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Abstract—Passive Millimeter Wave Images (PMMWI) can be
used to detect and localize objects concealed under clothing. Un-
fortunately, the quality of the acquired images and the unknown
position, shape, and size of the hidden objects render difficult
this task. In this paper we propose a method that combines
image processing and statistical machine learning techniques to
solve this localization/detection problem. The proposed approach
is used on an image database containing a broad variety of
sizes, types, and localizations of hidden objects. Experiments are
presented in terms of the true positive and false positive detection
rates. Due to its high performance and low computational cost,
the proposed method can be used in real time applications.

Index Terms—Millimeter wave imaging, object detection, ma-
chine learning, image processing, security.

I. INTRODUCTION

PMMWIs (see fig. 1) can be used to detect objects hidden
under clothing. These images are currently being utilized as
theft and threat detection systems [1] in places like airports
and warehouses. Systems based on PMMWTIs should be able
to detect concealed objects while, at the same time, incurring
in a very low number of false positive detections. Furthermore,
undoubtedly, they should also work in real time. Unfortunately,
millimeter sensors, and consequently their images, suffer from,
among others, the following problems:

1) Low signal to noise ratio.

2) Low resolution, which can be increased by increasing
the sampling rate but at the cost of decreasing the signal
to noise ratio due to current electronic limitations.

3) Inhomogeneous signal intensity.

Together with the quality of the acquired images, any
detection system will have to deal with the unknown position,
shape, and size of the hidden objects.

II. RELATED WORK

Previous works have already addressed detection problems
using PMMWIs. In [2], K-means is used to segment PMMWTIs
into three regions: background, body and threats. Unfortunately,
the method detects unconnected areas. To solve this problem,
the authors use Active Shape Models (ASM) inside the
body. However, this approach does not guarantee an adequate
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Fig. 1: PMMWI examples. Hidden objects correspond to whiter
areas within the body. Unfortunately, not all whiter areas
correspond to hidden objects.
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segmentation of the subject’s body. In [3] Gaussian mixture
models are used to characterize image background regions, as
well as people with and without threats. Although the reported
results are better than those in [2], this method also produces
an unconnected body segmentation. In [4] the authors apply
noise elimination and then image segmentation using Local
Binary Fitting (LBF). The authors use two algorithms for
noise removal: Non Local Means (NLM) and Iterative Steering
Kernel Regression (ISKR). Although its detection rate is around
90%, its computing time makes it impractical for its use in
real-time applications. In addition, its performance significantly
decreases when used on noisy or low quality image. In [5] a
highly time efficient two-step algorithm, based on denoising
and mathematical morphology, was proposed. On noisy or low
contrast images it achieves an acceptable detection rate but at
the cost of a high false positive detection rate.

In this paper we propose a new methodology to tackle
the localization/detection problem on PMMWTIs. Our novel
approach combines image processing and statistical machine
learning techniques to deal with the poor quality of the images
and the unknown position, shape, and size of the hidden objects.

The paper is organized as follows. Section III explains the
proposed PMMWI processing before detecting hidden objects.
Section IV details the proposed feature selection and extraction
processes, the used classifiers and the detection procedure. In
the experimental section, section V, the used PMMWI database
is described and a complete comparison of the features and
classification methods utilized provided. Finally, conclusions
are presented in section VI.



III. IMAGE PREPROCESSING

The acquisition process introduces spatially variant noise,
see figs. 2(a)-(d).

The image signal to noise ratio must be increased and the
contrast enhanced to be able to detect threats. A combination of
linear (local average) and non-linear (local median) smoothing
filters is applied. The use of standard convolutional smoothing
filters eliminates too much signal due to the noise variability
and the small size of some hidden objects. Instead, we have
applied statistical filtering, where each pixel value is replaced

by the average of a random sample of its neighbouring values.

This filter is applied iteratively to obtain an adequate level of
smoothing. A 5 x 5 neighbourhood size was found appropriate
empirically. Finally, a 5x5 median filter was used on the output
to remove boundary artifacts. The final images are shown in
figs. 2(e)-(h).
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Fig. 2: (a)-(d) show the observed images. (e)-(h) show the
processed images.

IV. LEARNING OBJECT

The proposed object detector is built from a committee
of binary classifiers trained using multiscale feature vectors
extracted from local patches of the images.

A. Feature extraction

Three different scales have been used to characterize regions
containing a hidden object. Given the size of the images in
the database, 125 x 195, and using the size of the largest
hidden object in the database, we have selected three sizes
(scales): 39 x 39, 19 x 19 and 9 x 9 pixels. To each pixel in
the image we associate the three regions of the above sizes
centered on the pixel. Only those pixels whose three regions
are completely contained within the image (active pixels) are
considered. To each active pixel we associate a feature vector
constructed concatenating the feature vectors extracted from
its three regions. Haar filters [6] and Local Binary Patterns
(LBP) codes[7] are used to create the feature vectors.

1) Haar features: It can be observed that the shapes of the
hidden objects are very similar to those of some of the Haar
filter pattern shown in fig. 3: the filter shown in fig. 3a shares
the pattern of the hidden object in fig. 5 row 1 and column 2,
whereas the filters in figs. 3b and 3c are similar to areas with
the hidden objects in fig. 5 row 1 column 1 and fig. 5 row
1 column 3 respectively. Therefore, a strong response to the
filter is expected when applied on the threat. We have used
115 filters on each region resulting in a 3 x 115 feature vector
per active pixel.
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Fig. 3: Examples of Haar filters.
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2) LBP features: Local Binary Patterns (LBP)[7] capture
image local structures by detecting gray level changes around
each pixel. Regions with a strong contrast inside due to the
presence of boundaries between hidden object and body or
background are highlighted.

We use the extension proposed in [8]; invariant to rotation
LBP. For each of the three described above regions centered
on an active pixel, the histogram of all LBP configurations
obtained using radios in the range 1-4 is built. The feature
vector on each pixel is obtained by concatenating the histograms
of its three associated regions, it has 261 components.

B. Design of the Classifiers

Learning a single classifier is not a good strategy because
of the unbalanced sizes of the classes (positive and negative
regions). We use a committee of classifiers with a majority vote
final criteria. We evaluate six binary classifiers representing
different learning approaches: a) Logistic regression with vari-
able transformations; b) Support Vector Machine; ¢) Random
Forest; d) Extreme Random Trees; e) Adaboost.

In our training dataset the number of negative labeled items
is around five times the number of positives ones. To overcome
a possible overfitting to the negative class different strategies
have been used. For AdaBoost we have used an asymmetric
boosting[9]. For the other approaches, we split the training set
of negative samples into five random partitions, fitting to each
of them together with the positive sample partition a different
classifier.

C. Detection

The steps to classify a new image are graphically shown
in fig. 4. For each active pixel, the corresponding feature
vectors are extracted following the training procedure. Then, the
probability of the pixel to correspond to a threat is calculated.
As a consequence a probability map is produced on the image
active pixels (see fig. 4b). Those pixels whose probability
are below a prefixed threshold are discarded and assigned to
class 0, no threat, (see fig. 4c). The threshold depends on
the used classifier. Next, the 2D local maxima of the map



are computed: for all pixels whose 39x39 regions overlap
more than an overlapping threshold, we retain the one with
the highest probability (non maximum suppression). Then we
assign the probability of the local maxima to all pixels inside
its 39x39 region. Finally, a list of triplets (coorx, coory, probab)
is extracted defining the centers of the regions that potentially
contain a hidden object, see fig. 4e.
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Fig. 4: Detection process. The red rectangles indicate the area
of the hidden objects.

V. EXPERIMENTATION

A database of PMMWIs has been created. The database
consists of 3309 images of 33 different people. For each
person, we took pictures of 12 different objects in 10 body
locations: forearm, chest, stomach, thigh, ankle (front), waist
(side), armpit (side), arm, ankle (lateral) thigh (lateral), and
2 images without any objects. In summary 463 images with
no hidden objects, 2144 containing one hidden object and 702
containing 2 objects. Hidden objects were simulated by bags
containing various substances with different millimeter wave
responses. Different object sizes were also used. Fig. 5 shows
different subjects with hidden objects in different locations.

Hidden objects are surrounded by the smallest box containing
it. Visual images taken at the same time as the millimeter ones
were used to perform this task. These boxes, as we will explain
later, will be used to assess which feature vectors correspond
to threats.

1) Training: Training was performed using five-fold cross
validation. On each set of samples used, 80% of the feature
vectors were used for training and the remaining 20% to
estimate the test error.

39 x 39 pixel regions which completely contain a threat
are labelled positive (1), the rest negative (0). Feature vectors
which correspond to regions that partially overlap a threat are
not included in the training data set.

A five-fold cross validation on the training partition is applied
to estimate the hyper-parameters. The same proportions of
vectors containing 0, 1, and 2 objects are included in each
partition. For each classifier, a subset of the training pixels
together with their associated feature vectors are used to find
the three classifier hyper-parameter values (see ranges in Table
I) with the greatest area under the ROC curve. One pixel out
of each 3x3 non-overlapping box in an image is selected and
its feature vector considered. Furthermore, for each threat we
include at least one pixel whose 39 x 39 associated box contains
it. We now use the three hyper-parameter values on the whole
training set to learn three final classifiers and select the one

Fig. 5: Examples of PMMWIs with hidden objects. Red boxes
indicate object locations. Hidden objects correspond to whiter
areas on the body.

with the greatest area under the ROC curve on the validation
set.

Regularized Logistic regression (LR) with quadratic penalty
was used as baseline, the regularization parameter (C) was
found using adaptive search. We also considered another LR
classifier. Using linear and quadratic functions on the features,
the LASSO penalty function was utilized to select the relevant
features which then were used for LR with quadratic penalty.
For Radial Basis Support Vector Machine (SVM), Random
Forest (RF) and Extreme Random Trees (ERT) a grid search is
used to estimate the hyper-parameters. Feature are normalized
by mean and variance before training.

Table I shows the hyper-parameter ranges used for each
classifier.

Each classifier output is used to detect threats. Its associated
ROC curve is used to calculate a threshold, normalized to the
interval [0,1]. Pixels whose outputs are above the threshold
are labelled as threat (label 1). Notice that, as we have already
indicated, an overlapping threshold is used to perform non
maximum suppression.

2) Evaluation: The reported test error is the mean of the
five cross validation errors. We consider that a pixel (and its
associated box) correctly detects a threat if the box overlaps



Classifier Parameter Range
RL C [0, 5]
RL quadratic C [0, 5]
C [0.1, 100000]
SVM 5 [0.00001, 10]
Trees [100, 300]
Random Forest N° features [8, 30]
Min examples per leaf [1, 50]
Trees [100, 300]
Extreme Random Forest N° features [8, 30]
Min examples per leaf [1, 50]

TABLE I: Hyper-parameters grid for each classifier.

the threat by at least 50%.

3) Software: The libraries OpenCV [10], scikit [11], scikit-
image [12] and our own implementation of the Haar filters
have been used in the experiments. For grid search the python
package optunity [13] was used.

4) Results: The results obtained using Haar and LPB
features are shown in table II. The best thresholds for threat
detection and also the best overlapping thresholds for non
maximum suppression used during training are also included.
For RF and ERT we used parallel implementations ran on 16
threads. The computation times, using an Intel Xeon E5-2630
v3 to 2.40GHz with 8 cores, during testing are reported in
Table III. Notice that they are close to real time for a threat
detection application.

Results of experiments for Haar features
Classifier TP FP Threshold | Overlap
RL 0.84+0.018 10.56£10.78 0.6 0.5
RL quad | 0.9140.011 8.76£9.11 0.7 0.5
SVM 0.92+0.030 6.51£6.60 0.75 0.3
RF 0.94+0.0093 4.03+3.82 0.7 0.3
ERT 0.94£0.006 5.04£5.00 0.7 0.5
Boosting | 0.9340.011 6.43£6.28 0.5005 0.3
Results of experiments for LBP features
Classifier TP FP Threshold | Overlap
RL 0.9240.0084 | 10.24+10.54 0.7 0.5
RL quad | 0.924+0.010 | 10.27+£10.57 0.7 0.5
SVM 0.93+0.014 8.82+8.90 0.6 0.4
RF 0.9240.0052 6.62+£6.53 0.55 0.3
ERT 0.90£0.012 6.11£6.03 0.55 0.3
Boosting | 0.92+0.012 9.99+10.20 0.5004 0.5

TABLE II: Experimental results. The second column shows
the rate of true positive (TP) detected threats together with
the standard deviation. The third column shows the mean and
standard deviation of false positive (FP) detected pixels in each
image for the thresholds and overlaps in the fourth and fifth
columns.

Although the performance of almost all models is similar,
RF and ERT show the best figure of merits when used with
Haar features. A key point is the FP average per image. All
models perform well since the number of false positives is
always below 10% when a 100% TP detection is imposed
on the system. In fig. 6 we show the trade-off between true
positives and true negatives when we classify new images. The
crossing point of both curves defines the capacity of the system
to classify new images.

Haar LBP

Classifier Total Per image Total Per image
RL 302.77 0.0915 4939.65 1.4927
RL quadratic | 341.70 0.103 4939.69 1.4928
SVM 1277.04 0.3859 6907.10 1.8758
RF 740.00 0.2236 5497.47 1.6619
ERT 1202.60 0.3634 5507.93 1.6645
Boosting 1965.54 0.5940 7006.23 2.1173

TABLE III: Testing Total (all the images) and per image times
in seconds for each method.

For the best combination, RF and Haar features, fig. 7 shows:
(a) the histogram of false positives per image; (b) the position
of the first true positive in the list of detected locations in the
image, ordered by decreasing probability; and (c) the mean
probabilities of the four highest probabilities per image. Fig. 7a
shows that the mode of the mean number of false positives
per image is 4. Fig. 7b indicates that the vast majority of true
positives are among the first two detected regions, and fig. 7c
the tendency of the classifier to assign the highest probabilities
to regions overlapping true threats, see also fig. 7b, which
justifies the use of a high threshold for threat detection.
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Fig. 6: The curves show the accuracy of the model on new

images for a range of detection probability thresholds. The
cross point is at the 68% of accuracy for both classes.

VI. CONCLUSIONS

In this paper we have proposed a new method to solve
localization/detection problems using PMMWIs. The method
combines image processing and statistical machine learning
techniques and performs very well even on very noisy and poor
quality images. The experiments carried out also indicate that
Haar filters provide very good features for this classification
problem. To the best of our knowledge, the image database
used is the largest, and with the greatest variety of object types
and sizes, ever used for this problem.
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