standards). Three calibrated luminance positions were used (L1 = 7 ·10-3 ;    
L2 = 7 ·10-4 ; L3 = 6.7 ·10-5 cd/m2), equivalent to having from a quarter-moon to a clouded-star-light illuminated scene. 
The radiance field of the scene was simulated by placing grey-scale images on 6 x 6-cm slides in front of the source and 
projecting them onto the night vision sight objective (3x, F#1.5) by means of a collimator (silver-coated off-axis 
paraboloid mirror, focal length 2496 mm, diameter 430 mm). The ocular of the night vision sight was removed and the 
phosphor screen was imaged by means of a CCD (Hamamatsu ORCA 100, pixel size 6.7 x 6.7µ, Peltier cooled, 12 bits). 
The camera is lens coupled (1:1.7) using an 85mm photographic lens (Nikon) followed by an inverted 50mm 
photographic lens (Nikon). This configuration was selected because it acts as a low magnification microscope, providing 
a good trade-off between image quality and light capture. The camera readout noise is well below the events of the 
intensified images even for the lowest luminance scene. Only the central 256 x 256 pixels of the image were used, 
subtending 1.01 x 1.01 mm of the phosphor screen, where its curvature can be assumed to be negligible. The following 
parameters were previously measured (or checked) in our laboratory following procedures adapted to international 
standards: luminance stability, luminance uniformity, luminance level, source spectral response, target spectral 
transmission, target contrast, linearity and uniformity of the camera, II tube gain, linearity, MTF, EBI, and signal-to-
noise ratio.  
 

3. RESULTS 
 
Figure 4 shows the first-order statistics for the images yielded by the II tube when imaging a series of uniform-luminance 
scenes of different luminance values (L1, L2 and L3). Series 1 (represented on the graph by rhombuses) shows the mean 
value across the image (in digital counts) captured by the camera. As can be inferred from the graph, the II tube shows a 
completely linear behavior within this luminance range. EBI and residual light are negligible. The automatic gain control 
of the II tube, as could be expected, is not active, taking into account that only the central region of the II tube is 
illuminated (only a few millimeters wide). Hence, the II tube is working in its full-gain regime. This high linearity 
ensures that we can consider a unique global gain factor in between the luminance of the scene and the (mean) response 
of the camera in digital counts. This factor is obtained by carrying out a linear fitting to the data points of series 1. It is 
the overall gain factor used in the APM. Series 2 (represented by the squares) shows the standard deviation of each of the 
three real images. Series 3 (represented by the triangular symbols) shows the ideal Poisson noise. A noise factor of 3.117 
is obtained for this II tube from the linear fitting of the series-2 data, which, in other words, means that the final noise in 



 

 

real images is 3.117 times higher than the corresponding Poisson noise for each luminance. This value is included in both 
simulation methods (6, 7) described above to quantify the noise introduced by the II tube. Finally, Series 4 (represented 
by the circles) shows the expected standard deviation in the image if only Poisson noise and MTF were present. The 
spatial correlation of the noise produces a significant fall in the standard deviation of the signal, as expected. The noise 
factor decreases from 1 (Poisson, Series 3) to 0.044 (Correlated images, Series 4). Hence, the value 0.044 is the Noise 
Reduction Factor (5) that needs to be introduced into (6) to calculate the multiplicative Gaussian distribution that models 
the noise introduced by the II tube, before the spatial correlation caused by the MTF.  
 

 
Figure 4. First-order statistics for the real images. See text for a detailed explanation. 

 
In terms of visual comparison, we have summarized in figure 5 the resulting images of the simulations using both 
methods described above as well as the images experimentally recorded in our laboratory under controlled conditions. In 
all cases the object was an USAF 1951 target (left column). The “REAL” column shows the images experimentally 
captured in the laboratory following the methods described in section 2.3. The simulated images as yielded by the 
Approximate Physical model are located on the “APM” column, whereas the ones simulated following the Synthesis-by-
Analysis method are on the “SBA” column. Rows 1 to 3 corresponds to decreasing levels of background luminance (L1 
to L3) of an USAF 1951 sight with 99% Michelson contrast [(Lmax-Lmin)/ (Lmax+Lmin)]. Rows 5 and 6 correspond to 
a contrast of 25% and luminances L1 and L2. In this bench, the biggest sight of the image (Group 0, Element 1) has an 
angular frequency of 2.5 line pairs per milliradian. Consequently, even with the best contrast and luminance, the night 
vision sight is operating close to its performance limit, since its measured angular resolution is of 6.3.  
 
Figure 6 follows a similar layout as figure 5, but in this case the object was a tank which luminance distribution (or slide 
transmittance distribution) is shown in the left column. Column “REAL” shows the real image emerging from the II tube 
while columns “APM” and “SBA” shows the results for the simulations. Rows 1 and 2 correspond to decreasing 
luminance levels (L1 and L2). Rows 3 and 4 correspond to a tank of half size (simulating double distance). 
 
Regarding the values included in the two simulation methods, the input parameters used in the APM are shown in table 
1, whereas the SBA method makes use of the noise factor (measured on the same images), the measured MTF, the 
transmittance distribution of the object, the background luminance, and a set of 26 input parameters describing the 
texture (obtained from the images of uniform luminance, see 2.2.1). As the background luminance is exactly the same for 
the laboratory images and for the simulated images, no interpolation on the parameters describing the texture is required 
here.    
    

Table 1. Approximate Physical Model input parameters. 
    

Bench II tube Object 
F# = 1.5 S = 1800 Object transmittance distribution 
Tobj= Tcollimator · TObjective= 0.95 · 0.90 EBI = 2.5e-7 Background luminance 
Tatm = 0 Measured MTF Integration time = 111 ms 
m = fobj/fcollimator = 80 / 2497 Noise Factor = 3.117  
Apix = (6.7e-6 · 50/85)2   
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Figure 5. From top to down: USAF 1951 test chart of 99% contrast and luminances L1, L2 and L3 respectively, and USAF chart of 

25% contrast with luminance L1 and L2. From left to right: object, simulated image by APM, real image obtained at laboratory, and 
simulated image by SBA 
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Figure 6. From top to down: tank under luminance level L1 and L2 and the same tank with half size, same luminances. From left to 

right: the object, the simulated image by APM, the real image obtained at laboratory, and the simulated image by SBA 
 
 
 

4. DISCUSSION 
 
The results shown in the previous section prove the ability of both image-simulation methods to generate synthetic 
images under conditions that are close to the performance limits of the II tube. The methods have proven to be robust, 
since the precision shown by simulated images is maintained when varying the simulated object, both in terms of its 
frequency content as well as in terms of its contrast, or the scene luminance. In this sense, figure 5 clearly illustrates how 
the proposed simulation methods can yield useful images capable of predicting the performance threshold of the II tube. 
 
As shown in figure 6, these methods provide a tool to carry out a straightforward assessment of the Static Range 
Performance for night vision systems and turn out to be much more flexible than the indirect methods now in use. For 
instance, something as common as having an oblique view of the object (figure 6) invalidates most of the models used to 
date for the extrapolation of visibility thresholds of sights to the visibility of real objects. 
 



 

 

4.1. Method suitability 
Regarding the two simulation methods employed in the present work, they have resulted to be suitable techniques. The 
most appropriate one depends on the particular situation. When dealing with a well-characterized II tubes, both methods 
turn out to be a powerful tool, both for the II tube’s design and for the subsequent testing/evaluation phase. The APM 
turns out to be specially useful when there are no images available, and it can be helpful for system design or when 
choosing a II tube for a particular application. It is suitable for the simulation of image intensifier photon event counting 
imaging. On the other hand, when there are no reliable parameters available but one can rely on images, the SBA 
technique can yield a better description of the II tube’s potential to be employed in other conditions (and hence, in other 
applications). Furthermore, when the II tube-related noise shows a peculiar statistical distribution or there is a high 
relative amount of background noise or high-intensity photon events are present (as cosmic rays), the SBA approach also 
yields better results. 
 
4.2. MTF 
Both methods the APM and the SBA have ended to have a high potential in terms of understanding the formation of 
intensified images as well as the interaction among parameters and their impact on the final image. In this sense, the 
effect of the MTF on the image, both due to the spatial correlation that it produces (which causes a reduction in noise) 
and to the blur-related image degradation, is a very important issue when working with intensified images.  
 
The MTF is a critical input for both methods and have to be precisely measured. Even though there is no clear criteria as 
to how the MTF should be measured in II tubes, the various approaches available8 are all based on the measurement of 
the image’s blur after carrying out an average to eliminate the noise component. To our understanding, the methods 
proposed in this work can help to design new assessment methods for the II tubes MTF capable of accounting for the 
interaction with noise and that can provide a better image description and a more accurate simulation. 
 
4.3. Video 
A lot has been written about the importance of modeling the temporal evolution of II tubes. Isolated intensified frames 
are seldom used. Temporal integration (carried out either by the eye or by the camera itself or even by an artificial vision 
device) notably improves image quality. Simulated images can be compiled as video sequences simply by putting one 
after the other. This is made possible as different video frames register statistically-independent events, both when 
recording real images and when simulating them. As long as the decay time of the exit phosphor screen (typically equal 
to a few ms) is much lower than the exposure time (which is in the order of tens of ms), there are very few events that 
end up being shared by two consecutive frames. 
  
The main differences between simulation and reality, perceptually speaking, are much smaller for video sequences than 
for static images, like the ones shown in this work.  For frames, the APM method seems to yield more naturally-looking 
images compared to those generated by SBA. This is due to the fact that SBA doesn’t try to achieve an exact replica of 
the texture, but to provoke an equivalent visual sensation. When moving from static images to video sequences, these 
differences turn out to be less noticeable, since the eye is not able to perceive these differences. 
 
4.4. Overcoming limitations 
The methods described here can provide simulated images that could not be acquired in practice, either by unavailability 
of the target or by technological reasons. Furthermore, many image intensifiers are followed by an ocular which prevents 
them from providing high-quality intensified images. The small output pupil limits the quantity of light reaching the 
camera, and besides blur, introduces diffractional effects on the captured image. Simulation can overcome these 
limitations and can generate images that are similar to those perceived by our eye. 
 
4.5. High light levels 
Finally, we want to point out that neither approach has considered a fixed pattern noise (as dark spots or fiber packaging 
pattern), or saturation (automatic gain control activation), since the present work is focused on the range of low 
luminance levels where these effects are negligible. However, taking into account that these effects have a big impact for 
high luminance levels, it could be an interesting subject for future research. 
 
 
 



 

 

5. CONCLUSIONS 
 
Two methods for the simulation of intensified images have been developed within the context of the present work. Both 
techniques yield good results in terms of visual comparison. For want of a more rigorous study, these preliminary results 
suggest that both methods can accurately predict discrimination thresholds for II tubes for any given combination of 
spatial (or angular) frequency, contrast of luminance of the object.   
 
Specifically, these tools can produce a more straightforward measurement of the static range performance of night vision 
systems based on intensified images.  
 
Finally, it is worth to highlight that, unlike other existing models, our approach is quantitative and based only on well-
known or measurable parameters and yields simulated images which remain faithful to reality even in situations that are 
close to the performance limits of the II tube.  
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