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ABSTRACT

Super Gaussian (SG) distributions have proven to be very
powerful prior models to induce sparsity in Bayesian Blind
Deconvolution (BD) problems. Their conjugate based rep-
resentations make them specially attractive when Variational
Bayes (VB) inference is used since their variational parame-
ters can be calculated in closed form with the sole knowledge
of the energy function of the prior model. In this work we
show how the introduction in the SG distribution of a global
strength (not necessary scale) parameter can be used to im-
prove the quality of the obtained restorations as well as to
introduce additional information on the global weight of the
prior. A model to estimate the new unknown parameter within
the Bayesian framework is provided. Experimental results, on
both synthetic and real images, demonstrate the effectiveness
of the proposed approach.

Index Terms— Bayesian methods, image processing,
image restoration, Super Gaussian, blind deconvolution.

1. INTRODUCTION

Blind image deconvolution is the problem of restoring an
image x from its blurred and noisy version y when the blur
H is unknown. Generally, the image y is modeled as

y = Hx + n , (1)

where n is the noise. Both y, x and n are lexicographically
arranged N × 1 vectors, and H is an N ×N matrix. In many
cases the blur H is spatially-varying, but in this paper we as-
sume that H is a spatially invariant two dimensional convolu-
tion operator of unknown nucleus h. Since h, x and n are un-
known, the problem is highly ill-posed and there are infinitely
many solutions for x and h.
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Blind image deconvolution is a widely investigated prob-
lem in signal/image processing and computer vision [1], and
recently attracted much attention mostly geared towards re-
moving camera shake [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Fer-
gus et. al. [2] employed the variational Bayesian approach of
Miskin and Mackay [13] with a mixture-of-Gaussians (MoG)
image prior for modeling natural image statistics. After the
success of this approach, subsequent methods proposed new
image and blur modeling schemes and highly efficient infer-
ence methods [5, 6, 7, 8].

In [14] a general VB blind deconvolution method, which
can be used on a large family of sparsity promoting priors,
was proposed. In this paper we extend the model in [14] by
the introduction of a global scale parameter which is used to
improve the quality of the restoration. The parameter is auto-
matically estimated.

The rest of this paper is organized as follows. Section 2
describes our Bayesian modelling of the blind deconvolution
problem. The Bayesian inference and the proposed algorithm
are described in Section 3. In Section 4 we present the exper-
imental results. Section 5 concludes the paper.

2. BAYESIAN MODELS

2.1. Degradation model

In this paper the deconvolution problem is formulated in the
filter space [5, 8], by applying high-pass filters {Fγ}Lγ=1

(such as derivatives, wavelets, curvelets, etc.) to the blurred
noisy image y to obtain L pseudo-observations

yγ = Fγy = HFγx + Fγn = Hxγ + nγ , (2)

with xγ = Fγx, and nγ = Fγn. In (2) it is assumed that H
and Fγ have the same set of e-vectors, so that they commute.

Assuming that n is uncorrelated white Gaussian noise of
known inverse variance β, we define the distribution of the
observed images yγ as

p(yγ |xγ ,h) = N (yγ |Hxγ , β
−1
γ I) , (3)



Table 1. Different choices for the penalty function
Label ρ(s) ρ′(s)/|s|
`p , 0 < p ≤ 1 1

p |s|
p |s|p−2

log log(ε+ |s|) (ε+ |s|)−1|s|−1

bup, p > 2 1
2−p (ε+ |s|)

2−p (ε+ |s|)−p

where we use the approximation 1
βFγF

T
γ ≈ 1

βγ
I.

2.2. Prior models

Let us now proceed to model our prior knowledge on the
image. To promote sparsity on xγ (derivatives, wavelets,
curvelets, ...) we could use on each xγ(i) a Super Gaussian
distribution,

p (xγ(i)|αγ) = Zγ(αγ) exp (−αγρ (xγ(i))) , (4)

for i = 1, . . . , N , where Zγ(αγ) is the partition function, and
the parameter αγ > 0 globally regulates the prior strength.
Table 1 shows some penalty functions, corresponding to SG
distributions (see [14]). In Table 1, the acronym bup stands
for the, so-called in [14], bottom-up approach, for a given
value of p.

Notice that the global parameter αγ in (4), which is not
considered in [14] but introduced in this work, plays a very
important role as we will see in the experimental section. No-
tice also that, it represents much more than a rescaling of
xγ(i), see for instance the log prior in Table 1 where the in-
troduction of the αγ represents powering in the filter space.

For p (xγ(i)|αγ) in (4) to be SG, ρ(·) has to be symmetric
around zero, and the function ρ(

√
s) has to be increasing and

concave for s ∈ (0,∞) [15]. This condition is equivalent
to ρ′(s)/s being decreasing on (0,∞). If this condition is
satisfied, then ρ can be represented as (see [16, Ch. 12])

ρ (xγ(i)) = inf
ηγ(i)>0

1

2
ηγ(i)x

2
γ(i) − ρ∗

(
1

2
ηγ(i)

)
(5)

⇒ ρ (xγ(i)) ≤
1

2
ηγ(i)x

2
γ(i)− ρ∗

(
1

2
ηγ(i)

)
(6)

where inf denotes the infimum, ρ∗ (·) is the concave conju-
gate of ρ(·) and ηγ = {ηγ(i)}Ni=1 are positive variational
parameters. These parameters have an intuitive meaning and
extreme importance in the deconvolution performance, as will
be shown later. The relationship dual to (5) is given by [16]

ρ∗
(
1

2
ηγ(i)

)
= inf
xγ(i)

1

2
ηγ(i)x

2
γ(i)− ρ (xγ(i)) . (7)

The quadratic bound for ρ in (6) allows us to bound the prior

in (4) with a Gaussian form, specifically we can write

p (xγ(i)|αγ)

≥ Zγ(αγ) exp[−αγ(
1

2
ηγ(i)x

2
γ(i)− ρ∗

(
ηγ(i))

2

)
)]

= Zγ(αγ) exp[−αγL(xγ(i), ηγ(i))]. ∀ηγ(i) > 0 (8)

Combining Eqs. (3) & (8) we obtain the global variational
lower bound

p(Θ,Y) ≥ p(h)

L∏
γ=1

(p(αγ)p(yγ |xγ ,h)

×
∏
i

Zγ(αγ) exp[−αγL(xγ(i), ηγ(i))])

= P(Θ,Y,η) η > 0 (9)

where Θ = {h, α1,x1, . . . , αL,xL}, Y = {y1, . . . ,yL} and
η = {ηγ1 , . . . ,ηγL}.

3. BAYESIAN INFERENCE

The inference scheme is based on the posterior distribution
p(Θ|Y) = p(Θ,Y)

p(Y) . Since the posterior distribution cannot
be obtained in closed form, we base our estimation on VB
inference [17], where the posterior p(Θ|Y) is approximated
by the distribution q(Θ) =

∏
θ∈Θ q(θ), with

log q(θ) = E [log p(Θ,Y)]q(Θ\{θ}) + const , (10)

obtained by taking the expectation of the joint distribution
with respect to all unknowns except the one of interest,
Θ\{θ}. We derive next the estimates of the different vari-
ables.

Instead of using p(Θ,Y) we utilize its lower bound,
which includes the variational parameter, and solve itera-
tively

log q(θ) = E [log P(Θ,Y, η̂)]Θ\{θ} + const ,

η̂ = argmax
η

E [log P(Θ,Y,η)]q(Θ) (11)

3.1. Estimation of Image and Blur

Assuming a flat prior p(h) we obtain for the blur

log q(h) =
∑
γ

E [log p(yγ |xγ ,h)]q(xγ) + const . (12)

Since the size of the blur is normally very small in compar-
ison with the number of observations we treat the blur as a
deterministic parameter which is only constrained to satisfy
h ≥ 0,

∑
i h(i) = 1. Then from (12) we obtain

ĥ = argmin
h

∑
γ

E
[
‖yγ −Hxγ‖22

]
q(xγ)

= argmin
h

hTC−1
h h− 2hT bh (13)



subject to h ≥ 0,
∑
i h(i) = 1. For a kernel size of M ×M ,

bh is M2 × 1, the size of C−1
h is M2 ×M2 and we have

C−1
h (m,n) =

∑
γ

N∑
j=1

E [xγ(m+ j)] E [xγ(n+ j)]

+ Cxγ (m+ j, n+ j) (14)

bh(m) =
∑
γ

N∑
j=1

E [xγ(m+ j)] yγ(j) . (15)

The estimation of the blur in (13) is thus a simple quadratic
problem which can be solved very efficiently.

For the filtered images we obtain

log q(xγ) = log p(yγ |xγ ,h)−
1

2
αγx

T
γ diag (ηγ)xγ + const

(16)

which is a multivariate Gaussian with precision matrix

C−1
xγ = βγH

TH + αγdiag (ηγ) , (17)

and whose mean x̂γ , which we take as the estimate of xγ , is
obtained by solving the following linear system

C−1
xγ x̂γ = βγH

Tyγ . (18)

This system can be solved efficiently using Conjugate Gra-
dient (CG) without finding Cxγ explicitly. However, this co-
variance matrix is needed in (14). Since its computation is
extremely expensive, we apply in (14) the Jacobi approxima-
tion, and invert only the diagonal of Cxγ .

3.2. Estimation of the Variational Parameter ηγ

Using (10), we obtain for the variational parameters

η̂γ(i) = argmin
ηγ(i)

1

2
ηγ(i)ν

2
γ(i)− ρ∗

(
ηγ(i)

2

)
(19)

where νγ(i) =
√

E
[
x2
γ(i)

]
.

Since

ρ∗(
η̂γ(i)

2
) = min

x

1

2
η̂γ(i)x

2 − ρ(x) (20)

whose minimum is achieved at x = νγ(i), we have, differen-
tiating the right hand side of the above equation with respect
to x,

η̂γ(i) = ρ′(νγ(i))/νγ(i) (21)

3.3. Estimation of αγ

From (11) we obtain the following distribution for αγ

log q(αγ) = const + log p(αγ)

+

N∑
i=1

logZγ(αγ) exp[−αγρ(νγ(i))] (22)

We utilize the mode of this distribution as the αγ estimate.
A flat hyperprior (p(αγ) ∝ const) results in the following
equation for αγ

∂

∂αγ
logZγ(αγ) =

1

N

N∑
i=1

ρ(νγ(i)) . (23)

The `p and bup penalty functions shown in Table 1 pro-
duce proper priors, for which the partition function can be

evaluated. For the `p function Zγ(αγ) = 1
2Γ(1/p)α

1
p
γ p

1− 1
p ,

and for the bup one Zγ(αγ) = 1
2Γ(1/(2−p))α

1
2−p (2 − p)

1−p
2−p .

However, the log penalty function produces an improper
prior. We tackle this problem examining, for αγ 6= 1, the
behavior of

Zγ(αγ ,K)−1 =

∫ K

−K
e−αγρ(s)ds . (24)

and keeping in ∂ logZγ(αγ ,K)/∂αγ the term that depends on
αγ . This produces the estimate

1

αγ − 1
=

1

N

N∑
i=1

ρ(νγ(i)) . (25)

3.4. The proposed Algorithm

Algorithm 1 Blind Deconvolution using Sparse Image Priors
Require: Degraded image y, noise parameter β, choice for
ρ function, and filters Fγ .
repeat

for γ = 1 to L do
Initialization: Set x̂γ = yγ , Cxγ = 0.

1. Compute νγ(i) =
√
E
[
x2
γ(i)

]
, ηγ using (21), and

αγ solving (23).
2. Estimate filtered image xγ by solving (18).

end for
3. Estimate the blur kernel h using (13) .
4. Approximate Cxγ (i, i) with 1/C−1

xγ (i, i).
until convergence
5. Compute the final image estimate x̂ by solving

(βHTH +
∑
γ

αγF
T
γ diag (ηγ)Fγ) x̂ = βHT y . (26)

The proposed Algorithm 1 has two parts. First, Algo-
rithm 1 iteratively alternates between the estimates of the fil-
tered images xγ and the blur h. At each iteration, the method
also estimates the parameters νγ , αγ , and ηγ , and approxi-
mates Cxγ (i, i). In the estimation of h, the pyramid coarse-
to-fine approach suggested in [9] has been applied. In its sec-
ond part, Algorithm 1 has to construct the image x from the
xγ filtered images. As this requires a non trivial integration of
all xγ , we propose instead the estimate shown in (26), which
still enforces sparsity in the filter domain through the use of
ηγ , and requires only one more CG application.



4. EXPERIMENTAL RESULTS

The effectiveness of the proposed method, for the ρ penalty
functions `p, log, and bup, in Table 1, has been quantitatively
assessed over the synthetic dataset in [8]. Results for the `p
penalty function with p = 0.8, called `0.8, and for the bup
penalty with p = 3, called bu3, are reported. We use the
Sum Square Distances (SSD) between the deconvolved and
original images as figure of merit.

For the images in the dataset in [8], Figure 1 shows the
cumulative SSD histograms of the blindly deconvolved im-
ages obtained when using the penalty functions in Table 1 and
Levin et al.’s MAPk approach [9], a MoG prior for kernel es-
timation. This method was shown in [9] to outperform the
MAP based approaches of [5] and [6] in this dataset. Figure 1
also shows the SSD histograms for non-blind deconvolutions,
and for the ratios between blind and non-blind SSD values.
These SSD values are better than the reported in [14]. in Fig-
ure 1 it can be observed that the log prior gives the best perfor-
mance, and that both `p and bup outperform MoG. The figures
of merits for the `p prior for non-blind deconvolution are very
goods. However, their blind SSD values, and their ratios are
poorer. The results obtained with the bup prior are better for
blind than for non-blind deconvolution, and this prior gives
the best performance in ratio terms.

Figure 2 shows the results obtained with the different pri-
ors for one of the images in the dataset, and Figure 3 compares
the proposed method with the methods in [6], and in [10], us-
ing their implementations, and parameter settings, on a real
image.

The introduction of the αγ parameter in the general sparse
prior in (4) improves the performance of the method proposed
in [14]. The improvement is very minor the log prior, for
which the estimated parameter values are very close to one.
For the `p penalty αγ ≈ 102 has been obtained, and αγ ≈
10−4 for bup.

5. CONCLUSIONS

In this paper we have introduced an additional parameter in
the Super Gaussian (SG) prior modeling of the image in the
filter space. We have shown how this parameter can be esti-
mated using variational inference. Its effectiveness has been
demonstrated experimentally on real and synthetic images.
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Fig. 1. Cumulative histograms of SSDs on the dataset of [8] for blind and non-blind deconvolution, and their ratios (right).
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Fig. 2. Ground truth, blurred image and results obtained
with our method using the different penalty functions and the
method in [8], for image no. 2, and blur no. 2 of the synthetic
image set in [8]. Estimated kernels are shown in insets.

Blurry Image Krishnan [10]

Ours (log) Cho [6]
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Fig. 3. Blind Deconvolution results on a real image. Estimated
kernels are shown in insets.


