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Abstract.

Multispectral image reconstruction allows to combine a multispectral low
resolution image with a panchromatic high resolution one to obtain a new
multispectral image with the spectral properties of the lower resolution
image and the level of detail of the higher resolution one. In this paper
we formulate the problem of multispectral image reconstruction based on
super-resolution techniques and derive an iterative method to estimate the
high resolution multispectral image from the observed images. Finally, the
proposed method is tested on a real Landsat 7 ETM+ image.

1 Introduction

Multispectral images are of interest in commercial, civilian or military areas with
a wide range of applications including GPS guidance maps, land type and us-
age measures or target detection, among others. Nowadays most remote sensing
systems include sensors able to capture, simultaneously, several low resolution
images of the same area on different wavelengths, forming a multispectral im-
age, along with a high resolution panchromatic image. The main characteristics
of such remote sensing systems are the number of bands of the multispectral im-
age and the resolution of those bands and the panchromatic image. For instance,
the Landsat 7 satellite (http://landsat.gsfc.nasa.gov/), equipped
with the ETM+ sensor, allows for the capture of a multispectral image with six
bands (three bands on the visible spectrum plus three bands on the infrared) with
a resolution of 30 meters per pixel, a thermal band with a resolution of 60 meters
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per pixel and a panchromatic band (covering a large zone on the visible spectrum
and the near infrared), with a resolution of 15 meters per pixel.

The main advantage of the multispectral image is to allow for a better land
type and use recognition but, due to its lower resolution, information on the
objects shape and texture may be lost. On the other hand, the panchromatic
image allows a better recognition of the objects in the image and their textures
but gives no information about their spectral properties.

Through this paper we will use the term multispectral image reconstruction
to refer to the joint processing of the multispectral and panchromatic images in
order to obtain a new multispectral image that, ideally, will present the spectral
characteristics of the observed multispectral image and the resolution and quality
of the panchromatic image. The use of this technique, also named pansharpen-
ing, will allow us to obtain, in the case of Landsat 7 ETM+, a multispectral
image with a resolution of 15 meters per pixel.

A few approximations to this problem have been proposed in the literature.
With the Intensity, Hue, Saturation (IHS) transformation method [2], the mul-
tispectral image is transformed from the RGB color space into the IHS do-
main. Then, the intensity component is replaced by the histogram matched
panchromatic image and the hue and saturation components are resampled to
the panchromatic resolution. The inverse IHS transformation is performed to
return to the RGB domain. In [4] after principal component analysis (PCA) is
applied to the multispectral image bands, the first principal component is re-
placed by the panchromatic image and the inverse PCA transform is computed
to go back to the image domain. Some wavelets based approach have been also
proposed. In [5], for instance, a redundant wavelets transform is applied to the
multispectral and panchromatic images and some of the transformed bands of
the multispectral image are either added or substituted by the transform bands
of the panchromatic image. A comparison of such techniques can be found
in [9]. Price [7] proposed a method relying on image based statistical relation-
ships between the radiances in the low and high spatial resolution bands. Later,
Park and Kang [6] modified the statistics estimation method to include spatial
adaptativity. Recently a few super-resolution based methods has been proposed.
Eismann et al. [3] proposed a MAP approach that makes use of a stochastic
mixing model of the underlying spectral scene content to achieve resolution en-
hancement beyond the intensity component of the hyperspectral image. Akgun
et al. [1] proposed a POCS based algorithm to reconstruct hyperspectral images
where the hyperspectral observations from different wavelengths are represented
as weighted linear combinations of a small number of basis image planes. In
this paper we also formulate the problem of multispectral image reconstruction
based on super-resolution techniques and derive an iterative method to estimate
the high resolution multispectral image from the observed images.

The paper is organized as follows. The acquisition model is presented in
section 2. In section 3 the Bayesian paradigm for multispectral image recon-
struction is presented and the required probability distributions are formulated.
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Figure 1. Acquisition model and used notation.

The Bayesian analysis is performed in section 4 to obtain the reconstruction al-
gorithm. Experimental results on a real Landsat 7 ETM+ image are described in
section 5 and, finally, section 6 concludes the paper.

2 Acquisition model

Let us assume that the multispectral image we would observe under ideal con-
ditions with a high resolution sensor has B bands, each one of size p = m × n
pixels. Each band of this image can be expressed as a column vector by lexico-
graphically ordering the pixels on the band as

yb = [yb(1, 1), yb(1, 2), . . . , yb(m,n)]t, b = 1, 2, . . . , B,

where t denotes the transpose of a vector or matrix.
However, in real applications, this image is not available and, instead, we

observe a low multispectral resolution image with P = M ×N pixels, M < m
and N < n, and B bands. Using the previously described ordering, the observed
bands can be expressed as column vectors as

Yb = [Y b(1, 1), Y b(1, 2), . . . , Y b(M,N)]t, b = 1, 2, . . . , B.

Figure 1 illustrates the acquisition model and the used notation.
Each band, Yb, is related to its corresponding high resolution image by

Yb = Hbyb + nb, ∀b = 1, · · · , B, (1)

where Hb is a p × P matrix representing the blurring, the sensor integration
function and the spatial subsampling and nb is the capture noise, assumed to be
Gaussian with zero mean and variance βb−1

.
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A simple but widely used model for the matrix Hb is to consider that each
pixel (i, j) of the low resolution image is obtained according to (for m = 2M
and n = 2N )

Y b(i, j) =
1
4

∑
(u,v)∈Ei,j

yb(u, v) + nb(i, j), (2)

where Ei,j consists of the indices of the four high resolution pixels Ei,j =
{(2i, 2j), (2i + 1, 2j), (2i, 2j + 1), (2i + 1, 2j + 1)} (see right hand side of
figure 1).

The sensor also provides us with a panchromatic image x of size p = m×n,
obtained by spectral averaging the high resolution images yb. This relation can
be modelled as

x =
B∑

b=1

λbyb + ν, (3)

where λb ≥ 0, b = 1, 2, · · · , B, are known quantities that can be obtained,
as we will see later, from the sensor spectral characteristics, and weight the
contribution of each band yb to the panchromatic image x (see left hand side of
figure 1), and ν is the capture noise that is assumed to be Gaussian with zero
mean and variance γ−1.

3 Bayesian Paradigm

Our aim is to reconstruct a specified multispectral image band, yb, from its corre-
sponding observed low resolution band Yb and the high resolution panchromatic
image x. In this paper we also assume that we have estimates of the multispec-
tral high resolution bands yb, b = {j = 1, . . . , B, j 6= b}, that is, the rest of the
bands of the high resolution multispectral image.

Bayesian methods start with a prior distribution, a probability distribution
over images yb where we incorporate information on the expected structure
within an image. In the Bayesian framework it is also necessary to specify
p(Yb|yb,yb) and p(x|yb,yb) the probability distributions of the observed low
resolution image bands Yb and the panchromatic image x if yb and yb were
the ‘true’ high resolution multispectral image bands. These distributions model
how the observed images have been obtained from the ‘true’ underlying multi-
spectral image. Note that we are assuming that the observed panchromatic and
low resolution multispectral images are independent given the high resolution
multispectral image we want to estimate. The Bayesian paradigm dictates that
inference about the true yb should be based on p(yb|Yb,x,yb) given by

p(yb|Yb,x,yb) ∝ p(yb | yb)p(Yb|yb)p(x|yb,yb). (4)

Maximization of Eq. (4) with respect to yb yields

ŷb = arg max
yb

p(yb|Yb,x,yb), (5)
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the maximum a posteriori (MAP) estimate of yb. Let us now study the degrada-
tion and prior models.

3.1 Degradation model

Given the degradation model for multispectral image super-resolution described
by Eq. (1) the distribution of the observed band Yb given yb and yb is given by

p(Yb|yb,yb) = p(Yb|yb) ∝ exp
{
−1

2
β ‖ Yb −Hbyb ‖2

}
. (6)

Note that, in this formulation, p(Yb|yb,yb) does not actually depends on yb

since we are not considering any cross-band degradation. Using the degradation
model in Eq. (3), the distribution of the panchromatic image x given yb and yb

is given by

p(x|yb,yb) ∝ exp

−1
2
γ ‖ x− λbyb −

∑
j∈b

λjyj ‖2

 . (7)

3.2 Image model

It is also necessary to specify p(yb|yb), the probability distribution of the high
resolution image yb given the rest of the bands yb. Although other models are
possible, in this paper we assume that the prior model depends only on that
band being estimated, yb, that is, we do not incorporate any information about
the possible relations with other high resolution bands. Then, our prior knowl-
edge about the smoothness of the object luminosity distribution within each band
makes it possible to model the distribution of yb by a conditional auto-regression
(CAR) [8], that is,

p(yb|yb) = p(yb) ∝ exp
{
−1

2
αb ‖ Cyb ‖2

}
, (8)

where C denotes the Laplacian operator, and αb−1
is the variance of the

Gaussian distribution.

4 Bayesian Inference

Once all the needed probability distributions are defined, the Bayesian analysis
is performed. By substituting Eqs. (6), (7) and (8) into Eq. (5) we obtain

ŷb = arg max
yb

exp
{
−1

2
αb ‖ Cyb ‖2 −1

2
β ‖ Yb −Hbyb ‖2

−1
2
γ ‖ x− λbyb −

∑
j∈b

λjyj ‖2

 . (9)
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(a) (b)

Figure 2. Observed Landsat 7 ETM+ image: (a) Panchromatic image; (b) From upper
left to lower right, the first four bands of the multispectral image

Maximization of Eq. (9) can be carried out by an iterative gradient descendent
algorithm described by

yb
i+1 = yb

i − ε
[
αbCtCyb − βbHbt

(Yb −Hbyb)

−γλb(x− λbyb −
∑
j∈b

λjyj)

 , (10)

where yb
i and yb

i+1 are the high resolution estimates of the band b at the ith
and (i + 1)st iteration steps, respectively, and ε is the relaxation parameter that
controls the convergence and the convergence rate of the algorithm.

Note that Eq. (10) also provides an iterative method to estimate the whole
high resolution multispectral image. Starting with an initial estimate of the high
resolution multispectral image, for each band b Eq. (10) is used to estimate the
corresponding high resolution band keeping the rest of the bands fixed. After yb

is updated the other channels are re-estimated.

5 Experimental results

In order to test this algorithm, a Landsat 7 ETM+ image was used. The image,
centered on latitude 43.178, longitude -70.933 (path 12, row 30 of the satellite)
acquired on 2000-09-27, was processed at level L1G. A region of interest of the
image is displayed in Figure 2. This figure depicts the panchromatic image and
the first four bands of the multispectral image.

The values of λb in Eq. (7) can be obtained from the spectral response of the
ETM+ sensor. Figure 3 depicts the (normalized to one) sensor response for each
wavelength. Note that the panchromatic image covers a region of wavelengths
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Figure 3. Landsat 7 ETM+ band spectral response.

Table 1. Obtained values for λb.
LANDSAT ETM+ band λb LANDSAT ETM+ band λb

1 (0.45 µm to 0.515 µm) 0.015606 2 (0.525 µm to 0.605 µm) 0.22924
3 (0.63 µm to 0.69 µm) 0.25606 4 (0.75 µm to 0.9 µm) 0.49823
5 (1.55 µm to 1.75 µm) 0.0 7 (2.08 µm to 2.35 µm) 0.0

from almost the end of band 1 to the end of band 4, although the sensor sensi-
bility is not constant over the whole range. By summing up the panchromatic
sensor response at each multispectral image band range, and normalizing the
sum to one, we obtain the values of λb displayed on Table 1. Note that λ6 and
λ7 are both zero since they have no contribution to the panchromatic image.

The parameter values of the Bayesian modelling were experimentally chosen
to be αb = 1.0, βb = 0.25 and γb = 0.05, for all the bands. The gradient
relaxation parameter, ε, was chosen to be equal to 1.0. Note that in order to
apply Eq. (10) we also need to calculate

∑
j∈b λjyj . Since the high resolution

bands yb are not currently available, those bands are approximated by the cubic
interpolation of the corresponding low resolution bands and the value of the sum
is kept constant during the reconstruction process. The initial high resolution
band yb

0 in Eq. (10) was obtained by cubic interpolation of its corresponding
low resolution band Yb and the iterative procedure was stopped when ‖ yb

i+1 −
yb

i ‖2< 0.01.
For comparison purposes, the results obtained with the proposed method

were compared with the results of cubic interpolation of the low resolution mul-
tispectral image and the Price method [7]. Figure 4 depicts bands 3 (left) and 4
(right) of the reconstructed multispectral image. This figure clearly shows that
the result of the proposed method (Fig. 4(c)) is crisper than the cubic interpolated
image (Fig. 4(a)) and the result of the Price method (Fig. 4(b)) while preserving
the spectral characteristic of the original bands. Edges in the image are sharp
and do not show the staircase effects present on the Price reconstructed image.

To better compare the results, Fig. 5 depicts the profile of the central row of
the cubic interpolation of band number 4 (Fig. 5(a)) and the resulting band num-
ber 4 from the reconstruction process (Fig. 5(b)). From this profile it is clear that
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Band 3 Band 4

(a)

(b)

(c)
Figure 4. Reconstructed image bands 3 and 4: (a) obtained by cubic interpolation; (b)
obtained by Price method [7]; (c) Obtained by the proposed method.
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Figure 5. Central row profile for band 4 of the reconstructed multispectral image: dotted
for the cubic interpolated image and solid for the reconstructed image.

both the cubic interpolated (dotted line) and the proposed method reconstruction
(solid line) share the same spectral properties but the reconstructed image has a
greater level of detail.

Finally, in order to validate the model in Eq. (3), the panchromatic image is
compared with a simulation of the panchromatic image obtained as

∑B
b=1 λbŷb.

Results are depicted in Fig. 6 where both the panchromatic and the recon-
structed images are displayed as well as a profile of the central row of the im-
ages (Fig. 6(c)). Both images are visually indistinguishable and profiles for the
panchromatic (dotted line) and reconstructed (solid line) images are almost iden-
tical, which validates the proposed model, although some high frequencies have
been lost on the reconstructed image.

6 Conclusions

A new MAP method for multispectral image reconstruction has been presented.
The method effectively combines the information of the panchromatic high res-
olution image with the low resolution multispectral image to obtain a high res-
olution multispectral image with the spectral characteristics of the original mul-
tispectral image and the level of detail of the panchromatic image. Preliminary
results, presented on a Landsat 7 ETM+ image, validate the proposed model.
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(c)

Figure 6. : (a) Panchromatic image; (b) Reconstruction of the panchromatic image from
the super-resolved bands; (c) Central row profile: dotted for the panchromatic image and
solid for the reconstructed image.
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