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ABSTRACT

In this paper we address supervised learning problems where, in-
stead of having a single annotator who provides the ground truth,
multiple annotators, usually with varying degrees of expertise, pro-
vide conflicting labels for the same sample. Once Gaussian Process
classification has been adapted to this problem we propose and de-
scribe how Variational Bayes inference can be used to, given the
observed labels, approximate the posterior distribution of the latent
classifier and also estimate each annotator’s reliability. In the exper-
imental section, we evaluate the proposed method on both generated
synthetic and real data, and compare it with state of the art crowd-
sourcing methods.

Index Terms— crowdsourcing, Gaussian process, multiple la-
bels, variational inference, Bayesian modeling, classification.

1. INTRODUCTION

Supervised learning traditionally relies on a domain expert capable
of providing the necessary supervision. The most common case is
that of an expert providing annotations that serve as labels in classi-
fication problems.

With the recent advent of social web services, data can now be
shared and processed by a large number of users. The use of labels
from multiple annotators for the classification of data has become
a very popular approach especially after the proliferation of crowd-
sourcing services in the last decade. The term crowdsourcing was
coined in 2006 by J. Howe to describe the act of taking a job tradi-
tionally performed by a designated agent (usually an employee) and
outsourcing it to an undefined, generally large group of people in the
form of an open call. Amazon Mechanical Turk (AMT) is an online
system that allows the requesters to hire users from all over the world
to perform crowdsourcing tasks. Galaxy Zoo is a website where vis-
itors label astronomical images. Computer Aided Diagnosis (CAD)
systems are built from labels assigned by multiple experts who come
from a diverse pool. Very often, there is a lot of disagreement among
the annotations.

In this work, we extend the use of Variational Bayes (VB) in-
ference for Gaussian Process (GP) classification to crowdsourcing
problems. We show how the GP hyperparameters, the latent clas-
sifier and the parameters modelling each annotator’s behavior can
be estimated. We also describe how the model should be used to
classify new samples.

This work has been supported in part by the Department of Energy grant
DE-NA0002520 and the Ministerio de Economı́a y Competitividad under
contract TIN2013-43880-R.

The rest of paper is organized as follows. In section 2 a summary
of related works is presented. The probabilistic modelling and infer-
ence procedure to estimate the posterior distributions of the variables
and point estimates of the parameters are presented in sections 3 and
4, respectively. The classification rule for new samples is also pro-
vided in section 4. Experimental results are presented in section 5
and finally section 6 concludes the paper.

2. RELATED WORK

Although the multi-annotator data is a relatively new concept, it has
been used for some time now. To begin with, Dawid and Skeene [1]
used multiple annotator data with conflicting labels to examine the
error rates for medical data. It is also constantly used for the repeated
labeling approach [2] [3], that is based on determining the labels to
be reacquired to improve the classification performance. A variation
on this problem is posed by Jin and Ghahramani [4], where a set of
mutually exclusive labels are assigned to each sample and only one
of the annotators has the correct label.

After the usage of AMT has become more common, this field
of research found its way to many different methods and applica-
tions. Groot et al [5] use Gaussian Processes for a crowdsourcing
regression problem. Moreno et al [6] use a hierarchical approach
that clusters the annotators into groups, combines the labels of all
the annotators in a cluster, then uses the cluster labels to learn the
classifier. Liu et al [7] transform the crowdsourcing problem into
graphical models and then apply approximate variational methods
like Belief Propagation and Mean Field alongside Expectation Max-
imization (EM). Karger et al [8] distribute the task among the anno-
tators, that is, each annotator has part of the data to label; these parts
overlap to create label redundancy for many samples. The problem
is the optimization between redundancy cost and accuracy.

Raykar et al [9, 10] use Logistic Regression (LR) to estimate
the latent classifier and relate the labels provided by each annotator
to the latent classifier by defining conditional probabilities, named
specificity and sensibility to be introduced later. The authors use
EM to estimate all the unknowns. Yan et al [11, 12] make the con-
ditional distribution of the observed labels given the true underlying
ones dependent on the observed features and use LR to model these
conditional distributions. Rodrigues et al [13] and Long et al [14]
use a GP classifier for the latent classifier and use Expectation Prop-
agation (EP) to learn all the model unknowns.

3. BAYESIAN MODELING

Let the training set be D = {(xi, y
1
i , . . . , y

R
i ), i = 1, . . . , N},

where xi is a sample, N is the number of samples, R is the



number of annotators, and yji ∈ {0, 1} denotes the label pro-
vided by the j−th annotator on the i−th sample. We denote by
yj = {yj1, . . . , y

j
N} the labels provided by the j−th annotator,

y = (y1, . . . , yN ) the corresponding true latent (hidden) labels,
X = [x1, . . . ,xN ], and Ya = {y1, . . . ,yR}. Our main goal is
to infer the distribution of y given the information provided by the
annotators.

To model the classification function relating each sample xi to
its corresponding hidden label yi we follow a two stage procedure.
Firstly, we introduce a set of latent variables f = [f1, . . . , fN ] and
write the conditional distribution of y given f as

p(y|f) =
N∏
i=1

(
1

1 + e−fi

)yi
(

e−fi

1 + e−fi

)1−yi

. (1)

For each sample, we have a Bernoulli distribution, where the two
terms in the right hand side of the above equation are positive and
add up to 1. When xi belongs to class 1 (that is yi = 1), only the first
term is considered, and a very large positive value for fi is expected.
When xi belongs to class 0 (that is yi = 0), only the second term is
considered, and a very large negative value for fi is expected.

Secondly, given the features in X we model f using the follow-
ing GP

p(f |X,Θ) = N (f |0,KΘ), (2)

where KΘ is a symmetric positive definite matrix, which is calcu-
lated using kernel functions (see [15] for details). These functions
depend on a set of parameters Θ which will be automatically esti-
mated.

Following [9] we now define the following probabilities, named
sensitivity and specificity, respectively, which relate the observed la-
bels to the latent ones,

αj = p(yj = 1|y = 1) (3)

βj = p(yj = 0|y = 0) (4)

Notice that other models for these conditional distributions are also
possible. For instance, we could make them dependent on the fea-
tures, as in [11, 12] or we could use a simplified model where αj =
βj . Then, assuming that the annotators are independent, we have

p(Ya|y,α,β) =
R∏

j=1

[
N∏
i=1

(
[αj ]y

j
i [1− αj ]1−y

j
i

)yi]

×

[
N∏
i=1

(
[1− βj ]y

j
i [βj ]1−y

j
i

)1−yi

]
(5)

where α = (α1, . . . , αR), β = (β1, . . . , βR).
With all the above ingredients, the probabilistic modelling of our

crowdsourcing problem becomes

p(α,β,Θ, f ,y,Ya|X) = p(α)p(β)p(Θ)p(f |X,Θ)

× p(y|f)p(Ya|y,α,β). (6)

We will use flat priors for α and β and also for Θ.

4. VARIATIONAL INFERENCE

Now we need to find p(α,β,Θ,y|Ya,X) which can only be ap-
proximated because p(Ya|X) can not be calculated.

Let Ω = {α,β,Θ, f ,y}. We use the following approximation
to the posterior distribution

p(α,β,Θ, f ,y|Ya,X) ≈ q(α)q(β)q(Θ)q(f)q(y) = q(Ω) (7)

where q(α), q(β), q(Θ) are all degenerate distributions, that is,
they take a single value with probability one and the rest have
probability zero and q(f) and q(y) are non-degenerate.

We will find the approximating distribution by solving

q̂(Ω) = argmin
q(Ω)

KL(q(Ω)||p(Ω|Ya,X))

= argmin
q(Ω)

∫
q(Ω) ln

q(Ω)

p(Ω,Ya|X)
dΩ (8)

The Kullback-Leibler (KL) divergence is always non-negative and
it is equal to zero if and only if q(Ω) and p(Ω,Ya|X) coincide.
However, because of the functional form of (1), the KL divergence
cannot be directly evaluated.

To overcome this problem, a variational bound [15] will be used.
We have for any ξ > 0

σ(z) =
1

1 + e−z
≥ σ(ξ) exp

(
z − ξ
2
− λ(ξ)(z2 − ξ2)

)
(9)

where

λ(ξ) =
1

2ξ
(σ(ξ)− 1

2
) (10)

Thus, we have

p(y|f) ≥ exp

(
yT f − fTΛf + ξTΛξ − 1

2
1T(f + ξ)

)
×

N∏
i=1

σ(ξi) = H(y, f , ξ) (11)

where

Λ = diag(λ(ξ1), λ(ξ2) . . . λ(ξN )). (12)

We then have the following lower bound for the joint distribution

p(Ω,Ya|X) ≥M(Ω,Ya, ξ|X) = p(α)p(β)p(Θ)

× p(f |X,Θ)H(y, f , ξ)p(Ya|y,α,β) (13)

which produces

KL(q(Ω)||p(Ω|Ya,X)) ≤ KL(q(Ω)||M(Ω,Ya, ξ|X)) (14)

which is mathematically tractable.
Now, we can use lnM(Ω,Ya, ξ|X) to obtain q̂(Ω). This dis-

tribution consists of α̂, β̂, and Θ̂, the values where q̂(α), q̂(β), and
q̂(Θ) are degenerate, and the posterior distributions approximations
q̂(f) and q̂(y).

Let ω ∈ Ω and Ωω = Ω\ω, then for ω ∈ {α,β,Θ}, if we
fix q(Ωω), the degenerate distributions minimizing the Kullback-
Leibler divergence have the form

q(ω) =

{
1 at ωo = argmax

ω
< lnM(Ω,Ya, ξ|X)>q(Ωω)

0 elsewhere
(15)

Furthermore for ω ∈ {f ,y}

ln q(ω) = < lnM(Ω,Ya, ξ|X)>q(Ωω) + const (16)



Algorithm 1 GP for Crowdsourcing

Require: X, Ya, ξ0 = 1, q0(y) the product of Bernoulli distribu-
tions (we only need the probability of yi = 1), an initial guess.

1: n = 0;
2: repeat
3: Calculate Θn+1 using qn(y), ξn in eq. (23);
4: Calculate αn+1 using qn(y) in eq. (21);
5: Calculate βn+1 using qn(y) in eq. (22);
6: Calculate qn+1(f) using qn(y), ξn, Θn+1 in eq. (18);
7: Calculate qn+1(y) using αn+1, βn+1 and qn+1(f) in eq.

(19);
8: Calculate ξn+1 using qn+1(f) in eq. (20);
9: n = n+ 1;

10: until Convergence

For q(f) we observe that < lnM(Ω,Ya, ξ|X)>q(Ωf ) is a
quadratic function on f and so, the posterior distribution will be
Gaussian. Mean and covariance matrix are calculated by taking first
and second order derivatives of ln q(ω). Thus we obtain:

µf = Σf (<y>− 1

2
1), (17)

Σf = KΘ −KΘW(I + WKΘW)−1WKΘ (18)

where W =
√
2Λ1/2.

For q(y), each yi can only take two values. We have:

q(yi = 0) ∝
R∏

j=1

[1− βi]y
j
i [βi]

1−y
j
i ,

q(yi = 1) ∝ exp(<fi>)

R∏
j=1

[αi]
y
j
i [1− αi]

1−y
j
i , (19)

We now proceed to find the values taken by the degenerate posterior
distribution approximations.

To find ξ we have

ξi =
√
<(fi)2> =

√
(<fi>)2 + Σf (i, i). (20)

To find α we again differentiate the bound and equate it to zero
obtaining:

αj =

∑
i < yi > yji∑
i < yi >

(21)

and analogously

βj =

∑
i(1− < yi >)(1− yji )∑

i(1− < yi >)
. (22)

We finally proceed to estimate the kernel parameters. We have

Θo = argmin
Θ

ln |KΘ + (2Λ)−1|+ zT (KΘ + (2Λ)−1)−1z

(23)

where z = 1
2
Λ−1(<y>− 1

2
1).

The whole estimation procedure is summarized in Algorithm 1.
We now describe the process to classify a new feature vector.

Given a new feature vector x∗ and the corresponding latent variable
f∗, the predictive distribution for class C1 given x∗ will then be

p(C1|x∗) =

∫
σ(f∗)p(f∗|y)df∗ (24)

To calculate this quantity we first notice that

p(f∗|y) =
∫

f

p(f∗|f)p(f |y)df ≈
∫

f

p(f∗|f)q̂(f)df . (25)

Furthermore,(
f
f∗

)
∼ N

([
0
0

]
,

[
K h
hT c

])
(26)

where h = [k(x1,x∗), k(x2,x∗), . . . , k(xN ,x∗)]
T , c = k(x∗,x∗)

and we have removed Θ̂ for simplicity.
Then, from eq. (26)

p(f∗|f) = N (f∗|hTK−1f , c− hTK−1h) (27)

furthermore

p(f |y) ≈ q̂(f) = N (f |µ̂f , Σ̂f ). (28)

Combining the above two equations in eq. (25) we obtain

p(f∗|y) = N (f∗|a, b2) (29)

where

a = hTK−1µ̂f (30)

b2 = hTK−1Σ̂fK
−1h + c− hTK−1h. (31)

We finally have

p(C1|x∗) =

∫
σ(f∗)N (f∗|a, b2)df∗ ≈ σ(κ(b2)a) (32)

where κ(b2) = (1 + πb2/8)−1/2. (see [15] eq. (4.153) for details.)
Notice that a threshold, 0 ≤ γ ≤ 1, should now be used on

p(C1|x∗) to assign a new sample x∗ to C1. If γ = 1/2 we only need
to check whether a ≥ 0. In the experimental section we will report
ROC curves.

A simple multiclass extension is obtained by using a one-vs-all
approach.

5. EXPERIMENTS

In this section we evaluate the proposed method on both synthetic
and real datasets. We also compare with other the-state-of-the-art
methods, such as Raykar et al [9], Yan et al[11, 12] and Rodrigues
et al [13] which have been described in Section 2.

5.1. Synthetic Experiment

In Fig. 1 a) we plot the synthetic dataset. 200 samples are randomly
selected in the interval [−π, π]. The real labels are assigned accord-
ing to the sign of the cosine function on each sample, that is, if the
cosine of a given sample is positive, the sample is assigned to class
C1, but if the cosine is negative the sample is assigned to class C0.

We simulate 5 different annotators by fixing the values of sen-
sitivity and specificity to α = {0.9, 0.7, 0.8, 0.1, 0.9} and β =
{0.6, 0.8, 0.5, 0.2, 0.8}, respectively. If the true label of the i-th
sample is yi = 1, the j-th annotator assigns it to class C1 with prob-
ability αj , while if the true label is yi = 0, the annotator assigns
it to class C0 with probability βj . In Fig. 1 b)-f) we plot the la-
bels assigned by each annotator. Notice that annotators 1,2,3, and
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Fig. 1. a) Original data set labeled using sign of cosine function. b) - f) Labels provided by annotators 1,2,3,4 and 5 respectively.

Rea. Raykar Yan Rodrigues GPCR
1 0.4200 0.4200 1.0000 1.0000
2 0.4400 0.6640 0.9999 1.0000
3 0.5800 0.5800 1.0000 1.0000
4 0.5000 0.6825 1.0000 1.0000
5 0.4700 0.6781 0.9994 0.9998
6 0.4900 0.6711 1.0000 1.0000
7 0.4300 0.6637 0.9996 1.0000
8 0.5500 0.4500 1.0000 0.9999
9 0.4900 0.5100 0.9998 0.9999

10 0.5100 0.5100 1.0000 1.0000
Mean 0.4880 0.5829 0.9999 1.0000

Table 1. Area under ROC curve for 10 realizations of synthetic ex-
periment.

5 make few mistakes; however annotator 4 is assigning most sam-
ples to the opposite class. This behavior is known in the literature as
“spammer” [16].

The experiment is repeated 10 times with different training sets
of 200 samples (100 of each class). In each realization, we also
generate a test set with 200 samples (100 each class).

Table 1 shows the area under the ROC curve (AUC) for each re-
alization for the compared methods. The proposed method, referred
as GPCR (Gaussian Process for Crowdsourcing), manages to totally
separate classes for most realizations, obtaining AUC = 1.0. The
method proposed by Rodrigues et al also achieves high accuracy,
reaching AUC = 1.0 in some cases; however we can see that the
mean AUC is slightly worse than the proposed method. The meth-
ods of Raykar and Yan obtain AUC near 0.5, i.e., similar to random
classifiers. In Fig. 1 a) we observe that C0 has two disconnected parts
and C1 is in the middle. The methods of Raykar and Yan consider
Logistic Regression to model the global classifier. Therefore their
decision boundaries are hyperplanes which cannot separate the two
classes with the given configuration. The proposed and Rodrigues’
methods use GP to model the global classifier which uses the kernel
trick [15] to define more complex decision boundaries than a hyper-
plane. In this case, we have used a Gaussian kernel (perhaps the
most commonly used kernel in the literature) and as we have seen,
it separates the two classes successfully. Sensitivity and specificity
values obtained in realization 7 are shown in Table 2. We can see
that all methods estimate values very near to the original ones. The
highest error for the proposed method is 0.0594, while for Raykar

Original Raykar Rodrigues GPCR
Ann. α β α β α β α β

1 0.9 0.6 0.9482 0.5702 0.8789 0.5298 0.9594 0.6034
2 0.7 0.8 0.7169 0.7705 0.6435 0.7263 0.7070 0.7818
3 0.8 0.5 0.7731 0.5174 0.7365 0.4962 0.7685 0.5254
4 0.1 0.2 0.1187 0.2528 0.1886 0.2874 0.1117 0.2188
5 0.9 0.8 0.9834 0.8673 0.8062 0.7374 0.8993 0.8216

Table 2. Estimated sensitivity and specificity values in synthetic
experiment.

and Rodrigues methods are 0.0834 and 0.0938, respectively.

5.2. Real Experiment

In this experiment, the proposed method is evaluated on a real
dataset. This dataset is provided by Rodrigues in his website [13].
The dataset consists of more than 10000 sentences and the goal is to
decide if they express a positive or negative sentiment. The dataset
also contains the true labels (not available in a real case) which
allow us to evaluate the performance of the different crowdsourcing
methods.

The dataset is split into training (5000 samples) and testing
(5428 samples) subsets. To obtain the labels from a set of anno-
tators, the training set was made available on Amazon Mechanical
Turk [17], where more than 27000 labels were obtained from 203
different annotators.

As can be observed from the total number of labels in the dataset,
most of the samples are not labelled by all the annotators. To avoid
this problem, we utilize here a reduced version of Rodrigues’ train-
ing set. We consider only the two annotators with the maximum
number of common labeled samples, we are currently working on
the extension of our model to missing labels. Thus our training set
has 946 samples and the labels are provided by only two annotators.
To evaluate the performance, we use the original test set provided by
Rodrigues et al. [13]

In Fig. 2, we plot the ROC curves generated by the compared
methods. The dashed line is the ROC curve obtained by a GP clas-
sifier trained with the true training labels. This method reaches an
AUC = 0.7171 and constitutes an upper bound for the proposed
method. The green line is the ROC curve obtained by the proposed
method which corresponds to AUC = 0.7029, very near to the up-
per bound. Red, cyan and blue lines are the ROC curves for Raykar,
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Fig. 2. ROC curves for experiment with real dataset.

Yan and Rodrigues methods, respectively. The corresponding areas
under the ROC curves are AUC = 0.6652, AUC = 0.6622 and
AUC = 0.6723, repectively. In all cases we observe that these
methods perform slightly worse than the proposed method.

6. CONCLUSION

In this paper we present a new approach to address the crowdsourc-
ing problem. The global classifier is modeled using Gaussian Pro-
cesses, while the sensitivity and specificity of each annotator are
modeled using two parameters to be estimated. Unlike other meth-
ods in the literature, the inference procedure is carried out using Vari-
ational Bayes inference, which leads to an iterative algorithm where
all parameters are estimated automatically. In the experimental sec-
tion we evaluate the performance of the proposed method with both
synthetic and real datasets. We also compare with other state-of-
the-art methods, and confirm that the proposed method outperforms
them.
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