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Abstract. In this paper we propose a novel algorithm for the pansharpening of multispectral
images based on the use of a Total Variation (TV) image prior. Within the Bayesian formulation,
the proposed methodology incorporates prior knowledge on the expected characteristics of
multispectral images, and uses the sensor characteristics to model the observation process
of both panchromatic and multispectral images. The pansharpened multispectral images are
compared with the images obtained by other parsharpening methods and their quality is assessed
both qualitatively and quantitatively.

1. Introduction
Remote sensing systems include sensors able to capture, simultaneously, several low resolution
(LR) images of the same area on different wavelengths, forming a multispectral image, along
with a high resolution (HR) panchromatic image. The technique called pansharpening is
a multispectral image reconstruction technique that jointly process the multispectral and
panchromatic images in order to obtain a new multispectral image that, ideally, exhibits
the spectral characteristics of the observed multispectral image and the resolution of the
panchromatic image. In the literature, a number of pansharpening methods has been proposed
(see, for instance, [1, 2] and the comparison of algorithms in [3]) some of them based on super-
resolution techniques [4]. Recently a new Bayesian variational framework for total variation
(TV) based image restoration problems has been presented [5]. Here we explore and adapt
this TV framework and propose a new super-resolution based reconstruction method to the
pansharpening of multispectral images.

The paper is organized as follows. In section 2 the Bayesian modeling and inference for
super-resolution reconstruction of multispectral images is presented. Section 3 describes the
variational approximation of the posterior distribution of the HR multispectral image and
unknown hyperparameters and how inference is performed. Section 4 presents experimental
results and section 5 concludes the paper.

2. Bayesian Modeling and Inference
Let us assume that y, the unknown HR multispectral image we would have observed under ideal
conditions, has B bands yb, b = 1, . . . , B, each of size p = m× n, that is, y = [yt1,y

t
2, . . . ,y

t
B]t,

where each band of this image is expressed as a column vector by lexicographically ordering



the pixels in the band, and t denotes the transpose of a vector or matrix. The observed LR
multispectral image Y has B bands Yb, b = 1, . . . , B, each of size P = M × N pixels, with
M < m and N < n. These images are also stacked into the vector Y = [Yt

1,Y
t
2, . . . ,Y

t
B]t,

where each band of this image is also expressed as a column vector by lexicographically ordering
the pixels in the band. The sensor also provides us with a panchromatic image x of size p = m×n,
obtained by spectrally averaging the HR images yb.

The objective of the HR multispectral image reconstruction is to obtain an estimate of the
unknown HR multispectral image y given the panchromatic HR observation x and the LR
multispectral observation Y. The Bayesian formulation of this problem requires the definition
of the joint distribution p(Ω,y,Y,x). We define this joint distribution as p(Ω,y,Y,x) =
p(Ω)p(y|Ω)p(Y,x|y,Ω), where Ω denotes the set of hyperparameters needed to describe the
required probability density functions, and inference is based on p(Ω,y|Y,x). Let us now
describe those probability distributions.

In this paper we use a TV image prior [6] for each band (the correlation among HR bands is
not taken into account), thus defining the multispectral image prior

p(y|Ω) =
B∏
b=1

p(yb|αb) ∝
B∏
b=1

α
p/2
b exp [−αbTV(yb)] , (1)

with TV(yb) =
∑p
i=1

√
(∆h

i (yb))2 + (∆v
i (yb))2, where ∆h

i (yb) and ∆v
i (yb) represent the

horizontal and vertical first order differences at pixel i respectively, αb is the model parameter
of the band b, and the partition function has been approximated using the approach in [5].

We assume that Y and x, for a given y, are independent and write p(Y,x|y,Ω) =
p(Y|y,Ω)p(x|y,Ω).

For each multispectral image band, we consider the model Yb = Hyb + nb, b = 1, . . . , B,
where the degradation matrix H can be written as H = DB, with B a p × p blurring matrix
and D a P × p decimation operator, and nb is the noise term assumed to be independent white
Gaussian of known variance β−1

b . The distribution of the observed image Y given y is

p(Y|y,Ω) =
B∏
b=1

p(Yb|yb, βb) ∝
B∏
b=1

βb
P/2 exp

{
−1

2
βb ‖ Yb −Hyb ‖2

}
. (2)

The panchromatic image x is modeled as x =
∑B
b=1 λbyb + v, where λb ≥ 0, b = 1, 2, . . . , B,

are known quantities that can be obtained from the sensor spectral characteristics, and v is the
capture noise that is assumed to be Gaussian with zero mean and known variance γ−1. Based
on this model, the distribution of the panchromatic image x given y, then becomes

p(x|y, γ) ∝ γp/2 exp

{
−1

2
γ ‖ x−

B∑
b=1

λbyb ‖2
}
. (3)

Although the estimation of the parameter vector (β1, . . . , βB, γ) can be incorporated in the
estimation process to be described next, we will assume here that these parameters are known
or have been estimated in advance and concentrate on gaining insight into the estimation of the
prior parameters. The set of hyperparameters then becomes Ω = (α1, . . . , αB). We will assume
the following distribution on the hyperparameters

p(Ω) =
B∏
b=1

Γ(αb | aoαb , c
o
αb

) , (4)

where each of the hyperparameters ω in Ω has as hyperprior the gamma distribution, that is,
Γ(ω | aoω, coω) ∝ [ω]a

o
ω−1 exp[−coωω], where coω > 0 and aoω > 0. This gamma distribution has the

mean E[ω] = aoω/c
o
ω and variance var[ω] = aoω/(c

o
ω)2.



3. Bayesian Inference and Variational Approximation of the Posterior Distribution
As already known, the Bayesian paradigm dictates that inference on y should be based on

p(Ω,y|Y,x) = p(Ω,y,Y,x)/p(Y,x). (5)

with p(Ω,y,Y,x) = p(Ω)p(y|Ω)p(Y|y)p(x|y), where p(Ω), p(y|Ω), p(Y|y) and p(x|y) have
been defined in Eqs. (4), (1), (2) and (3), respectively.

Since p(Ω,y|Y,x) can not be found in closed form, we apply variational methods to
approximate this distribution by a distribution q(Ω,y). The variational criterion used to find
q(Ω,y) is the minimization of the Kullback-Leibler (KL) divergence, given by [7]

CKL(q(Ω,y)||p(Ω,y|Y,x)) =
∫

q(Ω,y) log
(

q(Ω,y)
p(Ω,y|Y,x)

)
dΩdy

=
∫

q(Ω,y) log
(

q(Ω,y)
p(Ω,y,Y,x)

)
dΩdy + const

= M(q(Ω,y)) + const , (6)

which is always non negative and equal to zero only when q(Ω,y) = p(Ω,y|Y,x).
Due to the form of the TV prior, the above integral can not be evaluated. We can however

majorize the TV prior by a function which renders the integral easier to calculate. Let us
consider the following inequality, also used in [8], which states that, for any w ≥ 0 and z > 0

√
w ≤ w + z

2
√
z
. (7)

Let us define, for yb and ub, where ub is any p-dimensional vector ub ∈ (R+)p, with
components ub(i), i = 1, . . . , p, the following functional

M(αb,yb,ub) = α
p/2
b exp

[
−αb

2

∑
i

(∆h
i (yb))2 + (∆v

i (yb))
2 + ub(i)√

ub(i)

]
. (8)

Now, using the inequality in Eq. (7) with w = (∆h
i (yb))2 + (∆v

i (yb))
2 and z = ub(i), and

comparing Eq. (8) with Eq. (1), we obtain p(y|Ω) ≥ c ·
∏B
b=1 M(αb,yb,ub). This leads to the

following lower bound for the joint probability distribution

p(Ω,y,Y,x) ≥ c · p(Ω)

[
B∏
b=1

M(αb,yb,ub)

]
p(Y|y)p(x|y) = F(p(Ω,y,Y,x,u) , (9)

where u = [ut1,u
t
2, . . . ,u

t
B]t.

Hence, by defining

M̃(q(Ω,y),u) =
∫

q(Ω,y) log
(

q(Ω,y)
F(Ω,y,Y,x,u)

)
dΩdy, (10)

and using Eq. (9), we obtain

M(q(Ω,y)) ≤ min
u
M̃(q(Ω,y),u) . (11)

Therefore, by finding a sequence of distributions {qk(Ω,y)} that monotonically decreases
M̃(q(Ω,y),u) for a fixed u, a sequence of an ever decreasing upper bound of
CKL(q(Ω,y)||p(Ω,y|Y,x)) is also obtained due to Eq. (6). However, also minimizing M(q(y))



with respect to u, generates a sequence of vectors {uk} that tightens the upper-bound for
each distribution qk(Ω,y). Therefore, the two sequences {qk(Ω,y)} and {uk} are coupled.
We develop the following iterative algorithm to find such sequences for calculating the
approximating posteriors q(Ω,y) = q(Ω)q(y). We note that the process to find the best posterior
distribution approximation of the image in combination with u is a very natural extension of
the Majorization-Minimization approach to function optimization [9].

Algorithm 1 Posterior image distribution estimation.

Given u1 ∈ (R+)Bp, for k = 1, 2, . . . until a stopping criterion is met:
Find

qk(y) = arg min
q(y)

∫
qk(Ω) q(y)× log

(
qk(Ω) q(y)

F(Ω,y,Y,x,uk)

)
dΩdy , (12)

uk+1 = arg min
u

∫
qk(Ω) qk(y)× log

(
qk(Ω) qk(y)

F(Ω,y,Y,x,u)

)
dΩdy , (13)

qk+1(Ω) = arg min
q(Ω)

∫
q(Ω) qk(y)× log

(
q(Ω) qk(y)

F(Ω,y,Y,x,uk+1)

)
dΩdy . (14)

Set q(Ω) = limk←∞ qk(Ω) and q(y) = limk←∞ qk(y).

To calculate uk+1
b , for b = 1, . . . , B, we have from Eq. (14) that

uk+1
b = arg min

ub

∑
i

Eqk(y)

[
∆h
i (yb))2 + (∆v

i (yb))
2
]

+ ub(i)√
ub(i)

, (15)

and consequently uk+1
b (i) = Eqk(y)

[
∆h
i (yb))2 + (∆v

i (yb))
2
]
, for i = 1, . . . , p. It is clear from this

equation that the vector uk+1
b is a function of the spatial first order differences of the unknown

image y under the distribution qk(y) and represents the local spatial activity of yb.
To calculate qk(y), we observe that differentiating the integral on the right-hand side of

Eq. (13) with respect to q(y) and setting it equal to zero, we obtain that

qk(y) = N
(
y | Eqk(y)[y], covqk(y)[y]

)
, (16)

with
covqk(y)[y] = A−1(Ω,uk) , and Eqk(y)[y] = covqk(y)[y]φk , (17)

where φk is the (B × p) × 1 vector φk =
(
diag(β)⊗Ht

)
Y + γ (diag(λ)⊗ Ip)

(
xt,xt, . . . ,xt

)t
,

and

A(Ω,uk) =


α1G(uk1) 0p . . . 0p

0p α2G(uk2) . . . 0p
...

...
. . .

...
0p 0p . . . αBG(ukB)

+ diag(β)⊗HtH + γ(λλt)⊗ Ip ,

where ⊗ is the Kronecker product, β = (β1, β2, . . . , βB)t, λ = (λ1, λ2, . . . , λB)t, and

G(ukb ) = (∆h)tW (ukb )(∆
h) + (∆v)tW (ukb )(∆

v) , for b = 1, . . . , B , (18)



where ∆h and ∆v represent p× p convolution matrices associated with the first order horizontal
and vertical differences, respectively, and W (ukb ) is a p × p diagonal matrix of the form

W (ukb ) = diag
(
ukb (i)

− 1
2

)
, for i = 1, . . . , p. This matrix W (ukb ) can be interpreted as a spatial

adaptivity matrix since it controls the amount of smoothing at each pixel location depending on
the strength of the intensity variation at that pixel, as expressed by the horizontal and vertical
intensity gradient.

By differentiating the integral on the right hand side of Eq. (14) with respect to q(Ω) and
setting it equal to zero we obtain

qk+1(Ω) =
B∏
b=1

qk+1(αb) =
B∏
b=1

Γ

(
αb|aoαb +

p

2
, coαb +

p∑
i

√
uk+1
b (i)

)
. (19)

For the means of these distributions the following expressions can be found

1
Eqk+1(Ω)[αb]

= µαb
1
ᾱob

+ (1− µαb)
2
∑p
i

√
uk+1
b (i)

p
, b = 1, . . . , B, (20)

where ᾱob =
aoαb
coαb

and µαb =
aoαb

p/2+aoαb
for b = 1 . . . , B. The above equations indicate that µαb ,

b = 1, . . . , B, can be understood as normalized confidence parameters taking values in the
interval [0, 1). That is, when they are zero no confidence is placed on the given hyperparameters,
while when the corresponding normalized confidence parameter is asymptotically equal to one
it fully enforces the prior knowledge of the mean (no parameter estimation is performed).

4. Experimental Results
Results are presented on a multispectral LandSat ETM+ image. We simulate a multispectral
image and a panchromatic image by convolving the original multispectral image (depicted in
Fig. 1(a)) and its corresponing panchromatic image with the mask 0.25×12×2 and downsampling
them by a factor of two in each direction by discarding every other pixel, obtaining the observed
multispectral and panchromatic images shown in Fig. 1(b) and 1(c), respectively.

The proposed algorithm was ran until the criterion ‖yk − yk−1‖2/‖yk−1‖2 < 10−4 was
satisfied, where yk denotes the mean of qk(y).The proposed algorithm required 5 iterations
to converge. According to the ETM+ sensor spectral response, the panchromatic image covers
only the spectrum of a part of the first four bands of the multispectral image. Hence, we apply
the proposed method with B = 4. The values of λb, b = 1, 2, 3, 4, calculated from the spectral
response of the ETM+ sensor, are equal to 0.0078, 0.2420, 0.2239, and 0.5263, for bands one to
four, respectively [4]. The value of the parameters βb, b = 1, 2, 3, 4 and γ where estimated by the
method in [4] since it uses the same degradation models than the proposed method. The method
in [4], however, cannot provide with accurate information for the parameters αb, b = 1, . . . , 4
and, hence, their values are estimated using the proposed algorithm with µαb = 0, b = 1, . . . , 4.

The quality of the reconstruction is assessed by means of the peak signal-to-noise ratio
(PSNR) between each band of the reconstructed and original multispectral images, and the
standard ERGAS index [10]. The lower the value of this index the higher the quality of the
multispectral reconstructed image. Table 1 shows the resulting PSNR and ERGAS values for
the reconstructions of the image using the proposed method, the pansharpening method in [2]
and the pansharpening method in [4]. The reconstructed images corresponding to those methods
are displayed in Fig. 1(d)–1(f). The proposed model produces better results recovering the HR
structures of the original image while reducing at the same time the amount of noise.



Table 1. Values of PSNR,and ERGAS for the image in Fig. 1.
PSNR ERGAS

Method / Band 1 2 3 4
Method in [2] 31.39 28.97 25.64 30.41 6.91
Method in [4] 34.06 31.59 21.28 32.34 8.80
Proposed model 33.79 31.91 28.81 27.31 5.99

(a) (b) (c)

(d) (e) (f)

Figure 1. (a) False RGB color image composed of the LR bands 3, 4, and 2 of the original
multispectral image; (b) Observed (simulated) multispectral image; (c) Observed (simulated)
panchromatic image; (d) Reconstruction using the method in [2]; (e) Reconstruction using the
method in [4]; (f) Reconstruction using the proposed model.

5. Conclusions
We have presented a new method for TV-based pansharpening of multispectral images using a
super-resolution approach. The proposed method takes into account the sensor characteristics in
the image formation model. We have used the variational approach to approximate the posterior
distribution of the pansharpened multispectral image. Based on the presented experimental
results, the proposed method performs better the methods in [2] and [4].
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