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Variational Optic Flow Computation:
From Continuous Models to Algorithms

Joachim Weickert, Andrés Bruhn, Nils Papenberg, and Thomas Brox
Mathematical Image Analysis Group

Faculty of Mathematics and Computer Science
Saarland University, Building 27

66041 Saarbrücken, Germany
{weickert, bruhn, papenberg, brox}@mia.uni-saarland.de

Abstract

Variational methods belong to the most successful tech-
niques for computing the displacement field in image se-
quences. In this paper we analyse the different terms in the
energy functional and sketch some of our recent contribu-
tions in this area.

1. Introduction

Already in 1981, Horn and Schunck introduced the first
variational method for computing the displacement field
(optic flow) in an image sequence [15]. This method is
based on two assumptions that are characteristic for many
variational optic flow methods: a brightness constancy as-
sumption and a smoothness assumption. These assump-
tions enter a continuous energy functional whose minimiser
yields the desired optic flow field. Performance evalua-
tions such as [5, 11] showed that variational methods be-
long to the better performing techniques. It is thus not sur-
prising that a lot of research has been carried out in order
to improve these techniques even further: These amend-
ments include refined model assumptions with discontiuity-
preserving constraints [2, 10, 13, 21, 22, 25, 30] or spa-
tiotemporal regularisation [6, 20, 31], improved data terms
with modified constraints [3, 9, 21, 26] or nonquadratic pe-
nalisation [6, 14, 18, 29], and efficient multigrid algorithms
[7, 12, 27, 32] for minimising these energy functionals.

The goal of the present paper is to analyse the data term
and the smoothness term in detail and to survey some recent
results on variational optic flow computation in our group.
The paper is organised as follows: In Section 2 we sketch
the general structure of these techniques. While Section 3
analyses the data term in more detail, a discussion of the
different possibilities for smoothness constraints is given in
Section 4. Algorithmic aspects are outlined in Section 5,
and experiments are presented in Section 6.

2. General Structure
Let f(x1, x2, x3) denote some scalar-valued image se-
quence, where (x1, x2) is the location and x3 denotes time.
Often f is obtained by preprocessing some initial image se-
quence f0 by convolving it with a Gaussian Kσ of standard
deviation σ:

f = Kσ ∗ f0. (1)

Let us assume that Dkf describes the set of all par-
tial (spatial and temporal) derivatives of f of or-
der k, and that the optic flow field u(x1, x2, x3) =
(u1(x1, x2, x3), u2(x1, x2, x3), 1) gives the displacement
rate between subsequent frames. In the present paper we
consider variational methods that are based on the minimi-
sation of the continuous energy functional

E(u) =

∫

Ω

(M(Dkf, u)
︸ ︷︷ ︸

data term

+α S(∇f,∇u)
︸ ︷︷ ︸

regulariser

) dx (2)

where the integration domain Ω is either a spatial or a spa-
tiotemporal domain. In the spatial case we have x :=
(x1, x2)

> and ∇ := ∇2 := (∂x1
, ∂x2

)>, and in the spa-
tiotemporal case we use the notations x := (x1, x2, x3)

>

and ∇ := ∇3 := (∂x1
, ∂x2

, ∂x3
)>. The optic flow

field u(x1, x2, x3) is obtained as a function that minimises
E(u). The energy functional E(u) penalises all devia-
tions from model assumptions. Typically is consists of a
data term M(Dkf, u) which expresses e.g. a brightness
constancy assumption, and a regulariser S(∇f,∇u) with
∇u := (∇u1,∇u2)

> that penalises deviations from (piece-
wise) smoothness. The weight α > 0 serves as regularisa-
tion parameter: Larger values correspond to more simpli-
fied flow fields.

It should be noted that such continuous energy function-
als may be formulated in a rotationally invariant way. Re-
sults from numerical analysis show that consistent discreti-
sations approximate this invariance under rotations arbitrar-
ily well if the sampling is sufficiently fine. Moreover, if
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the energy functional is convex, a unique minimiser exists
that can be found in a relatively simple way by globally
convergent algorithms. Variational optic flow methods are
global methods: If there is not sufficient local information,
the data term M(Dkf, u) is so small that it is dominated
by the smoothness term αS(∇f,∇u) which fills in infor-
mation from more reliable surrounding locations. Thus, in
contrast to local methods, the filling-in effect of global vari-
ational approaches always yields dense flow fields and no
subsequent interpolation steps are necessary: Everything
is automatically accomplished within a single variational
framework.

3. Data Terms
Many differential methods for optic flow are based on
the assumption that the grey values of image objects in
subsequent frames do not change over time. Thus, if
(x1(x3), x2(x3)) denotes the movement of some image
structure, we obtain the following optic flow constraint
(OFC) by applying the chain rule:

0 =
df(x1(x3), x2(x3), x3)

dx3

= fx1
u1 + fx2

u2 + fx3
, (3)

where fxi
:= ∂xi

f . Note that the optic flow field satisfies
(u1, u2, 1)> = (∂x3

x1, ∂x3
x2, 1)>. In order to use Equa-

tion (3) within the energy functional (2), we penalise all
deviations from zero by using the quadratic data term [15]

M1(D
1f, u) := (u>∇3f)2. (4)

This term can be modified in several ways:

1. One may assume that the optic flow is constant within
some neighbourhood of order ρ. This leads to [17]

M2(D
1f, u) := Kρ ∗ ((u> ∇3f)2). (5)

This data term offers advantages when noise is present.

2. Higher robustness under noise can also be achieved by
penalising outliers less severely than a quadratic reg-
ulariser does: One may use a penaliser Ψ(s2) that is
convex in s and increases less rapidly than quadratic
functions, e.g. the regularised TV penaliser [24]

Ψ(s2) =
√

ε2 + s2. (6)

This modification transforms M1 and M2 into

M3(D
1f, u) := Ψ((u>∇3f)2), (7)

M4(D
1f, u) := Ψ(Kρ ∗ ((u>∇3f)2)). (8)

Instead of imposing constancy of the image brightness f

along the path (x1(x3), x2(x3)), we may impose constancy

of the spatial brightness gradient (fx1
, fx2

)> along such a
path [28]. This gives two equations:

u>∇3fx1
= 0, (9)

u>∇3fx2
= 0. (10)

Squaring and adding them produces the data term

M5(D
2f, u) :=

2∑

i=1

(u>∇3fxi
)2. (11)

In a similar way, imposing constancy of the (spatial) Hes-
sian of f gives

M6(D
3f, u) :=

2∑

i=1

2∑

j=1

(u>∇3fxixj
)2, (12)

and constancy of the (spatial) Laplacian ∆2f yields

M7(D
3f, u) := (u>∇3(∆2f))2. (13)

There is no general rule which of these data terms should
be preferred. While higher-order derivatives are more sen-
sitive to noise, the data terms M5, M6 and M7 may offer
advantages over M1 when the brightness is not constant.
On the other hand, M1 and M7 are more appropriate than
M5 and M6 when non-translatory motion dominates. Thus
the choice of the “best” data term will always depend on the
specific problem.

4. Smoothness Terms
A taxonomy of the different possibilities to design smooth-
ness constraints has been presented in [30]. It exploits the
connection between regularisation methods and diffusion
filtering: Minimising the energy functional (2) by means of
steepest descend, we obtain a system of diffusion–reaction
equations, where the diffusion term results from the regu-
lariser S(∇f,∇u), and the reaction term is induced by the
data term M(Dkf, u):

∂tu1 = ∂x1
Su1,x1

+ ∂x2
Su1,x2

− 1

α
∂u1

M, (14)

∂tu2 = ∂x1
Su2,x1

+ ∂x2
Su2,x2

− 1

α
∂u2

M (15)

where Sui,xj
denotes the partial derivative of S with re-

spect to ∂xj
ui. The parameter t in this system of partial

differential equations (PDEs) is a pure numerical parameter
that should not be confused with the time x3 of the image
sequence. For t → ∞, the steady state of the diffusion–
reaction system is given by the Euler–Lagrange equations

0 = ∂x1
Su1x1

+ ∂x2
Su1,x2

− 1

α
∂u1

M, (16)

0 = ∂x1
Su2x1

+ ∂x2
Su2,x2

− 1

α
∂u2

M. (17)
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Table 1: Taxonomy of optic flow regularisers (see [30]).

Name of Regulariser S(∇f,∇u)

homogeneous [15]
2∑

i=1

|∇ui|
2

image-driven, isotropic [2] g(|∇f |2)
2∑

i=1

|∇ui|
2

image-driven, anisotropic [21]
2∑

i=1

∇u>

i D(∇f)∇ui

flow-driven, isotropic [25] Ψ

(
2∑

i=1

|∇ui|
2

)

flow-driven, anisotropic [30] tr Ψ

(
2∑

i=1

∇ui∇u>

i

)

They constitute necessary conditions that a minimiser of
E(u) has to satisfy.

Let us now have a closer look at the impact of the reg-
ulariser. The simplest regulariser is the homogeneous reg-
ularisation of Horn and Schunck [15]. This quadratic reg-
ulariser of type S(∇u) = |∇u1|

2 + |∇u2|
2 penalises all

deviations from smoothness of the flow field. It can be re-
lated to linear diffusion with a constant diffusivity. Thus,
the flow field is blurred in a homogeneous way such that
motion discontinuities may loose sharpness and get dislo-
cated. It is thus not surprising that people have tried to
construct a variety of discontinuity-preserving regularisers.
Depending on the structure of the resulting diffusion term,
we can classify a regulariser S(∇f,∇u) as image-driven or
flow-driven, and isotropic or anisotropic.

For image-driven regularisers, S is not only a function
of the flow gradient ∇u but also of the image gradient ∇f .
This function is chosen in such a way that it respects dis-
continuities in the image data. If only the gradient mag-
nitude |∇f | matters, the method is called isotropic. It can
avoid smoothing at image edges. An anisotropic technique
depends also on the direction of ∇f . Typically it reduces
smoothing across edges of f (i.e. along ∇f ), while smooth-
ing along edges of f is still permitted. Image-driven regu-
larisers can be related to linear diffusion processes.

Flow-driven regularisers take into account discontinu-
ities of the unknown flow field u by preventing smoothing
at or across flow discontinuities. If the resulting diffusion
process uses a scalar-valued diffusivity that only depends
on |∇u|2 := |∇u1|

2 + |∇u2|
2, it is an isotropic process.

Cases where also the direction of ∇u1 and ∇u2 matters are
named anisotropic. Flow-driven regularisers lead to nonlin-
ear diffusion processes.

Table 1 gives an overview of the different regularis-
ers. As a rule of thumb, one can expect that flow-driven
regularisers offer advantages over image-driven ones for
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Figure 1: Example of a full multigrid implementation for
four levels (from [7]). Starting from a coarse scale the solu-
tion is refined step by step.

highly textured sequences, where the numerous texture
edges create an oversegmentation of the flow field. More-
over, anisotropic methods may give somewhat better results
than isotropic ones, since the latter ones are too “lazy” at
noisy discontinuities. More details can be found in [30].

5. Algorithms
For the numerical minimisation of the energy functional (2),
two strategies are used very frequently:

In the first strategy, one discretises the parabolic
diffusion–reaction system (14), (15) and recovers the op-
tic flow field as the steady-state solution for t → ∞. The
simplest numerical scheme would be an explicit (Euler for-
ward) finite difference scheme. More efficient methods
include semi-implicit approaches that offer better stability
properties at the expense of the need to solve linear systems
of equations.

Alternatively, one can directly discretise the elliptic
Euler-Lagrange equations (16), (17). This also requires to
solve large linear or nonlinear systems of equations. Effi-
cient methods for this task include succesive overrelaxation
(SOR) methods, preconditioned conjugate gradient (PCG)
algorithms and multigrid techniques. Figure 1 shows an ex-
ample of a full multigrid cycle with 4 levels. It has been
used in [7, 8] for finding the minimum of a variational ap-
proach with data term M2 and a homogeneous regulariser.
On a 3.06 GHz PC, it was possible to compute up to 40
dense flow fields of size 200 × 200 pixels within a single
second. This shows that computational efficieny is no prob-
lem for variational optic flow methods, when state-of-the-
art numerical methods are used.

It should be noted that for convex energy functionals,
there is no danger that any of these two methods gets
trapped in a local minimum, since only one minimum ex-
ists and the method is globally convergent.

6. Experiments
We start our experiments by evaluating the impact of
the data term. This is done in Table 2 where we

3



Table 2: Impact of the data term on the quality of the optic
flow field. We used a spatial energy functional with homo-
geneous regularisation, and computed the average angular
error (AAE) for the Yosemite sequence with clouds. The
parameters σ and α have been optimised.

Constancy Data Term σ α AAE
Brightness M1 1.3 500 7.17◦

Gradient M5 2.1 20 5.91◦

Hessian M6 2.7 1.8 6.46◦

Laplacian M7 2.5 3.0 6.18◦

used the Yosemite sequence with clouds. This syn-
thetic sequence and its ground truth flow field are avail-
able from ftp://csd.uwo.ca under the directory
pub/vision. The experiments in Table 2 show that it
can be worthwhile to replace the commonly used bright-
ness constancy constraint by constraints that involve higher
derivatives.

The influence of the regulariser is studied in Fig-
ure 2, which depicts a zoom into Nagel’s Marble se-
quence (i21www.ira.uka.de/image-sequences)
together with the results for five spatial regularisers. As
expected, homogeneous regularisation is fairly blurry, flow-
driven regularisers offer advantages over image-driven ones
in textured regions, and anisotropic regularisers perform
better than isotropic ones.

Figure 3 presents a comparison between spatial and spa-
tiotemporal energy functionals. It demonstrates that the ad-
ditional assumption of temporal smoothness may lead to
significantly improved results.

In Table 3 we juxtapose the angular errors of a number
of optic flow methods. It shows that the spatiotemporal
method in [29] – which combines the data term M4 with
an isotropic flow-driven regulariser – is one of the two best
performing algorithms.

7. Summary and Extensions

In this paper we have outlined some basic design principles
for variational optic flow methods, sketched their numeri-
cal implementation and studied their performance. Due to
space limitations, we had to restrict ourselves to some of
the most important features. There are several possibili-
ties to improve the performance of these methods even fur-
ther: One may for instance use non-linearised data terms
[3, 6, 21], multilevel strategies that encourage convergence
towards a global minimiser when nonconvex functionals are
applied [3, 4, 18], and consider more sophisticated function-
als in order to cope with occlusion problems [1, 23]. On
the numerical side, parallelisation strategies can be investi-

Figure 2: (a) Top left: Detail from Frame 16 of the Mar-
ble sequence (128 × 128 pixels). (b) Top right: Optic
flow magnitude for homogeneous regularisation. (c) Mid-
dle left: Image-driven isotropic regularisation (d) Middle
right: Image-driven anisotropic regularisation. (e) Bottom
left: Flow-driven isotropic regularisation (f) Bottom right:
Flow-driven anisotropic regularisation. From [30].

gated, e.g. domain decomposition methods [16].
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[18] E. Mémin and P. Pérez. Dense estimation and object-
based segmentation of the optical flow with robust
techniques. IEEE Transactions on Image Processing,
7(5):703–719, May 1998.
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[25] C. Schnörr. Segmentation of visual motion by
minimizing convex non-quadratic functionals. In
Proc. Twelfth International Conference on Pattern
Recognition, volume A, pages 661–663, Jerusalem, Is-
rael, October 1994. IEEE Computer Society Press.

[26] C. Schnörr. Unique reconstruction of piecewise
smooth images by minimizing strictly convex non-
quadratic functionals. Journal of Mathematical Imag-
ing and Vision, 4:189–198, 1994.

[27] D. Terzopoulos. Image analysis using multigrid re-
laxation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8(2):129–139, March 1986.

[28] S. Uras, F. Girosi, A. Verri, and V. Torre. A com-
putational approach to motion perception. Biological
Cybernetics, 60:79–87, 1988.

[29] J. Weickert, A. Bruhn, and C. Schnörr. Lucas/Kanade
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[30] J. Weickert and C. Schnörr. A theoretical framework
for convex regularizers in PDE-based computation of
image motion. International Journal of Computer Vi-
sion, 45(3):245–264, December 2001.

[31] J. Weickert and C. Schnörr. Variational optic flow
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Abstract

We introduce a numerical scheme for the minimisation of
an energy functional for computing optical flow. This func-
tional combines a brightness constancy assumption, and a
discontinuity-preserving spatio-temporal smoothness con-
straint. In order to allow for large displacements, lineari-
sations in the data term is strictly avoided. The presented
numerical scheme is based on two nested fixed point iter-
ations. By proving that this scheme implements a coarse-
to-fine warping strategy, we give a theoretical foundation
for warping which has been used on a mainly experimental
basis so far.

1 Introduction

In the last two decades the quality of optical flow estimation
methods has increased dramatically. Starting from the orig-
inal approaches of Horn and Schunck [11] as well as Lucas
and Kanade [15], many new concepts have been developed
for dealing with shortcomings of previous models. In or-
der to handle discontinuities in the flow field, the quadratic
regulariser in the Horn and Schunck model was replaced
by smoothness constraints that permit piecewise smooth re-
sults [1, 9, 20, 22, 23]. Some of these ideas are close in spirit
to methods for joint motion estimation and motion segmen-
tation [10, 18], and to optical flow methods motivated from
robust statistics where outliers are penalised less severely
[6, 7]. Spatio-temporal approaches have ameliorated the re-
sults by using the information of an additional dimension
[19, 6, 24, 10].
Since image sequences are often undersampled in time di-
rection, large displacements are common. In this case non-
linearised models [20, 2] as well as coarse-to-fine strate-
gies [3, 7, 17] have been experimentally demonstrated to be
highly useful. Unfortunally – apart from a very nice paper
by Lefébure and Cohen [14] – not many results are available
that provide a theoretical foundation for this experimentally
successful coarse-to-fine warping strategy. The goal of this

paper is to close this gap.
To this end we consider a variational method with a non-
linearised data term. The minimizer of this energy func-
tional is approximated by a specific numerical method. This
scheme provides a novel foundation for the coarse-to-fine
warping that is commonly used in image sequence anal-
ysis. This has two important effects: Firstly, it becomes
possible to integrate the warping technique, which was so
far only algorithmically motivated, into a variational frame-
work. Secondly, it shows a theoretically sound way of how
image correspondence problems can be solved with an effi-
cient multi-resolution technique.
The experimental evaluation shows that our method yields
excellent results. Compared to those in the literature, their
accuracy is always higher.

Paper organisation. In the next section, our variational
model is described, first by discussing all model assump-
tions, and then in form of an energy based formulation. Sec-
tion 3 derives a minimisation scheme for this energy. The
theoretical foundation of warping methods as a numerical
approximation step is given in Section 4. An experimen-
tal evaluation is presented in Section 5, followed by a brief
summary in Section 6.

2 The Variational Model

Before deriving a variational formulation for our optical
flow method, we give an intuitive idea of which constraints
in our view should be included in such a model.

• Grey value constancy assumption.
Since the beginning of optical flow estimation, it has
been assumed that the grey value of a pixel is not
changed by the displacement.

I(x, y, t) = I(x + u, y + v, t + 1). (1)

HereI : Ω ⊂ R3 → R denotes a rectangular image se-
quence, andw := (u, v, 1)> is the searched displace-
ment vector between an image at timet and another
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image at timet + 1. The linearised version of the grey
value constancy assumption yields the famous optical
flow constraint [11]

Ixu + Iyv + It = 0 (2)

where subscripts denote partial derivatives. However,
this linearisation is only valid under the assumption
that the image changes linearly along the displace-
ment, which is in general not the case, especially for
large displacements. Therefore, our model will use the
original, non-linearised grey value constancy assump-
tion (1).

• Smoothness assumption.
So far, the model estimates the displacement of a pixel
only locally without taking any interaction between
neighbouring pixels into account. Therefore, it runs
into problems as soon as the gradient vanishes some-
where, or if only the flow in normal direction to the
gradient can be estimated (aperture problem). Further-
more, one would expect some outliers in the estimates.
Hence, it is useful to introduce as a further assump-
tion the smoothness of the flow field. This smoothness
constraint can either be applied solely to the spatial
domain, if there are only two frames available, or to
the spatio-temporal domain, if the displacements in a
sequence of images are wanted. As the optimal dis-
placement field will have discontinuities at the bound-
aries of objects in the scene, it is sensible to generalise
the smoothness assumption by demanding apiecewise
smoothflow field.

• Multiscale approach.
In the case of displacements that are larger than one
pixel per frame, the cost functional in a variational for-
mulation must be expected to be multi-modal, i.e. a
minimisation algorithm could easily be trapped in a
local minimum. In order to find the global minimum,
it can be useful to apply multiscale ideas: One starts
with solving a coarse, smoothed version of the prob-
lem, which may have a unique minimum, hopefully
close to the global minimum of the original problem,
and uses the result as an initialisation for solving a re-
fined version of the problem. Instead of smoothing the
problem, i.e. the image sequence, it is more efficient to
downsample the images respecting the sampling theo-
rem, so the model ends up in a multiresolution strategy.

With this description, it is straightforward to derive an en-
ergy functional that penalises deviations from these model
assumptions. Letx := (x, y, t)> and w := (u, v, 1)>.
Then the global deviations from the grey value constancy
assumption and the gradient constancy assumption are mea-

sured by the energy

EData(u, v) =
∫

Ω

(|I(x + w)− I(x)|2)dx. (3)

Since with quadratic penalisers, outliers get too much in-
fluence on the estimation, an increasing concave function
Ψ(s2) is applied, leading to a robust energy [7, 16]:

EData(u, v) =
∫

Ω

Ψ
(|I(x + w)− I(x)|2)dx. (4)

We use the functionΨ(s2) =
√

s2 + ε2 which results in
(modified)L1 minimisation. Due to the small positive con-
stantε, Ψ(s) is still convex which offers advantages in the
minimisation process. Moreover, this choice ofΨ does not
introduce any additional parameters, since the small numer-
ical parameterε can be set to a fixed value, say0.001.
Finally, a smoothness term has to describe the model as-
sumption of a piecewise smooth flow field. This is achieved
by penalising the total variation of the flow field [21, 8],
which can be expressed as

ESmooth(u, v) =
∫

Ω

Ψ
(|∇3u|2 + |∇3v|2

)
dx. (5)

with the same function forΨ as above. The spatio-
temporal gradient∇3 := (∂x, ∂y, ∂t)> indicates that a
spatio-temporal smoothness assumption is involved. For
applications with only two images available it is replaced
by the spatial gradient.
The total energy is the weighted sum between the data term
and the smoothness term

E(u, v) = EData + αESmooth (6)

with some regularisation parameterα > 0. Now the goal is
to find the functionsu andv that minimise this energy.

3 Minimisation

3.1 Euler–Lagrange Equations

SinceE(u, v) is highly nonlinear, the minimisation is not
trivial. For better readability we define the following abbre-
viations:

Ix := ∂xI(x + w),
Iy := ∂yI(x + w),
Iz := I(x + w)− I(x).

(7)

According to the calculus of variations, a minimiser of (6)
must fulfill the Euler-Lagrange equations

0 = Ψ′(I2
z ) · (IxIz)

−α div
(
Ψ′(|∇3u|2 + |∇3v|2)∇3u

)
,

0 = Ψ′(I2
z ) · (IyIz)

−α div
(
Ψ′(|∇3u|2 + |∇3v|2)∇3v

)

with reflecting boundary conditions.
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3.2 Numerical Approximation

The preceding Euler-Lagrange equations are nonlinear in
their argumentw = (u, v, 1)>. A first step towards a linear
system of equations, which can be solved with common nu-
merical methods, is the use of fixed point iterations onw.
In order to implement a multiscale approach, necessary to
better approximate the global optimum of the energy, these
fixed point iterations are combined with a downsampling
strategy. Instead of the standard downsampling factor of
0.5 on each level, it is proposed here to use anarbitrary
factor η ∈ (0, 1), what allows smoother transitions from
one scale to the next1. Moreover, the full pyramid of im-
ages is used, starting with the smallest possible image at the
coarsest grid. Letwk = (uk, vk, 1)>, k = 0, 1, . . ., with
the initialisationw0 = (0, 0, 1)> at the coarsest grid. Fur-
ther, letIk

∗ be the abbreviations defined in (7) but with the
iteration variablewk instead ofw. Thenwk+1 will be the
solution of

0 = Ψ′((Ik+1
z )2) · (Ik

xIk+1
z )

−α div
(
Ψ′(|∇3u

k+1|2 + |∇3v
k+1|2)∇3u

k+1
)

0 = Ψ′((Ik+1
z )2) · (Ik

y Ik+1
z )

−α div
(
Ψ′(|∇3u

k+1|2 + |∇3v
k+1|2)∇3v

k+1
)
. (8)

As soon as a fixed point inwk is reached, we change to the
next finer scale and use this solution as initialisation for the
fixed point iteration on this scale.
Notice that we have a fully implicit scheme for the smooth-
ness term and a semi-implicit scheme for the data term. Im-
plicit schemes are used to yield higher stability and faster
convergence. However, this new system is still nonlinear
because of the nonlinear functionΨ′ and the symbolsIk+1

∗ .
In order to remove the nonlinearity inIk+1

z , a first order
Taylor expansion is used:

Ik+1
z ≈ Ik

z + Ik
xduk + Ik

y dvk,

whereuk+1 = uk + duk andvk+1 = vk + dvk. So we split
the unknownsuk+1, vk+1 in the solutions of the previous
iteration stepuk, vk and unknown incrementsduk, dvk. For
better readability let

(Ψ′)k
Data := Ψ′

(
(Ik

z + Ik
xduk + Ik

y dvk)2
)

(Ψ′)k
Smooth := Ψ′(|∇3(uk + duk)|2 + |∇3(vk + dvk)|2),

(9)
where(Ψ′)k

Data can be interpreted as a robustness factor in
the data term, and(Ψ′)k

Smooth as a diffusivity in the smooth-
ness term. With this the first equation in system (8) can be
written as

0 = (Ψ′)k
Data ·

(
Ik
x

(
Ik
z + Ik

xduk + Ik
y dvk

) )

− α div
(
(Ψ′)k

Smooth∇3(uk + duk)
)
, (10)

1Since the grid size in both x- and y-direction is reduced byη, the
image size in fact shrinks with a factorη2 at each scale.

and the second equation can be expressed in a similar way.
This is still a nonlinear system of equations for a fixedk, but
now in the unknown incrementsduk, dvk. As the only re-
maining nonlinearity is due toΨ′, andΨ has been chosen to
be a convex function, the remaining optimisation problem is
a convex problem, i.e. there exists a unique minimum solu-
tion.
In order to remove the remaining nonlinearity inΨ′, a
second, inner, fixed point iteration loop is applied. Let
duk,0 := 0, dvk,0 := 0 be our initialisation and let
duk,l, dvk,l denote the iteration variables at some stepl.
Furthermore, let(Ψ′)k,l

Data and (Ψ′)k,l
Smooth denote the ro-

bustness factor and the diffusivity defined in (9) at itera-
tion k, l. Then finally thelinear system of equations in
duk,l+1, dvk,l+1 reads

0 = (Ψ′)k,l
Data ·

(
Ik
x

(
Ik
z + Ik

xduk,l+1 + Ik
y dvk,l+1

)

− α div
(
(Ψ′)k,l

Smooth∇3(uk + duk,l+1)
)

(11)

for the first equation. Using standard discretisations for the
derivatives, the resulting sparse linear system of equations
can now be solved with common numerical methods, such
as Gauss-Seidel or SOR iterations. Expressions of type
I(x + wk) are computed by means of bilinear interpola-
tion.

4 Relation to Warping Methods

Coarse-to-fine warping techniques are a frequently used
tool for improving the performance of optic flow methods
[3, 7, 18]. While they are often introduced on a purely ex-
perimental basis, we show in this section that they can be
theoretically justified as a numerical approximation. Let us
simplify the model by assuming solely spatial smoothness,
as in [18]. Under these condition, (10) can be written as

−(Ψ′)k
DataIk

z∇Ik = (Ψ′)k
Data∇Ik(∇Ik)>

(
duk

dvk

)

−α

(
div

(
(Ψ′)k

Smooth∇(uk + duk)
)

div
(
(Ψ′)k

Smooth∇(vk + dvk)
)

)

For a fixed k, this system is equivalent to the Euler–
Lagrange equations described in [18]. Also there, only
the incrementsdu anddv between the first image and the
warped second image are estimated. The same increments
appear in the outer fixed point iterations of our approach
in order to resolve the nonlinearity of the grey value con-
stancy assumption.This shows that the warping technique
implements the minimisation of a non-linearised constancy
assumption by means of fixed point iterations onw.
In earlier approaches, the main motivation for warping has
been the coarse-to-fine strategy. Due to solutionsu and
v computed on coarser grids, only an incrementdu and
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dv had to be computed on the fine grid. Thus, the esti-
mates used to have a magnitude of less than one pixel per
frame, independent of the magnitude of the total displace-
ment. This ability to deal with larger displacements proved
to be a very important aspect in differential optical flow es-
timation.
A second strategy to deal with large displacements has been
the usage of the non-linearised grey value constancy as-
sumption [20, 2]. Here, large displacements are allowed
from the beginning. However, the nonlinearity results in a
multi-modal functional. In such a setting, the coarse-to-fine
strategy is not only wanted, but even necessary to better ap-
proximate the global minimum. At the end, both strategies
not only lead to similar results. In fact, as we have seen
above, they are completely equivalent. As a consequence,
the coarse-to-fine warping technique can be formulated as
a single minimisation problem, and image registration tech-
niques relying on non-linearised constancy assumptions get
access to an efficient multiresolution method for minimis-
ing their energy functionals.

5 Evaluation

For evaluation purposes, experiments with both synthetic
and real-world image data were performed. The presented
angular errors were computed via

arccos

(
ucue + vcve + 1√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)

)
(12)

where the subscriptsc ande denote the correct resp. the
estimated flow (cf. [5]).
Let us start our evaluation with the two variants of
a famous sequence: theYosemitesequence with and
without cloudy sky. The original version of the se-
quence with cloudy sky was created byLynn Quam
and is available atftp://csd.uwo.ca under the di-
rectory pub/vision . It depicts a flight through the
Yosemite national park and combines divergent and trans-
lational motion. The version without clouds is available
at http://www.cs.brown.edu/people/black/
images.html .
Tab.1 shows a comparison of our results for both sequences
to the best results from the literature. As one can see, our
variational approach outperforms all other methods. The
corresponding flow fields presented in Fig.1 give a quali-
tative impression of these raw numbers: They match the
ground truth well.
In a second experiment we compare the results of our new
linearisation-method to those which are based on the lin-
earised modell using the optical flow constraint (2). Both
modells include the same smoothness assumption so differ-
ences in the result are only ascribed to the later linerisation

Table 1: Comparison between the best results from the lit-
erature with 100 % density and our results for theYosemite
sequence with and without cloudy sky. AAE = average
angular error. STD = standard deviation. 2D = spatial
smoothness assumption. 3D = spatio-temporal smoothness
assumption.

Yosemite with clouds
Technique AAE STD
Nagel [5] 10.22◦ 16.51◦

Horn–Schunck, mod. [5] 9.78◦ 16.19◦

Uraset al. [5] 8.94◦ 15.61◦

Alvarezet al. [2] 5.53◦ 7.40◦

Mémin–Ṕerez [17] 4.69◦ 6.89◦

Our method (2D) 4.63◦ 6.89◦

Our method (3D) 3.94◦ 6.28◦

Yosemite without clouds
Technique AAE STD
Juet al. [12] 2.16◦ 2.00◦

Bab-Hadiashar–Suter [4] 2.05◦ 2.92◦

Lai–Vemuri [13] 1.99◦ 1.41◦

Our method (2D) 1.72◦ 1.37◦

Mémin–Ṕerez [17] 1.58◦ 1.21◦

Farneb̈ack [10] 1.14◦ 2.14◦

Our method (3D) 1.09◦ 1.13◦

of the data term. The outcome listed in Table 2 shows that
our methods leads to results which are about 35% better
than those from the linearised case. So shifting the lineari-
sation to the numerical approximation improves the accu-
rancy of the algorithm even if there are no large displace-
ments as in the Yosemite sequence.
For evaluating the performance of our method for real-
world image data, theEttlinger Tor traffic sequence by
Nagel was used. This sequence consists of 50 frames of
size512× 512. It is available athttp://i21www.ira.
uka.de/image sequences/ . In Fig. 2 the computed
flow field and its magnitude are shown. Our estimation
gives very realistic results, and the algorithm hardly suf-
fers from interlacing artifacts that are present in all frames.
Moreover, the flow boundaries are rather sharp and can be
used directly for segmentation purposes by applying a sim-
ple thresholding step.

6 Conclusion

In this paper we have present a new numerical scheme for
the minimisation of a continuous, rotationally invariant en-
ergy functional for optical flow computation based on two
terms: a robust data term with a brightness constancy, com-
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Figure 1: (a) Top left: Frame 8 of theYosemitesequence
without clouds.(b) Top right: Corresponding frame of the
sequencewith clouds.(c) Middle left:Ground truth without
clouds. (d) Middle right: Ground truthwith clouds. (e)
Bottom left:Computed flow field by our 3D method for the
sequence without clouds.(f) Bottom right: Ditto for the
sequencewith clouds.

bined with a discontinuity-preserving spatio-temporal TV
regulariser. It should be stressed that we have avoided any
linearisations in the data term in order to allow also for large
displacements. We have shown that their combination out-
performs all methods from the literature so far. One of the
main reasons for this performance is the use of an energy
functional with non-lineariseddata term and our strategy
to consequently postpone all linearisations to thenumeri-
cal scheme:While linearisations in the model immediately
compromise the overall performance of the system, lineari-
sations in the numerical scheme can help to improve con-
vergence to the global minimum.The important result in
our paper is the proof thatthe widely-used warping can be
theoretically justified as a numerical approximation strat-
egy that does not influence the continuous model.
As further work we want to transfer this numerical strategy
to non-linearised data terms which are based on derivatives
of the image sequence function. Our goal is to enhance the
estimation of the flow field in areas where the grey value
constancy assumption is disturbed like the area of the clouds
in the Yosemite sequence.

Table 2: Comparison between our numerical linearisation-
method and algorithms using the optical flow constraint as
a linearisation of the model. AAE = average anngular er-
ror. STD = standard deviation. 2D = spatial smoothness
assumption. 3D = spatio-temporal smoothness assumption.

Yosemite with clouds
our method ofc-method

Technique AAE STD AAE STD
2D 4.63◦ 6.89◦ 6.12◦ 8.49◦

3D 3.94◦ 6.28◦ 5.43◦ 8.24◦

Yosemite without clouds
our method ofc-method

Technique AAE STD AAE STD
2D 1.72◦ 1.37◦ 2.40◦ 1.94◦

3D 1.09◦ 1.13◦ 1.57◦ 1.48◦

Figure 2: (a) Left: Computed flow field between frame 5
and 6 of theEttlinger Tortraffic sequence.(b) Right: Com-
puted magnitude of the optical flow field.
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Abstract

This paper presents an algorithm for the automatic detec-
tion of 2D objects in an image even in the presence of noise,
occlusion, cluttering and/or deformations. This method is
based on shape information extracted from the edges gra-
dient and only needs a template of the object to be located.
This shape information is invariant to rotation, scale and
displacement. This algorithm can be used in contour-based
shape retrieval applications.

1. Introduction

Some applications like image database retrieval need auto-
matic tools capable of detecting objects included in com-
plex scenes where the presence of other objects, noise or
the deformable nature of the object hinder the process. Typ-
ically, the only available information is its 2D shape and few
physical features can be assumed.

There are different shape descriptors available, like the
ones defined in the MPEG-7 standard. In this standard,
three descriptors are proposed [1], one based in region in-
formation, another based in contour information, and a third
one based in 3-D information. The contour-based shape de-
scriptor uses the Curvature Scale-Space (CSS) representa-
tion of the contour [9]. This descriptor have very good fea-
tures, like its robustness to deformation or that it emulates
well the shape similarity perception of the human visual
systems. It has some drawbacks too, like its poor robustness
to occlusion and cluttering or that it needs closed-contours.

In this work it is presented an algorithm for the automatic
detection of 2D objects in an image even in the presence of
noise, occlusion, cluttering and/or deformations. The object
can be curved or polygonal, closed or open, and simply-
connected or multiply-connected. The rest of the paper is
organized as follows. In the next section a brief overview of
the algorithm is presented. In section 3 some examples are
shown and, finally, in section 4 a discussion and an outline
of future work is given.

2. Object detection
The algorithm presented in this work tries to detect an ob-
ject in an image using its shape information. In [8], shape
is defined as

Definition 1 Shapeis all the geometrical information that
remains when location, scale and rotational effects are fil-
tered out from an object.

These effects are the Euclidean similarity transformations
of displacement, scaling and rotation.

Object detection can be accomplished by using some
feature invariant to these transformations. The similarity
transformations are invariant to lengths, angles and areas,
[10]. In [4], a particular angle calledspatial angleis pro-
posed to obtain a signature of the image that is invariant to
the similarity transformations.

Definition 2 Let αij be the spatial angle between the
straight line that joins two edge points,ei and ej , and the
gradient angle ofei,

αij = arctan
yi − yj

xi − xj
∠θi (1)

where(xi, yi) and(xj , yj) are the coordinates ofei andej ,
θi is the angle of the gradient vector ofei, anda∠b means
the positive angle betweena andb.

The edge points are the local maxima of the gradient in
the edge normal direction ([3]). In this work, an edge point,
ei, is characterized by its spatial coordinates,xi andyi, and
the angle of its gradient vector,θi = Φ(xi, yi). The un-
ordered set of edge points in an image isE = {ei| i ∈
[1, N ]} whereN is the number of edge points. These edge
points form the contours of every object in the image, and
there is no geometric restriction on these objects (they can
be curved or polygonal, open or closed, simply-connected
or multiply-connected).

It can be shown that the spatial angle is invariant to the
similarity transformations of displacement, scale and rota-
tion.
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Figure 1: Spatial angles histogram of digits 0 to 9

2.1 Image signature

The spatial angle can be used to obtain a signature of a
shape. If a setP is constructed, with every pair of edge
points inE,

P = {(ei, ej)| i 6= j, ei, ej ∈ E}

then the spatial angle can be computed for every pair and
an histogram of these spatial angles (SAH, Spatial Angles
Histogram) can be used as the signature of the shape. In
Figure 1 theSAH for several images are shown. The im-
ages are the digits 0 to 9. For example, the histograms for
digits 6 and 9 are near identical as one digit is a rotated ver-
sion of the other, but the histograms for digits 6 and 7 are
significantly different.

Unfortunately, when there is a large number of edge
points, it can be unpractical to obtain this histogram and
very difficult to differentiate different objects in it.

A more shape-representative information can be ob-
tained if a subset of spatial angles is selected. This subset
must have enough information to discriminate the shape of
the object. The description in Figure 2 can be used to define
a difference angle, ξ, equal to the positive difference be-
tween the gradient angles of two edge points. Given a set of
fixed values for the difference angle,Ψ, it can be obtained a
setPΨ with every pair of edge points such that

PΨ = {(ei, ej)| i 6= j, ei, ej ∈ E, θj − θi = ξ, ξ ∈ Ψ}
(2)

The difference angles must be carefully selected to obtain a
good signature of the object ([5]). In Figure 3.a are shown
the histograms (SAHΨ) for digits 0 to 9 using only the edge
pairs inPΨ with Ψ = {90, 180}. The histograms of differ-
ent digits are still different but the computational cost for

ri

Pi

θi
θi

θj

jP

θj

rj

ijd

α ij

O

ξ

Figure 2: Geometrical description of theθi, αij , andξ an-
gles

obtaining the histograms is lesser. A comparison using a
method like the earth mover distance [11] between the sig-
natures of two shapes can be done to detect the presence
of the object of interest in the other image. In this work a
correlation function has been developed to compare these
histograms.

Sampling errors, noise or small deformations can spread
the spatial angles around its ideal values. To take this into
account, a small window will be used. The proposed nor-
malized cross-correlation function can be defined as

C =
∑

α SAHΨ(I)W [SAHΨ(T )]

NI∗NT
(3)

NI =
√∑

α SAHΨ(I)W [SAHΨ(I)]

NT =
√∑

α SAHΨ(T )W [SAHΨ(T )]

W [F (i)] = ∑
w F (i+w)

where SAHΨ(I) is the SAHΨ for the image, and
SAHΨ(T ) for the template. The window function performs
an unidimensional summation in[−W,W ]. The spatial an-
gle is periodic, thus the window function must take it into
account.

3. Examples
The correlation values obtained for the digits example are
shown in Figure 3.b. Obviously, the diagonal values are 1
and the table is symmetric. The maximum correlation is
found between 6 and 9 and the minimum between 3 and 7.

As another example, a database composed by 1101
trademark images has been selected [7]. A similar exam-
ple was used in [1] to test the performance of region-based
shape descriptors. A new trademark, similar to some of the
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existing trademarks, has been drawn and compared with the
set. The images in the database have been ordered using the
correlation valueC obtained, and the best 8 matches and
the worst 4 are shown in Figure 4. The leftmost image is
the new trademark, and the most similar trademarks have a
correlation value over 0.95. The comparison process takes
between 1-2 s for the entire database.

4. Summary and Conclusions
The shape descriptor proposed in this work can be used to
detect objects that suffer similarity transformations even in
the presence of noise, occlusion, cluttering and/or deforma-
tions. It uses gradient information and has no restriction
about the object shape.

In the future we are planning to improve the method in
two directions. On the one hand, we want to incorporate
local information to improve the shape similarity percep-
tion. On the other hand, we want to reduce the amount of
information that needs to be stored for every shape.
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0 1 2 3 4 5 6 7 8 9

0 1.000 0.821 0.921 0.823 0.768 0.908 0.896 0.747 0.833 0.879
1 0.821 1.000 0.864 0.622 0.860 0.816 0.720 0.831 0.664 0.720
2 0.921 0.864 1.000 0.731 0.797 0.884 0.833 0.713 0.758 0.810
3 0.823 0.622 0.731 1.000 0.669 0.812 0.945 0.522 0.955 0.948
4 0.768 0.860 0.797 0.669 1.000 0.758 0.756 0.736 0.698 0.744
5 0.908 0.816 0.884 0.812 0.758 1.000 0.874 0.603 0.868 0.865
6 0.896 0.720 0.833 0.945 0.756 0.874 1.000 0.604 0.952 0.987
7 0.747 0.831 0.713 0.522 0.736 0.603 0.604 1.000 0.526 0.585
8 0.833 0.664 0.758 0.955 0.698 0.868 0.952 0.526 1.000 0.957
9 0.879 0.720 0.810 0.948 0.744 0.865 0.987 0.585 0.957 1.000

b)

Figure 3: a) Spatial angles histogram of digits 0 to 9 usingΨ = {90, 180}. b) Correlation values

0.00.2 0.11.0 0.98 0.94 0.880.92 0.900.96

Figure 4: Trademarks example
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Abstract

In this work a new method to detect the affine transforma-
tion that relates two views of a planar object is presented.
It is a generalization of a previous work that uses invari-
ant tables generated from contour information to detect the
similarity transformations that a planar shape has suffered
with respect to a template. Several improvements for in-
variant table generation and comparison have been carried
out in order to reduce the computation complexity of the
process. Different search strategies have been implemented
and compared for the non-invariant parameters estimation.
Experiments performed with images of real objects confirm
the applicability of the method.

1 Introduction

Weak perspective is probably the more common approxima-
tion to model camera image generation in computer vision.
The affine transformation is a more generic 2D→2D projec-
tion model and it is a good approximation to the perspective
projection under certain conditions [1]. Additionally, there
exist many applications where object deformation can be
modelled by this kind of transformation. For this reason, it
is interesting to establish methods to find the affine matrix
that relates two images.

There are several methods to find the transformations be-
tween a planar template and an image where this template
is included and transformed with arbitrary parameters [5].
The selection of the most suitable method will be based on
considerations such as the kind of shapes we are dealing
with and the ability to cope with practical problems such as
occlusion, noise, etc. A simple approach to object detec-
tion is to find, for every possible parameter value, the tem-
plate transformation that produces a better matching with
the image shape. However, the search space can become
overwhelmingly large. The search space can be reduced if
invariant features are used. Several methods have been pro-
posed to detect the transformation of a planar object based

∗This work was supported in part by the Ministry of Education and
Science (CICYT) of Spain under contract TIC2003-06623.

on the Hough Transform (hashing methods). We can take
advantage of the Hough Transform’s useful properties, such
as its relative insensitivity to noise and robustness to occlu-
sions. However, it demands high computational and storage
requirements.

In this paper the method presented in [3] for the detec-
tion of the similarity transformations will be generalized to
cope with the affine transformations. It is based on evidence
gathering methods that use invariant contour information in
order to reduce the computational complexity of the compu-
tation. In previous works [2] this method was successfully
used to detect the perspective and orthoperspective projec-
tion parameters.

The rest of the paper is organized as follows. In next
section, the method presented in [3] to detect the similarity
transformations relating two planar shapes will be reviewed.
Section 3 introduces the expressions that describe the mod-
ifications that points and tangent angles undergo when an
affine transformation is applied to a contour. A new method
for planar shape detection under affine transformations and
the optimizations that allow us to speed-up the process will
be shown in Sect. 4. Finally, in Section 5, several imple-
mentations of the original algorithm will be tested.

2 Contour Invariants to Similarity
Transformations

The contour points of a shape are characterized by the pa-
rametersp = 〈x, y, θ〉, wherex andy are the coordinates
of the points in a two-dimensional space andθ is the angle
of the gradient vector in the image at this edge point. Two
more angles will be used for the contour invariant informa-
tion generation: thepairing angle, ξ, defined as the positive
difference that must exists between the angles of two edge
points gradient vectors to be paired (i.e., two points,pi and
pj , will be paired ifθj − θi = ξ); and thedifference angle,
αij , defined as the positive angle (]) formed by the line that
joins two paired points,pi andpj , and the gradient vector
angle of the first point,pi. All these values are shown in
figure 1.
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invariant information generation

From this information, we can derive three contour trans-
formations, based on paired points in the shape edge, that
generates new information invariant for some similarity
transformations [3]: theT transformation,T (pi, pj) =
(θi, αij); the S transformation, that includes the distance
dij between the paired points,S(pi, pj) = (θi, αij , dij);
and theD transformation,D(pi, pj) = (θi, αij , ~ri, ~rj),
where an arbitrary reference point,O = (ox, oy), has to
be defined and two vectors are generated from it,~rk =
O − pk, k = i, j.

The information generated by the application of these
transformations is stored in different tables in order to im-
prove the detection process speed. Thus, the contents of
these tables are calculated as follows:

Orientation table (OT ). When a pairing is processed by
theT transformation,OT [αij ][θi] is incremented, in-
dicating how many of the pairings have these (αij , θi)
values. The information stored in this table is invariant
to scale and displacement. Additionally, the rotation
of the shape in a plane causes a circular shift of the
corresponding columns of itsOT .

Distance table (ST ). This is a bidimensional table that
uses the information generated by theS transforma-
tion to generate linked lists, in the positions indicated
by αij andθi, with thedij values. Note that this infor-
mation is invariant to the bidimensional displacement
of the shape.

Displacement table (DT ). The D transformation is ap-
plied in order to build this table. Linked lists are cre-
ated for eachαij and θi and the data stored at each
list position are the~ri and ~rj reference vectors for the
pointspi andpj respectively.

The whole detection process can be segmented in three

Figure 2: Similarity parameters detection segmentation

stages, each one using the information generated in the pre-
vious step, as it is shown in Fig. 2:

• The orientation is computed comparing similar
columns in bothT OT (templateOT ) andIOT (im-
ageOT ) tables for different circular shifts. A match-
ing process between both tables is carried out for each
shift, generating a voting. The highest value indicates
the correct orientation.

• The scale calculation is carried out using the informa-
tion generated by theT ST and theIST after elimi-
nating the effect of the previous transformation (a rota-
tion) in the contour of the template. If a different-from-
zero position of theT ST coincides with the equivalent
one in theIST , distances stored in the linked list asso-
ciated with this position in theIST are used to vote in
an accumulator. In this operation, each distance value
from theIST is divided by all the distance values in
theT ST for this specific (αij , θi) value. The calcu-
lated scale is used to vote in a one-dimensional Hough
space. The highest peak value will indicate the scale
of the image with respect to the template.

• In order to calculate the displacement, the value of the
reference vector for each entry of theT DT – multi-
plied by the scaling – is added to the coordinates of
the paired points stored in the linked list associated
with each entry of theIDT . The positions pointed out
by these vectors are used to increment a bidimensional
space. The maximum position in this accumulator will
give us the situation, in the image, of the equivalent
reference point defined in the template shape.

3 Contour Modification under Affine
Transformations

Given an imageF (x, y), we can express the resulting image
G(u, v), after applying a generic affine transformation toF ,
as:
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ui = a11·xi+a12·yi+bx, vi = a21·xi+a22·yi+by, (1)

where the transformation matrixA given by this expression
must be invertible.

The algorithms presented here transform the gradient an-
gle information in order to reduce the computational com-
plexity. Thus, it is interesting to obtain the relationship be-
tween the gradient angle of an image shape,F (x, y), and
an affine transformation of this image, the imageG(u, v) =
F (u(x, y), v(x, y)). Taking into account that the variables
u and v depend onx and y, as shown in (1), if the first
derivative function is applied we get:

tan θA =
a21 + a22 · tan θ

a11 + a12 · tan θ
, (2)

whereθA andθ are the values of the tangents in the affine
transformed image and in the original image, respectively.

An important consequence of expression (2) is the fol-
lowing lemma:

Lemma: Let C be a contour whose points are
paired for the invariant tables generation using
thepairing angleξ = 180 o. If an affine transfor-
mation is applied to the points in this contour, the
original pairings are kept with the samepairing
angle, ξT = 180 o.

4 Detection of the Affine Transfor-
mation Parameters

The method for the detection of the similarity transforma-
tions will be generalized to the affine transformations group
in this section. First, we need to establish a fixed sequence
of basic transformations, equivalent to any affine transfor-
mation. Then, the method described in Sect. 2 will be gen-
eralized for this chain of operations. Finally, several opti-
mizations in table generation and non-invariant parameters
search will be presented.

4.1 Affine Transformation Decomposition

An affine transformation can be defined by means of a ma-
trix A. Using the classical algebra results, we can express a
real matrixA as the following product:

A = T( ~D) ·Eu(s) ·R(β) ·Enu(~S) · Shx(kx), (3)

whereT represents a translation~D; Eu an uniform scaling
s; R a rotation ofβ degrees;Enu an y-axis scalingsyx;
andShx an x-axis shearkx. Note that only the first two

Figure 3: Block diagram of the detection method

transformations –shear andy-axis scaling– introduce a dis-
tortion in the original shape. The rest are similarity trans-
formations, changing either the position, the orientation or
the size of the distorted shape. Thus, if the effect of the
first two transformations could be eliminated, the method
based on invariant tables presented in Sect. 2 for similarity
transformations computation could be applied.

Normally, the number of edge points in the template is
lower than in the image, where several different shapes can
appear. Thus, we will consider that these transformations
are applied to a template (or reference) image in order to
obtain its instance in an test image.

4.2 Detection Process

As it is shown in expression (3), the effects of the shearkx

and non-uniform scalingsyx must be applied to the tem-
plate contour in order to use the method to detect similarity
transformations. All possible (kx, syx) pairs must be tested,
as they are unknown. The template orientation tables will
be built from the deformed contour with these parameters
and the associated rotation will be estimated by the corre-
lation with the image orientation table. After eliminating
the effects of these parameters, the scale and the displace-
ment can be computed using the rest of invariant tables. The
set of parameters that maximices the similarity between the
transformed template contour, using the detected parame-
ters, and the image contour will be considered the solution.
This process is summarized in Fig. 3. The similarityσ will
be measured using the expression:

σ(T , I) =
1

nT

∑
exp

(
−0.1

√
∆2

x + ∆2
y

)
·|cos (ε(x, y))| ,

(4)
where the summation is over all pixels on the template con-
tour, nT is the number of pixels on the template contour,
(∆x, ∆y) is the displacement –in pixels– from the edge
point (x, y) in the template image to the nearest edge point
in the image, andε(x, y) is the difference angle between the
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gradient direction of the template at(x, x) and the gradient
direction at the nearest image edge. Note thatσ will always
be in the range from 0 (very different images) to 1 (very
similar images).

4.3 Invariant Tables Modification

In a general situation, where thekx andsyx values are un-
known, invariant tables must be generated and compared
from the transformed contour for each (kx, syx) possible
combination using the expressions (1) and (2). This process
require a high computational complexity. However, several
improvements have been carried out in table generation to
obtain a good performance.

TemplateOT building is based on both the calculation
of the template gradient angle,θ, and the difference angle,
α, of contour paired points. In order to reduce its compu-
tation time, we have studied the modifications in an angle
value that arise under an affine transformation. This allows
us to generate anOT for a specific (kx, syx) deformation
by directly transforming the original templateOT , when it
was created using a paring angle ofξ = 180 o. Particu-
larizing expression (2) for the affine transformation with a
x-axis shear,kx, and a non-uniformy-axis scaling,syx, we
get:

θT = arctan
(

syx · tan θ

1 + kx · tan θ

)
. (5)

Similarly, an expression for the transformation of the dif-
ference angle when a shear and a non-uniform scaling are
applied to a shape can be obtained:

αT = arctan
(

syx · tan(θ + α)
1 + kx · tan(θ + α)

)
] θT . (6)

Thus, the generation of a transformed templateOT for
any (kx, syx) applied to it from its originalOT can be per-
formed by gathering the votes inOT [α][θ] to the new loca-
tionOT T [αT ][θT ]. This process is very efficient since this
table is very sparse and can be accelerated by using pre-
computed transformation tables.

4.4 Search Strategies

The search for the unknown parameterskx andsyx can be
accomplished in different ways. The more precise solution
will be found if we implement an exhaustive search. How-
ever, we can perform this task in a more efficient manner
using a multipass approach and non-deterministic optimiza-
tion algorithms.

In themultipassapproach, program execution can be ac-
celerated by reducing the search space size. Starting with a
coarse estimation of the parameters, successive steps focus

on a narrower interval around the solution estimated in the
previous step. A good initial coarse estimation is computed
using a resolution of 0.2. Subsequent steps use a resolution
of 0.1 and 0.05.

A stochastic search, UEGO(Universal Evolutionary
Global Optimizer) [4], based on evolutive algorithms has
also been implemented. More precisely,UEGOsearchs for
groups of solutions and these solutions are optimized using
a Single Agent Stochastic Search method (SASS).

Another important reduction in the computational com-
plexity can be achieved if the maximization criterion is the
invariant template and image orientation tables matching,
measured as its maximum normalized correlation. An im-
mediate consequence of using this criterion is the lost of
accuracy in the detection process. In this situation, all pos-
sible (kx, syx) pairs should be tested in order to find the ap-
plied rotation. The scale and displacement –which are the
most computationally expensive tasks– will be computed
only once at the end of the process, after eliminating the
effect of the other parameters in the template contour.

5 Experimental Results

We have used different images in order to test the behavior
for different implementations of the whole detection pro-
cess. Tables 1 and 2 summarizes the most important accu-
racy (σ, in %) and computational time (T, in seconds) results
for the deterministic and stochastic search strategies respec-
tively. The accuracy of the detection process is checked by
using the functionσ given by expression (4) and by super-
imposing the transformed template contour onto the image
(second column of Tbl. 1). The number of experiments
whoseσ values are greater than 0.9·σMax is indicated (in
%) by σ90. Times are given for executions in a SGI Work-
station with an R–10K@225 MHz processor. The light gray
color indicates the non-precise detections.

The similarity between contours (Contour) and the
matching between invariant tables (InvTables) was used as
optimization criterion in both parameter search. The ver-
sion of the algorithm which directly transform the Tem-
plate Orientation Table was named -OT. For the determin-
istic search, the Sequential and Multipass approach were
implemented for comparison.

6 Conclusions

A new method to detect the affine transformation that relates
two views of a planar object has been presented. Several
optimizations improve the computational complexity of the
process. Experiments performed with images of real objects
have shown the performance of several implementations of
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the algorithm. Highest computational times are required for
the more precise implementations.
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Table 1: Results obtained with a deterministic search of the solution

Contour InvTables

Template Visual Algorithm σ TTot σ TTot

Sequential 95.65 11.15 95.65 2.55
Multipass 92.45 1.21 92.72 0.27
Sequential-OT 23.97 9.18 24.38 0.70
Multipass-OT 58.54 0.96 25.05 0.07

Sequential 84.54 9.01 85.36 1.98
Multipass 84.54 0.93 68.95 0.20
Sequential-OT 22.76 7.70 85.36 0.60
Multipass-OT 85.36 0.80 68.95 0.07

Sequential 87.91 29.417.61 7.59
Multipass 87.91 3.0824.56 0.79
Sequential-OT 87.91 24.1329.64 2.14
Multipass-OT 87.91 2.5433.10 0.24

Sequential 75.98 314.00 55.96 94.68
Multipass 75.98 32.76 55.96 9.65
Sequential-OT 73.62 235.27 53.89 23.28
Multipass-OT 73.62 24.58 53.89 2.63

Table 2: Results obtained with a stochastic search of the solution

Template Algorithm σMax σMin σ90 TMean TMin TMax

Contour 96.10 65.08 60 3.77 3.34 4.23
Contour-OT 88.32 17.47 5 3.12 2.76 3.48
InvTables 96.41 19.15 75 1.78 1.64 2.06
InvTables-OT 35.97 9.45 15 0.49 0.44 0.53

Contour 86.85 73.56 75 5.38 4.39 6.99
Contour-OT 86.65 72.77 75 2.82 2.39 3.11
InvTables 83.78 72.54 85 1.44 1.29 1.56
InvTables-OT 86.10 76.36 95 0.48 0.39 0.51

Contour 89.70 83.64 100 10.15 8.27 12.33
Contour-OT 89.65 84.10 100 8.56 7.37 9.78
InvTables 57.39 15.63 5 5.29 4.65 5.67
InvTables-OT 81.91 16.52 35 1.54 1.34 1.74

Contour 74.67 69.10 100 110.74 98.85 121.06
Contour-OT 73.63 68.16 100 85.74 72.91 98.38
InvTables 73.02 34.15 20 67.26 59.30 74.21
InvTables-OT 63.58 52.56 35 20.10 18.71 21.91
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Abstract

In this paper, we present a geometric invariant shape repre-
sentation using morphological multiscale analyses. The
geometric invariant is based on the area and perimeter
evolution of the shape under the action of a morphological
multiscale analysis. In the case of similarity transforma-
tions, the proposed geometric invariant is based on a scale-
normalized evolution of the isoperimetric ratio of the shape.
In the case of general affine geometric transformations the
proposed geometric invariant is based on a scale-normalized
evolution of the area. We present some numerical experi-
ments to evaluate the performance of the proposed models.

1 Introduction.

Shape representation methods play an important role in
systems for object recognition and analysis. Shape descrip-
tion refers to the methods that result in a numeric descriptor
of the shape and could be a step subsequent to shape repre-
sentation. Another classification of shape analysis methods
is based on the use of shape boundary points as opposed
to the interior of the shape. The two resulting classes of
methods are known as boundary (also called external) and
global (also called internal), respectively.

In the last years, multiscale analyses have became a
common tool for many tasks in computer vision. A multi-
scale analysis can be defined as an operatorTt(f) which
provides for an original imagef a sequence of imagesTt(f)
which represent the image at a coarse scalet.

In this paper we deal with morphological multiscale
analyses, which satisfy the morphological invariance, that
is, the multiscale analysisTt(f) commutes with any
increasing histogram modification of the image. It means
that for any increasing functiong(.)

Tt(f) ◦ g = Tt(f ◦ g).

The underlying hypothesis associated to this morpho-
logical invariance is that the contrast between the different
objects present in the image is not important at all, and
that all the information present in the image is described
by the geometry of the level sets of the image. In particular,
the way a shape changes under the action of a morpholog-
ical multiscale analysis depends only on the geometry of its
boundary.

The main underlying idea we propose in this paper is that
if we take any global invariant of a shape and we follow the
evolution of such invariant under the action of a morpho-
logical multiscale analysis then, this evolution is also un
invariant of the shape, but it contains much more robust
and discriminant information of the geometry of the shape
that just the invariant for the initial shape. In particular, we
propose in this paper to use the evolution of the area and/or
perimeter of the shape across the scales under the action of
different morphological multiscale analyses as basic tools to
find out scale-space global shape representation. The main
advantage of the morphological multiscale analyses with
respect to the classical linear-scale space is that the evolu-
tion of the shape depends just on the geometry of the shape
and it is not depends at all on the contrast of the shape with
respect to the background or the relative location of other
shapes presented in the image which is not the case in the
linear scale-space where the way a shape evolves depends
on the contrast and location with respect to other shapes
presented in the image.

As it was proved in [2],[1] under some minimal archi-
tectural assumptions, all the morphological and similarity
invariant multiscale analyses are generated by the partial
differential equation:

∂u

∂t
= β( curv(u)) ‖∇u‖ , (1)

where curv(u)(x, y) is the curvature of the level line
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passing by the point(x, y), that is:

curv(u) = div

( ∇u

‖∇u‖
)

. (2)

andβ(.) is given by

β(s) =





β(1)sp if s ≥ 0

β(−1) (−s)p
if s < 0.

(3)

wherep > 0. Therefore the model depends on3 parame-
ters,p, β−1, β1. If u(t, x, y) is the solution of equation (1),
for the initial datumf, then

u(t, x, y) = Tt(f)(x, y).

Following the morphological principle, we will consider
that a shapeS0 is given by a level set of the imagef, that is:

S0 = {(x, y) : f(x, y) < λ},

for someλ, where for a setA, we denote byA the closure
of A, that is, the minimum closed set includingA. We will
denote byS(t) the evolution across the scales ofS0, that is:

S(p,β−1,β1)(t) = {(x, y) : Tt(f)(x, y) < λ}.

We will also denote byC(p,β−1,β1)(t) the boundary of
S(p,β−1,β1)(t). For the caseC(p,β−1,β1)(t) is a family
of single Jordan curves, we can interpret the evolution
of C(p,β−1,β1)(t) in terms of curve evolution. In fact,
C(p,β−1,β1)(t) is a solution of the curve evolution equation

∂C(p,β−1,β1)

∂t
= β(k) ~N, (4)

where ~N represents the unit inward normal direction to the
curveC(p,β−1,β1)(t) andk is the curvature. In the last years,
a lot research have been devoted to this curve evolution
equation see, for instance, [3], [4], [6], [7], [8], [2], [5].

The organization of the paper is as follows: In section
2, we analyze the similarity invariant shape representation,
and we propose as geometric invariant a scale-normalized
isoperimetric ratio evolution. In section3, we study the
affine invariant shape representation, and we propose as
geometric invariant a scale-normalized area ratio evolution.
In section4, we present some numerical experiments.

2 The scale-normalized isoperimetric
ratio evolution.

We will use as similarity invariant of a bounded shape
S0 the scale-normalized isoperimetric ratio evolution
IS0
(p,β−1,β1)(t̃) given by the following definition

Definition 1 Let S0 be a bounded shape. We define
the scale-normalized isoperimetric ratio evolution
IS0
(p,β−1,β1)(t̃) as the function

IS0
(p,β−1,β1)(t̃) = 4π

∣∣∣S(p,β−1,β1)(t̃
√
|S0|)

∣∣∣
∣∣∣C(p,β−1,β1)(t̃

√
|S0|)

∣∣∣
2 .

We notice thatIS0
(p,β−1,β1)(t̃) ≤ 1, andIS0

(p,β−1,β1)(t̃) = 1

only for the case whenS(p,β−1,β1)(t̃
√
|S0|) is a circle. Next,

we will show thatIS0
(p,β−1,β1)(t̃) is a similarity invariant of

the shapeS0.

Theorem 1 Let T
(p,β−1,β1)
t (f) be a morphological multi-

scale analysis invariant under similarity transformations,
S0, S′0 be two bounded shapes such that there exists a simi-
larity transformationH with H(S′0) = S0, Then:

IS0
(p,β−1,β1)(t̃) = I

S′0
(p,β−1,β1)(t̃) for t̃ ≥ 0.

Proof: See [1]

3 Morphological Affine Invariant
Representation of a Shape.

We consider a general affine transformation given by

H(x, y) = A


 x

y


 +


 a

b




whereA is a2× 2 matrix with |A| 6= 0.
[2] show that the only affine invariant morphological

multiscale analysis is given by

β(s) =





β1s
1
3 if s ≥ 0

β−1(−s)
1
3 if s < 0,

whereβ1 ≥ 0 andβ−1 ≤ 0. In this case we have that

H
(
Tt′(H,t)(f)

)
= Tt(H(f)),

where
t′(H, t) = |A| 43 t.

On the other hand, given two bounded shapesS0, S′0,
such that there exists an affine transformationH with
H(S′0) = S0, we have that:

∣∣S(p,β−1,β1)(t̃)
∣∣ =

∣∣∣S′(p,β−1,β1)(
√
|A|t̃)

∣∣∣
|A| for any t ≥ 0.

(5)
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One of the main advantages of our approach is that we use
a two parameters family of affine invariant scale spaces. In
our knowledge we are the first to enjoy of such possibility,
usually people take directly the classical case which corre-
spond toβ1 = −β−1. With this two parameters family, we
can get much more information about the shape geometry
that just using the classical affine invariant multiscale anal-
ysis.

In the case of the affine invariant representation, we can
not use the scale-normalized isoperimetric ratio because the
perimeter is not invariant under affine transformations. We
propose a geometric invariant based just on the area evolu-
tion. However we note that we could use any other global
affine invariant of the shape.

Next, We will introduce the scale-normalized area ratio.

Definition 2 For a bounded shapeS0, we define the scale-
normalized area ratio evolutionARS0

(p,β−1,β1)(t̃) as the func-
tion

ARS0
(p,β−1,β1)(t̃) =

∣∣∣S(p,β−1,β1)(t̃
√
|S0|)

∣∣∣
|S0| .

Next, we will show thatARS0
(p,β−1,β1)(t̃) is an affine

invariant of the shapeS0.

Theorem 2 Let T
( 1
3 ,β−1,β1)

t (f) be a morphological multi-
scale analysis invariant under affine transformations (p =
1
3 ), S0, S′0 be two bounded shapes such that there exists an
affine transformationH with H(S′0) = S0, Then:

ARS0
( 1
3 ,β−1,β1)

(t̃) = AR
S′0
( 1
3 ,β−1,β1)

(t̃) for t̃ ≥ 0.

Proof: See [1]

4 Numerical experiments

The numerical algorithms that we use to implement numer-
ically the morphological multiscale analysis are based on
the techniques studied in [3]. We use a simple explicit finite
difference scheme to discretize equation (??). We have
focussed our attention on the qualitative behavior of the
proposed models and we have not devoted a lot of time to
study the efficiency of the numerical algorithms. Of course,
we could use more efficient algorithms to estimate the shape
evolution like accurate curve evolution algorithms for equa-
tion (??). However the application of these curve evolu-
tion type algorithms could be delicate in some cases due to,
on the one hand, the boundary of a shape could be defined
by several curves (in the case the shape has holes) and on
the other hand, as we are going to see, the evolution of the
shape under the action of a morphological multiscale anal-
ysis can develop singularities in the shape evolution, that

is the shape can be split in several shapes, two boundary
curves can touch each other and become a single curve,
etc...

Next, we will present some experiments using the scale
normalized isoperimetric ratio evolutionIS0

(1,β−1,β1)(t̃). We
will use some synthetic shapes given in figure 1. All the
shapes (except the circle) have similar initial isoperimetric
ratio (in fact theoretically the isoperimetric ratio is exactly
the same for all shapes. However, in practice, because
of pixel noise and numerical errors, the computed isoperi-
metric ratio is not the same), therefore the isoperimetric
ratio for the initial shapes, is not useful at all to classify
this synthetic shape database. However, as we are going to
see, when we follow the evolution of the isoperimetric ratio
under the action of a morphological multiscale analysis we
can discriminate easily between the different shapes. The
shapes are organized as follow: For each shape we have
evaluated a similarity transformation where we have rotated
and changed the size of the original shape. So shapes1− 2,
3− 4, 4− 5, 5− 6 and7− 8 are equivalent modulus a simi-
larity transformation. Shape9 is similar to shape7 but in
shape9, we have changed the location of the inside square.
We will compareIS0

(1,β−1,β1)(t̃) for the different shapes for

t̃ ∈ [0, 0.3]. We recall that

Lim
t̃→

(√
1
π

)−IS0
(1,−1,1)(t̃) = 1.

Thereforet̃ =
√

1
π ' 0.56 is the upper bound for the

scale comparison. In practice, we are not interested in
taking this upper bound as final scale because the isoperi-
metric ratio is going to be close to1 for any shape when
we approach the upper bound scale and it is not discrimi-
nant from a geometric point of view. In the experiment we
present we have taken the final scale equal to0, 3 which
seems a reasonable choice, however we have not studied
how to optimize the choice of the final scale and we have
not tested different final scales.

In figure 2, we present the evolution ofIS0
(1,−1,1)(t̃) for

the shapes of figure 1. First, we notice that the simi-
larity invariant is very well preserved because the graphs
of the similarity equivalent shapes evolves very close each
other. We observe that at the initial scales the pixel noise
introduced in the discrete representation of the synthetic
shapes produces some perturbations in the isoperimetric
ratio estimation, however, we can realize that when we
move across the scales these initial perturbations disappear
which is a very good behavior. We can also realize that
we can discriminate very well between the different shapes
following the isoperimetric ratio evolution. We can observe
that the isoperimetric ratio of the shapes converges to1 as it
was shown in [6] We notice that shapes7−8−9 have similar
evolutions because the evolution ofIS0

(1,−1,1)(t̃) is not altered
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Figure 1: Test shapes used to evaluate the scale-normalized
isoperimetric ratio.

Figure 2: Evolution ofIS0
(1,−1,1)(t̃) for the shapes of figure 2.

by the location of the inside square. We can observe that,
since the curvature of the contour of the hole goes to infinity
at the scale where the hole vanishes, a singularity (a point
where the evolution is not smooth) appears at such scale. In
fact, in some way, we could ”characterize” the holes of the
shapes following the singularities of the isoperimetric ratio
evolution, but the studying of such behavior is beyond the
scope of this paper.

In figure 3, we present the evolution ofIS0
(1,0,1)(t̃) for the

shapes of figure 1. We notice that in this case, shapes7
and9 have different evolution following the location of the
inside square. This behavior is illustrated in figure 4 where
we show some steps of the evolution ofS(1,0,1)(t) across
the scales for shape7 and9. We observe that shape7 splits
in 4 different shapes when the exterior contour touches the
inside square. For shape9 we observe that a singularity in
the isoperimetric ratio evolution appears at the scale where
the exterior contour touches the inside square and the hole

Figure 3: Evolution ofIS0
(1,0,1)(t̃) for the shapes of figure 2.

disappears (two boundary curves become a single one). On
the other hand, looking at the evolution of shapes7, 8 we
can observe that in this case the isoperimetric ratio does not
converge to1 as in the case of the mean curvature motion
evolution.

In figure 5, we present the evolution ofIS0
(1,−1,0)(t̃) for

the shapes of figure 1. In the appendix we will show that
the asymptotic state of the shape for this multiscale analysis
is the convex-hull of the initial shape, so, in particular, the
isoperimetric ratio converges towards the isoperimetric ratio
of the convex-hull of the shape.

Next, we will present some experiments for the scale
normalized area ratio evolutionARS0

( 1
3 ,β−1,β1)

(t̃). In this

case, we want to discriminate shapes following general
affine transformations, so we will use a synthetic shape
database composed by affine equivalent shapes. This collec-
tion of synthetic shapes is presented in figure 6. For each
shape we have evaluated an affine transformation where we
have changed the horizontal and vertical sizes in a different
way. So shapes1 − 2, 3 − 4, 4 − 5, 5 − 6, 7 − 8 and
9 − 10 are equivalent modulus an affine transformation.
We will compareARS0

( 1
3 ,β−1,β1)

(t̃) for the different shape for

t̃ ∈ [0, 0.3].
In figure 7, we present the evolution ofARS0

( 1
3 ,−1,1)

(t̃) for

the shapes of figure 6. Each shape has associated two graphs
which correspond to the evolution ofARS0

( 1
3 ,−1,1)

(t̃) for the

different transformations of the shape. We can observe that
initially the area ratio is always equal to1 and it decreases
across the scales. We note that the affine invariance of the
multiscale analysis is very well preserved, it means that the
evolution of two affine equivalent shapes go so close that
most of the time seems to be a single graph in figure 7.

In figure 8, we present the evolution ofARS0
( 1
3 ,0,1)

(t̃) for

the shapes of figure 6. We notice that in this case, only
the convex region of the shape evolves, so this behavior
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Figure 4: From left to right and from top to down: Evolution
of S(1,0,1)(t̃) for shapes7 and9 of figure 2.

Figure 5: Evolution ofIS0
(1,−1,0)(t̃) for the shapes of figure 2.

Figure 6: Test shapes used to evaluate the affine invariant
scale-normalized area ratio evolution

Figure 7: Evolution ofARS0
( 1
3 ,−1,1)

(t̃) for the shapes of

figure 7.
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Figure 8: Evolution ofARS0
( 1
3 ,0,1)

(t̃) for the shapes of figure

7.

produces a strong discrimination between the evolution of
shapes following the geometry of their convex and concave
regions. This effect can be observed if we compare the
evolution of shapes3 and7. The evolution ofARS0

( 1
3 ,0,1)

(t̃)
for these two shapes is very different, but the evolution of
ARS0

( 1
3 ,−1,1)

(t̃) for the same shapes are much more similar.

So in practice, it means that using the information of the
area evolution with different values ofβ−1 andβ1 we obtain
a better discrimination power between different shapes.

In figure 9, we present the evolution ofARS0
( 1
3 ,−1,0)

(t̃) for

the shapes of figure 6. The evolution with the multiscale

analysisT
( 1
3 ,−1,0)

t is more sensitive to pixel noise than the
ones corresponding toβ1 > 0. The reason is that in this
case we do not have a regularization effect on the boundary.
For instance the evolution of the triangles given by shapes
5 and 6 are quite different because of some pixel errors
introduced by the application of the affine transformation to
shape5. The regularization effect on the boundary is a well-
known property of the morphological multiscale analysis, it
means that the multiscale analysis smooths the contours, by
lowering the curvature value (see for instance [4] for more
details).
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Abstract

Estimation of edge features in an image (sub-pixel po-
sition, direction, curvature and change in intensity at
both sides of the edge) starting from the calculus of the
gradient vector in each pixel is not exact, even in ideal
images. In this paper we present a new edge detec-
tor based on an edge and adquisition model that does
not assume continuity in the image values. Edge fea-
tures are obtained with high precision using this detec-
tor, even in noisy images. When noise is too high, we
also propose an iterative method to enhance the image
quality, and keep precision in the features obtained. Fi-
nally some synthetic and real examples are shown.

1. Introduction

1.1. Previous Work

Edge detection is one of the low level tasks more im-
portant in image processing, as a previous stage to es-
timate other high level information. Most of previ-
ous work are focused on a pixel level. However, when
higher precision is required, sub-pixel information is
needed. Some works in this field has been done by
Braggins [1], Naidu [4] and Trujillo [8].

On the other hand, adquisition process adds noise
to the image values. Therefore, a smoothing process
is needed in order to reduce noise. Work in this field
can be classified in methods that assume a known noise
model, and those that does not consider any previous
model. Important contributions in the first group are
the works of Rosenfeld & Kak [6], based on the prop-
erties of Fourier transform, and the work of Castleman
[2] based on Wiener filters. In the second group are
the works of Perona & Malik [5] about anisotropic dif-
fusion, and the work of Lindeberg [3] about multiscale
analysis theory.

1.2. Proposed hypothesis

Most of works in literature assume that a digitized im-
age F is the sampled version of a function f(x, y) over

a rectangular grid of pixels. In order to apply differ-
ential calculus techniques on the image, it is assumed
also that f is continuous and differentiable inside its
domain. We will use a different hypothesis.

We will assume that an edge is a discontinuity in the
intensity values of the function f. Besides, if an edge is
crossing over the pixel (i, j), the intensity acquired in
that pixel will be:

Fi,j =
ASA + BSB

h2

where A and B are the intensities at both sides of the
edge, SA and SB are the region areas filled by both
intensities respectively inside the pixel, and h is the
lenght of a pixel side.

We can use a traditional mask to compute partial
derivatives, like the ones proposed by Sobel or Prewit
[7], in order to look for the maximum values along the
gradient direction to detect what pixels belong to an
edge. However, with the gradient value obtained is not
possible to obtain the exact value of the direction of
the edge, nor the change of intensity at both sides. In
the next section we propose a new method to estimate
these features with higher precision.

2. Edge detection

Let us consider that in the neighborhood of a pixel (i, j)
there exists a straight edge with slope between 0 and
1.This edge is represented by the equation y = a + bx
that divides the plane in two regions of intensity A and
B. Assuming that a, b, A, B are unknown, the value of
neigbour pixels are shown in figure 1a, where pixels
drawn with light grey color are those that could have
an intermediate value between A and B.

Let us consider a 5x3 window centered on the pixel
(i, j). Let us be SM the sum of the 5 pixel values in the
middle column of the window. This value will be:

SM = 5B +
A−B

h2
M

where M is the area inside the column under the
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Figure 1:

straight line (see figure 1b). This value is given by:

M =
∫ h/2

−h/2

(a + bx + 5h/2) dx

Using the equation of SM we could obtain the expres-
sion of the coefficient a as follows:

a =
2SM − 5(A + B)

2(A−B)
h

Proceeding with the left and right columns of the win-
dow in the same way, we obtain the value of b as follows:

b =
SR − SL

2(A−B)

To estimate A and B we could use these expressions:

A =
1
3
(Fi,j+2 + Fi+1,j+2 + Fi+1,j+1)

B =
1
3
(Fi−1,j−1 + Fi−1,j−2 + Fi,j−2)

Once we know the coefficients of the straight line that
represents the edge, we could obtain the sub-pixel po-
sition (a units in vertical from the center of the pixel),
and the normal vector, given by the expression:

N =
A−B√
1 + b2

[b,−1]

The magnitud of this vector represents the exact
change of intensity at both sides of the edge.

2.1. Second order edges

If we approximate the edge as a second order curve,
y = a+bx+cx2, we could remake the expresions of the
previous subsection. In this case, a system of 3 equa-
tions will be obtained using the sums of the 3 columns
of the window. Then, the values of coefficientes a, b, c
are obtained solving the system. Using these values,
the edge features (sub-pixel position, direction and cur-
vature) could be computed with higher precision that
in the linear case.

3 Edge detection in smoothed
images

The adquisition process adds noise to the image, and
this noise produces small errors in the image values.
The traditional way to diminish this error is convolving
the image with a smooth mask, like a gaussian mask.
The simplest mask is a 3x3 mask like the following:

H =




a11 a01 a11

a01 a00 a01

a11 a01 a11




where a00 > a01 > a11 > 0 and a00 + 4a01 + 4a11 = 1.
Let us be G the result image of convolving the orig-

inal image F with the smooth mask H. We are inter-
ested in obtain the edge features in image F but using
only the values of G.

Let us be Pi,s,t the area inside the column i of the
image F that is under the edge line. This column is
composed of the pixels (i, s), (i, s + 1), ...,(i, t). If we
assume that the edge line cross the column from left to
right, its expression will be as follows:

Pi,s,t =
∫ (i+ 1

2 )h

(i− 1
2 )h

(
a + bx + cx2 +

(
t +

1
2

)
h

)
dx

Let us be Mi,s,t the sum of all the pixel values of that
column in the image F. Its expression will be:

Mi,s,t =
t∑

j=s

Fi,j =
1
h2

(A−B)Pi,s,t + B (t− s + 1)

Finally, let us be Si,s,t the sum of the same pixels, but
using the smoothed image G. Due to the convolution,
the value of each pixel of G depends of a 3x3 neighboor-
hood of that pixel in F, and therefore the expression
of S will depend of different M. In this way, a three
equations system could be proposed using the sum of
the 3 columns of a window centered on the pixel (i, j),
called from left to right SL, SM and SR, as follows:





SL = Si−1,j+l1,j+l2

SM = Si,j+m1,j+m2

SR = Si+1,j+r1,j+r2

where l1,m1, r1 < 0 < l2,m2, r2 are those that the
absolute value of partial derivatives in the pixels (i −
1, j+l1), (i−1, j+l2), (i, j+m1), (i, j+m2), (i+1, j+r1)
and (i + 1, j + r2) of the image G are miminum in
each column. The coefficients of the curve are obtained
solving the system, and edge features in the original
image F are computed starting from them.

Figure 2 shows the result of applying this method to
an ideal synthetic circle with noise added. To visualize
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Figure 2: From left to right: noisy image, restored
image, detected edges using the restored image

Figure 3: From left to right: noisy image, restored
image, detected edges using the restored image

the result, a zoomed image has been generated, and
inside each edge pixel a small straight line is drawn.
This line indicates the direction and sub-pixel position
estimated for that pixel.

4. Image restoration

When noise is too high, the usual method consist of
defining an iterative process that modifies the image
gradually, removing noise in each iteration. In this way,
at the end of the process, an image with better quality
is obtained. Finally, edge features are computed using
the values of the restored image.

The algorithm we propose in this paper is the fol-
lowing: first, the original image F0 is smoothed using a
3x3 smooth mask, obtaining the smoothed image G0.
Secondly, the edge detector of the previous section is
applied to this image. This methods will estimate the
edge features at every edge pixel using a different neigh-
boorhood for each one.

In those pixels where an edge is detected, a syn-
thetic subimage could be generated that contains an
ideal edge, using the values of the obtained features
(sub-pixel position, direction, curvature and change in
intensity at both sides). In this way, we could gener-
ate a complete synthetic image F1, combining all these
subimages. In those pixels where there is no neighbor-
ing edge, we keep the same value that in G0.

The image F1 will have better quality than F0, and
therefore edge features computed with it will be more

Figure 4: Detected edges on an angiography

precise. In fact, this scheme could be applied n times to
obtain an image Fn with much better quality. Applying
the proposed edge detector to the smoothed image Gn

we obtain much better estimations of these features.
Figure 3 shows the result of applying this scheme to

a synthetic image with noise added. Figure 4 shows
the result to a real angiographic image.

5. Summary and Conclusions

We have presented an edge model that does not as-
sume continuity in the image values, and an adquisition
model based on regions of different intensities inside
each edge pixel. Next, using these models, we have de-
veloped a method to estimate with high precision edge
features as sub-pixel position, direction, curvature and
change in intensity at both sides of the edge. Finally,
using this detector, an iterative scheme has been pro-
posed to improve image quality, in order to estimate
features with higher precision in noisy images.
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Recovering Human Shape and Motion from Video Sequences

Pascal Fua
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Switzerland
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Abstract

In recent years, because cameras have become inexpensive and ever more prevalent, there has been increasing interest in
modeling human shape and motion from image data. Such an ability has many applications, such as electronic publishing,
entertainment, sports medicine and athletic training. This, however, is an inherently difficult task, both because the body is
very complex and because the data that can be extracted from images is often incomplete, noisy and ambiguous.

In this talk, I will present the approach we have developed to overcome these difficulties. We start from sophisticated 3-D
animation models and reformulate them so that they can be used for data analysis. We use them, not only to represent faces
and bodies in motion, but also to guide the interpretation of the image data, thereby substantially improving performance.
Using complex video sequences, I will highlight the effectiveness of our approach to video-based shape and motion capture
and demonstrate the applicability of our technology for Augmented Reality purposes. Finally, I will present some open
research issues and discuss our plans for future developments.
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Abstract. This paper proposes an approach to track facial landmark points through a color stereo image sequence.  We assume a 
calibrated and rectified stereo pair. The approach only uses the color information of the images; neither new hypothesis nor 
graphic models of the face are required. The approach uses the disparity space representation as the main space where carrying 
out all fitting process. A robust iterative linear algorithm based on the algorithm RANSAC is used to estimate the rigid motions 
of the face through the image sequence. This approach is based on the fact that the disparity information is essentially robust 
against facial local motions. So we transform the stereo image sequence in a disparity space sequence, and we estimate the rigid 
motion between each two consecutives images from a homography between the corresponding disparity spaces.  Here, the dense 
disparity map is used as a feature from which to estimate the homography parameters. After compensating the rigid motion 
effect, an accurate estimation of the local motion is given from a local matching process on the color information of the image.  
The approach has several potential advantages on the use of mesh graphical model. Firstly, no graphical template is used to 
track the landmark points, and as a consequence we do not have the initialization problem; secondly, the set of points we want to 
track is not fixed beforehand as happen in a mesh graphical model. In our case any point can be tracked once the corresponding 
homography is estimated.  

1 Introduction 

Characterization of facial expressions from geometry in monocular image sequences has been one of the most active topics in 
the computer vision community [15]. The increase in the importance of applications based on the facial motion has developed 
different approaches, to this problem, depending on the application requirement [1-4] [6][12-14][15][19]. The vast majority of 
these approaches are based on the tracking of a set of facial landmark points through the image sequence [2][9][11]. In order to 
track the set of landmark points, mesh graphical models mixing different types of information, extracted from the facial surface, 
have been proposed [6][9][10]. The local motion estimation of each landmark point, from one image to the next, is given by the 
Euclidean distance between the image coordinates of the landmark point and the image coordinate of its corresponding nodal 
point in the template. There are, however, two important shortcomings in this approach. One is that an adequate graphical 
template must be available before starting the tracking process. The other is that the rigid motion of the head has to be estimated 
from the motion of the template nodes that we assume are located on rigid patches of the face.  Unfortunately, the skin of the 
human face deforms in a very free way and it is difficult to define templates including nodal points that can be considered static 
in general. Therefore, alternatives to the traditional use of mesh graphical models must be considered. Other associated inherent 
difficulties to the graphical templates use are: i) estimation of the initial position of the template on the first image of the 
sequence, and ii) automatic adaptation of the template to a new facial pose when not all the landmark points are visible. 
 
 In this paper, we propose an approach based on stereo images that have several potential advantages on the use of mesh 
graphical model. Firstly, no graphical template is used to track the landmark points, and as a consequence we do not have the 
initialization problem; secondly, the set of points we could track is not fixed beforehand as happen in a mesh graphical model. In 
our approach any point can be tracked once the corresponding homography is estimated. 
 
Our approach is based on the fact that the disparity information is essentially robust against facial local motions. So we 
transform the stereo image sequence in a disparity space sequence, and we estimate the rigid motion between each two 
consecutives images from a homography between the corresponding disparity spaces [7][8].  Here, the dense disparity map is 
used as a feature from which to estimate the homography parameters.  

 
Since we are interested in studying 3D object motions close to the camera, we use the general perspective camera model in order 
to analyze our images. An important instance of this situation appears in 3D videoconferencing systems, where the 3D shape of 
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the head and face of each participant must be refreshed in each instant of time, and the usual short distance between cameras and 
surfaces introduces strong perspective effects.  In the case of monocular images, affine deformations have been successfully 
approached [1] [3 ][4], but the case of  perspective  deformation in our knowledge remains open. 
 
In Section 2, we introduce the geometrical concepts of the stereo images. In Section 3 the tracking algorithm is presented. In 
Section 4, the disparity map estimation is discussed. In Section 5, experiments carried out and the results are shown. Summary 
and conclusions are presented in section 6. 

2 Stereo Images 

Let us consider a calibrated rectified stereo rig, i.e. the epipolar lines are parallel to the x-axis. There is no loss of generality 
since it is possible to rectify the images of a stereo rig once the epipolar geometry is known [11]. We also assume that both 
cameras of the rectified stereo rig have internal parameters that are similar and known.  

 
Let us consider a rectified image pair, and let (x,y) and (x´,y´) be the two corresponding points in that image pair. Since the 
corresponding points must lie on the epipolar line, the relation between the two points is x’=x − d,  y´=y where d is defined as 
the disparity of the point (x,y). From rectified stereo images, we can define disparity spaces that are equivalent to a 3D 
reconstruction of the points up to a homography of the 3D space [8]. The equations relating the coordinate vector (X,Y,Z) of a 
3D point to its disparity coordinate vector ( )Tdyx ,,  in the case of oriented and rectified cameras are [19]:  

  

(1) 

 
where x0, y0, x’0  are the principal point coordinates of the left and right image, respectively,  α and α  ́are the focal distance of 
the left and right cameras, respectively and B is the baseline of the stereo rig.  All image coordinates are expressed in terms of 
pixels. From expression (1), assuming α=α´, the homographic relationship between the 3D coordinates of a point X=(X,Y,Z)T 
and  its associated disparity vector ( )Tdyx ,,  can be expressed as 
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or in a shorter way as 
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2.1 Rigid motions in the disparity space 

Let us apply a rigid motion on the 3D data. If X and X’ represent the 3D coordinates of a point before and after the motion, then 
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From expressions (4) and (5) we obtain 
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(6) 

 

Equation (6) describes the 3D homography Γ relating the disparity homogeneous coordinates of a point before and after the 
motion .  
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3 Tracking Algorithm 

3.1 Noise on the data 

The source of the noise in the disparity space is known. The disparity coordinates x  and y  are affected by the noise produced 
by the discretization effect and without additional information can be assumed equal for all pixels. The noise on d is associated 
to the change in the gray level of the pixels in the stereo matching process and could be estimated from this process. We can 
therefore assume that the associated noise to yx ,  and d are independent.  Although there is no reason to consider the variance 
of d equal to the variance of the discretization error, the covariance matrix of the noise on each point of our disparity space can 
be taking as Ω=σ2 I3x3 in case we do not have additional information. Other important noise source, in our case, is the local 
motion of the points. All the correspondences between points affected of local motion are erroneous according to the 
correspondences defined by the 3D rigid motion. So, in order to estimate the rigid motion, a robust algorithm selecting 
correspondences free of this noise must be considered. An important consequence of the local motion noise is the difficulty of 
using set of interest points in our estimation algorithm, since we do not know in advance if these points are affected or not by 
this contamination.  

3.2 Rigid motion estimation 

Let (τi, τ’i) be a set of point correspondences. The problem of estimating the rigid motion parameters (R,T) from the set of 
points (τi, τ’i) amounts to minimizing the error  
 
 
 
 
 
where ( )ΓΓΓΓΓΓΓ ττττττ=τ 434241 iiiiiii '''''''  is the estimated Euclidean coordinate vector for i'τ  from (6), and Ω is the 
covariance matrix of the disparity vectors [7]. Here we assume an i.i.d noise model. Equation (6) shows that this error function 
is not linear in the parameters for (R,T), so an cuasi-linear iterative algorithm has been used to estimate the vector of six 
unknowns by parameterizing the rigid motion.  Here we are interested in  small rotations (< 5 degree), so the rotation matrix can 
be expressed as R=I+[ω]x, where I is the identity matrix and [ω]x  represents the skew-symmetric matrix  associated to the 
vector ω.  An initial solution for the vector (ω,T)T  can be calculated from equation (6), solving the linear system that appears by 
considering the equations associated to Euclidean coordinates of all the points τ and τ’ and assuming all λ=1. In the next 
iteration we recalculate the value of λ from the above solution and again solve equation (6) for a new solution. We iterate until 
convergence of the vector (ω,T)T . In our experience, three or four iterations are sufficient 
Nevertheless, the presence of outliers in the correspondences between the disparity maps degrades the estimation considerably. 
In order to circumvent this problem a RANSAC based algorithm is proposed in Table 1.  
 
 

 
 
 
 
 
 
 
 
 
 

Table 1. 
 

We cluster the disparity vector in classes in order to benefit samples with different disparity points. The regions with higher 
disparity have an definitive influence in the accuracy of the rigid motion estimation, but these regions in general are smaller in 
number of pixels. 

( )∑ ττ=
i

iidE 22 G,' ,     ( ) ( ) ( )Γ−Γ τ−ττ−τ=ττ ii

T

iiiid '''','   12 OG  (7) 

IItteerraattiivvee  rroobbuusstt  aallggoorriitthhmm::  
II..  TToo  eessttiimmaattee  aanndd  nnoorrmmaalliizzee  tthhee  sseett  ooff  ddiissppaarriittyy  vveeccttoorrss  
IIII..  TToo  cclluusstteerr  tthhee  ddiissppaarriittyy  vveeccttoorrss  iinn  ccllaasssseess  aaccccoorrddiinngg  ttoo  iittss  
ddiissppaarriittyy  vvaalluuee..  
IIIIII..  RReeppeeaatt  NN  iitteerraattiioonnss  

ii..   TToo  rraannddoomm  nn>>22  ccllaasssseess..  TToo  ttaakkee  oonnee  vveeccttoorr  ffrroomm  eeaacchh  ccllaassss..  
FFoorr  eeaacchh  vveeccttoorr  ttoo  ccaallccuullaattee  λλii,,  AAii  aanndd  bbii  

iiii..  SSoollvvee  tthhee  ffuullll  ssyysstteemm  λλAAXX==bb  ffoorr  XX  
iiiiii  CCoouunntt  tthhee  nnuummbbeerr  ooff  iinnlliieerrss  oonn  aallll  tthhee  ccoorrrreessppoonnddeenncceess..  

IIVV..  TToo  ttaakkee  aass  ssoolluuttiioonn  tthhaatt  wwiitthh  tthhee  hhiigghheesstt  nnuummbbeerr  ooff  iinnlliieerrss..  
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3.3 Local matching  

The estimated homography, between each two consecutive disparity spaces, compensates the rigid motion of the head from one 
image to the other. But in order to estimate the local motions of the face we carried out a matching step by local search.  We 
start transferring, by the homography, the image coordinates of the points from the first image to the second. Then a 
crosschecking cross correlation matching on  a 17x17 size search window around each transferred coordinated is carried out. 
The 13x13 size correlation window is adapted in each point from the rectified color values defined by the homography. 
Although, the searching pattern defined by the correlation window it is not the real one, it can be assumed that it is very close to 
it.  In local patches with low texture, however, this fitting step can produce small oscillations around the true location. As figure 
of merit to minimize we use the normalized cross correlation. 

4 Disparity map estimation  

We estimate two dense motion maps in this approach. Firstly, we estimate the disparity map for each stereo image, and 
secondly, we estimate the dense motion vector map associated with every two consecutive left and right images, respectively. 
From the disparity map we segment a region of interest by applying a binary threshold on the disparity value range. The 
threshold is fixed to define our region of interest.  From the motion vector map we segment a new region of interest defined by 
the pixels where the motion vector norm is higher than a fixed threshold.  The intersection of both regions segments the subset 
of moving points of the scene with disparity value higher than the fixed threshold. In order to remove isolated small regions we 
apply a size filter to the intersection region. Figure 1 shows an example of the region of interest estimation process.  
 
 
 
 
 
 

 

                                           (a)                                   (b)                             (c)                                   (d) 

Fig. 1. This example corresponds to rotation left-right of the head. Picture (a) represents the estimated stereo disparity map, picture (b) 
represents the x-motion dense map, picture (c) represents the y-motion dense map, and picture (d) represents the result of the union of picture 
(b) and picture (c) intersection with picture (a).  

Dense disparity maps estimation from two images is a very active field of research with many different techniques classified as 
local o global approaches [5][16]. We have combined a local approach to obtain the maximum possible accuracy with a 
smoothing surface-fitting step to fill the holes. We start applying a crosschecking adaptive multiple window algorithm, 
minimizing the normalized correlation, on a fixed number of scales.  We calculate the disparity of each pixel in all the scales 
and we take out that with higher correlation value. Once we get this first disparity raw estimation, we fit a smooth surface using 
a penalized conjugate gradient algorithm [17]. We also have experimented with global methods based on cut graphs algorithms 
[16]. In our experience, however, although these methods always return a dense disparity map, the estimation is too smooth to 
be useful in the rigid motion estimation. In Fig.2 we show some of the obtained disparity map estimations. 
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Fig. 2.  This figure, from left to right, shows samples of the estimated disparity map sequence for the image sequence shown in figure.3. The 
first two rows show the raw disparity maps. The second two rows show the result of fitting a surface to the above raw estimations. All these 
images correspond to the left image of the stereo pair. The higher gray level the higher disparity. 

From Figure 2 we can evaluate the quality of the estimation obtained. It can be appreciated, as the disparity maps are coherent 
with the 3D rigid motion of different parts of the face. Some estimations present noisy patches that could influence the rigid 
motion estimation. But, in our experience the algorithm RANSAC has managed this situation very properly. The combination of 
estimations obtained from the different scales has mainly beneficed the disparity estimation of the textureless region of the face.  

5 Experimental results 

Experiments to estimate 3D facial motions have been carried out from different 640x480 stereo image sequences captured by a 
factory calibrated Pointgrey stereo camera (Bumblebee) with 4mm focal length lens, watching an actor moving his face freely to 
a distance to the camera lower than one meter. A fixed window inside the captured images fixed the sub-images of interest. Our 
algorithm was applied to the image sequence defined by the sub-images. The proposed algorithm was applied on every two 
consecutive stereo images in the sequence.  In order to assess the quality of the rigid motion estimation process we synthesized a 
new sequence of images by interpolating from the estimated motions and the original sequence.  In the cross-correlation 
disparity calculation we use the scales defined by odd size correlation windows ranging from 7 to 15. 

 
Figure 3 shows six equally spaced samples taken from an image sequence of fifty images. It can be seen the strength of the rigid 
and local facial motions respectively. Figure 4 shows how accurate the estimated rigid motion for this particular sequence is. We 
compare the norm of the difference between two consecutive images, with the norm of the residual calculated by the difference 
between an original image and its corresponding synthetic. The large decrease in the norm of the difference image from the first 
case to the second case, shows that the rigid motion is compensated enough.  

 

 
 

 
 
Fig. 3.  The first and second rows show a summary of the left and right images respectively of a stereo sequence of fifty images.  Strong rigid 
and local motions can be appreciated along the image sequence. 
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The first row of figure 5 shows the result of applying the proposed algorithm on the stereo image sequence shown in figure.3.  
The landmark points, in white, were selected by hand in the first image of the sequence and the proposed algorithm 
automatically calculated their locations in the rest of the images. It is shown, as the locations of the landmark points are stable 
independently of the facial changes, although some of the selected points present difficulty in tracking. In particular, the point 
just on the tip of the nose is a difficult point since the disparity of this point is usually underestimated in the disparity fitting 
process. As a consequence, higher transfer error is obtained by the homography. There are, however, unsolved difficulties in our 
approach. The most important is the recovery of the landmark point location after an occlusion.  This situation is present in 
figure 5 from the third sample.  It can be seen how the right extreme of the right eyebrow disappear as consequence of the head 
rotation.  In this case the fitting process follows the texture of the eyebrow but eventually loss the point, as it can be appreciate 
in the last picture. It also can be observed how some of the points oscillate around its true location. This is a consequence of the 
use of cross-correlation and the texture variation with the motion. A possible improvement to the use of gray values cross-
correlation, in this second step, would be the use of illumination and motion invariant vectors characterizing the matching area. 
.   

 
Fig. 4. This figure shows four graphs each of which is the norm of the gray level difference pixel-by-pixel from two images. The graphs Init.l-
error and Init.r-error show when the images are two original consecutive right images and left images, respectively. The graphs Fitt_l.error and 
Fitt_r.error show when the two images are the original and synthesized, by the estimated homographies, for the right and left images, 
respectively. 
 
The proposed technique is time efficient since the costliest step is the disparity estimation by cross-correlation which can be 
implemented efficiently. In the algorithm RANSAC step of the homography estimation process a maximum of 300 samples of 
three elements each were sampled.  
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Fig. 5.  This figure shows, from left to right, a subsequence of images from the original sequence. In white, shows the estimated location of the 
selected set of landmark. The first image  (top-left) shows the initial locations. All images belong to the left camera of the stereo pair 

 

6 Summary and Conclusions 

A new approach to the moving and static facial point-tracking problem from stereo geometrical information has been given. A 
robust algorithm to estimate the rigid motion of the head between consecutive images has been proposed. We have shown that 
the dense disparity map is a robust and useful feature in order to estimate the rigid motion parameters. The use of a homography 
to transfer static and moving points between images, it is a clear improvement in comparison to the approaches to the same 
problem in monocular sequences, where a similar transfer mechanism for points in motion does not exist. In this approach only 
the observed image data and the camera calibration data has been used in order to regularize all the fitting process. Furthermore, 
the set of points to track does not need to be fixed in advance as happen when a graphical templates is used. Any point in the 
region of interest can be tracked once the homograhies are estimated. But in order to have a definitive approach the recovery of 
the landmark location after occlusion must be solved.  In the same way, more sound and elaborated window matching 
mechanisms, invariants to 3D rigid and local motions, have to be approached in order to increase the accuracy of the local 
matching step.  
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Abstract 
In this paper we describe a new method for detection and 
initial pose estimation of a person in a human computer 
interaction in indoor uncontrolled environment. We used 
the Koepfler-Morel-Solimini mathematical formulation of 
Mumford-Shah segmentation functional adapted to color 
images captured from two cameras. The idea is to obtain 
a system to detect the hands and face in a sequence of 
binocular images. The skin color is predefined and a 
procedure is parameterized to segment and recognized 
the homogeneous regions. Also we fit our results to a 
restriction that the two hands and face must be detected 
at the same time. Also we used a biomechanical 
restriction to reach this initial estimation. So the centroid 
of the blob is computed for every region. The process is 
carried oout from two calibrated cameras that allow the 
system to reach a 3D reconstruction.  
 
1 Introduction 
 
In actual computers systems the interaction is going to a 
non-contact devices. That’s means that allow the user to 
interact without physical contact with the machine; this 
communication can be carried out with voice or user 
gesticulation capture. We are especially interested in 
visual information, so recognize the human presence in 
colour video images. Also we would like to define a 
general, robust and efficient system that can be used with 
non-expensive cameras and digitalizing cards. Capture is 
carried out from colour cameras. The process is over 2D 
images, also we have done experiments with two 
calibrated cameras and a 3D reconstruction module build 
a 3D scene in real time. 
The global process must detect a new user entering the 
system and analyse him/her to determine parameters such 
as hair colour and clothes. Once, the user who is going to 
interact with the machine has been detected, the system 
starts to track interesting regions such as the head, hands, 
body and joints, using information obtained in the user 
detection task. The input data for the gesture 
interpretation process are the position and orientation of 
these regions. This process will determine which gesture 

the user has carried out. Next, these gesture data are sent 
to the execution process, which ends the process by 
performing the action that has been specified, and so 
completing the feedback process. 
In the following section, we explain briefly the 
mathematical background of the segmentation process. 
Section 3 introduces the main method to detect the user in 
front of the camera and carefully explains the analysis 
process and parameters needed for a future tracking 
process. Section 4 explains 3D reconstruction module 
from two calibrated colour cameras. Finally, we conclude 
with some new and extended results including a set of 
colour images and conclusions, future works and 
references. This work is a new version of [8] improving 
the segmentation process and the result ratio in 
classification process. 
 
2 Multichannel Segmentation Algorithm 
 
Image segmentation is the first step in data extraction for 
computer vision systems. Achieving good segmentation 
has turned out to be extremely difficult, and is a complex 
process. Moreover, it depends on the technique used to 
detect the uniformity of the characteristics sought 
between image pixels and to isolate regions of the image 
that have this uniformity. Multiple techniques have been 
developed to achieve this goal, such as contour detection, 
split and merging regions, histogram thresholding, 
clustering, etc. A Survey can be found in [1]. 
In color image processing, pixel color is usually 
determined by three values corresponding to R (red), G 
(green) and B (blue). The distinctive color sets [7] have 
been employed with different goals, and specific sets 
have even been designed to be used with specific 
segmentation techniques [1]. 
We define a color image as a scalar function g = (g1, g2, 
g3), defined over image domain Ω ⊆ ℜ2 (normally a 
rectangle), in such a way that g: Ω → ℜ3. The image will 
be defined for three channels, under the hypothesis that 
they are good indicators of autosimilarity of regions. A 
segmentation of image g will be a partition of the 
rectangle in a finite number of regions; each one 
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corresponding to a region of the image where components 
of g are approximately constant. As we will try to 
explicitly compute the region boundaries and of course 
control both their regularity and localization, we will 
employ the principles established in [2, 4, 6] to define a 
good segmentation. To achieve our goals we consider the 
functional defined by Mumford-Shah in [3] (to segment 
gray level images) which is expressed as: 

(B)λdµ2)g(uB)E(u,
Ω i

ii +−= ∫∑
=

3

1

 (1) 

where B is the set of boundaries of a homogenous region 
that define a segmentation and u (each uk) is a mean 
value, or more generally a regularized version of g (of 
each gk) in the interior of such areas. The scale parameter 
λ in the functional (1) can be interpreted as a measure of 
the amount of boundary contained in the final 
segmentation B: if λ is small, we allow for many 
boundaries in B, if λ is large we allow for few boundaries. 
A segmentation B of a color image g will be a finite set of 
piecewise affine curves - that is, finite length curves - in 
such a way that for each set of curves B, we are going to 
consider the corresponding u to be completely defined 
because the value of each ui coordinate over each 
connected component of Ω \ B is equal to the mean value 
of gi in this connected component. Unless stated 
otherwise, we shall assume that only one u is associated 
with each B. Therefore, we shall write in this case E(B) 
instead of E(u, B). A segmentation concept which is 
easier to compute is defined as follows: 
Definition 1. A segmentation B is called 2-normal if, for 
every pair of neighboring regions Oi y Oj , the new 
segmentation B’ obtained by merging these regions 
satisfies E(B’) > E(B). 
We shall consider only segmentations where the number 
of regions is finite, in other words Ω \ B has a finite 
number of connected components and the regions do not 
have internal boundaries.  
A more detailed explanation of the concepts and their 
mathematical properties can be consulted in [2, 4] and we 
can see the properties of the functional in [3,4]. The use 
of multichannel images (eg. color images) can be seen in 
[4, 5]. We shall use a variation of segmentation algorithm 
by region merging described in [2] adapted to color 
images. 
The concept of 2-normal segmentations synthesizes the 
concept of optimal segmentation we are looking for, and 
it lays on the basis of the computational method we use. 
The 2-normality property is well adapted for the 
construction of an algorithm based on region growing by 
merging neighboring regions. Two regions will be 
merged if this operation reduces the energy. At each step 
we need to compare the balance of energy if we remove a 
common boundary ∂(Oi, Oj) of two neighboring regions 
Oi, Oj. If B is 2-normal, one has E(B) ≤ E(B - ∂(Oi, Oj)), 

which, in the case of a piecewise constant function u, 
implies the balance 
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We call equation (2) the merging criterium. We decide to 
remove the common boundary ∂(Oi, Oj) of Oi and Oj if 
this equation is not satisfied. By repeating this step, that 
is, by comparing the balance energy for deciding to join 
any two neighboring regions, we finally obtain a 2-
normal segmentation for the scale parameter λ, a 
segmentation, i.e., where no further elimination improves 
the energy. Then, we have implemented a multiscalar 
algorithm and data structure similar to that used in [2] but 
adapted to color images and real time processing. 
The algorithm used the RGB components, because the 
segmentations obtained are very accurate to our goal. But 
the system is able to use another color space or color 
descriptor as we can see in [1]. Moreover, if it is needed it 
can weigh the channels used in order to obtain the 
segmentation. 
 
3 User Detection and Initial Pose 
 
The image is captured and segmented with the algorithm 
explained in the previous section and is then analyzed to 
determine whether it is a user or not, as we can see below 
in a work related with this topic [6]. If a user has been 
detected, the system studies him and obtains some 
parameters that will be useful in the tracking and analysis 
process [7]. By applying this process directly to 
segmented images without using information from 
previous frames, the system is robust to background 
changing and variable illumination. The parameters 
obtained from the segmentation task are fixed in order to 
user interactions with upper torso (body, arms, hands and 
head). The system obtains the upper torso configuration: 
shirt, hair, hands and face. User detection process is 
waiting for a user located opposite the camera, with hands 
separated and at the same height that head, then it 
recognizes and later analyzes user configuration. 
This module receives a segmentation of the captured 
image, analyzes every region and marks as skin region if 
its RGB medium value is in a characteristic color range of 
skin. To achieve more homogenous regions, neighboring 
skin regions are merged. This merging is carried out to 
avoid detecting a hand or the face in two neighboring 
regions, following the merging criteria: 
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where Neighbor(Oi, Oj) means that two regions are 
neighbors and Skin(Oi) means that is a skin region. 
After this, we obtain a skin region set, called β, where any 
pair of skin regions are separated.  
For all ordered set of three regions included in β, we 
identify each one as face Z, left hand Y1 and right hand Y2, 
then we evaluate a criteria to determine whether this 
configuration is correct. 

{ } αβϕ ≥∈∀ kjikji
k,j,i

O,O,O:)O,O,O(Max  (4) 

where α is a threshold probability and we call φ the user 
detection function. In this function we take into account 
the following: 
− Central region, face, must be the biggest.  
− Lateral regions, hands, have a similar area.  
− Face region area A(Z) must be between a minimum Z - 

and a maximum Z + 
− Hands area A(Y1) and A(Y2) must be between a 

minimum Y - and a maximum Y + 
− Vertical position Y1 and Y2 should be similar and 

nearest possible to Z 
The user detection function returns a value between zero 
and one that measures the probability that a user has been 
detected. From all possible combinations of Z, Y1 and Y2 
the one with the greatest value, greater than a reference 
minimum value α, is chosen as the best configuration. 
In order to apply the above algorithm, we need to fix the 
following values: a color range of skin to detect hand and 
face regions, a threshold probability α to discriminate non 
expected initial positions. To avoid high differences of 
hands we include an area similarity criterion, a maximum 
size of hand area is also necessary. All these parameters 
are used in order to discriminate bad detections. 
All threshold values are established in relation with 
camera to user distance and image resolution. This 
distance is predefined by initial application setup. 
After a user has been detected, the same image is 
analyzed to determine hair and shirt color. Region 
proposed as hair, X is the upper neighboring region of Z if 
A(X) / A(Z) relation is greater than a threshold, hair is 
discarded and is considered that it is a bald user. 
To analyze shirt, the following algorithm is applied. 
Initially, shirt region W is the greatest region whose upper 
boundary is included in the boundary of Z (see Figure 1). 
Afterwards, neighboring regions of W are joined until Z is 
connected with Y1 and Y2 through W. A candidate region 
Ti chosen at every step i to be joined to W is in relation 
with: color space distance between mean color of T and 
W, and distance in pixels from T to Y1 and Y2. 
With this process, the system detects a user and obtains 
useful data for the tracking system. 
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Figure 1. Shirt region detection 

 
4 3D Reconstruction 
 
To achieve a 3D reconstruction we merge data obtained 
from two calibrated cameras. We label camera 1 and 2. 
Every camera do separately the segmentation and user 
detection  porcess. Calibration is done with a classical 
calibration algorithm without distorsion. 
We use a non distorsion calibration because OpenGL 
doesn´t allow distorsion in its graphics pipeline, OpenGL 
is a graphics library developed to work in real time, 
others real-time graphics libraries don´t implement 
distorsion. To generate an approximated distored image is 
necessary to generate distorsion from the image generated 
by OpenGL, and the image quality and frame rate is 
decreased. 
The 3D reconstruction receives as input data the regions 
detected obtanied from user detection. For every region: 
face, left hand and right hand we compute the center in 
the 2D image space from the two images. With regions 
center compute the 3D position intersecting the two lines 
that cross region center and camera position. This two 
lines practicaly never will intersect, then is computed as 
3D position the point that is nearest to two lines. 
At this point we have the 3D position for the face, right 
and left hand, and we need more information for obtain a 
3D volume, the volume selected to model the regions is a 
sphere.  
We have computed the center of the sphere, and the other 
parameter needed is the radius. First, the radius is 
computed in the image space as the circle that has the 
same areas that the region has been detected. 
Second, the 3D radius is estimated for camera 1 and 
camera 2 taking into account the distance from the camera 
to the 3D position, and the radius of the region. 
Last step merges 3D radius obtained from camera 1 and 
camera 2, 3D radius is the mean value for the two 
cameras. 
Now, we build a 3D scene with 3D positions and 3D 
radius for left hand, face and right hand. The user 
navigate trought scene. All process is done in real-time, 
only a little delay is produced due to basically to 
segmentation process. 
 
5 Results 
 
We have implemented the above algorithm in C++. It has 
been tested in 320x240 resolutions (Figure 2) and 
640x480 standard video resolution (Figure 3). We 
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initialize the multichannel segmentation algorithm with 
an initial segmentation wich is a grid of size Tx x Ty on 
the image, usually we take Tx = Ty = 1, 2 or 4. From this 
initial segmentation, the algorithm determines a 2-normal 
segmentation following the merging criterion described in 
(2) and the specifications of the algorithm described at the 
end of section 2. The stopping criterion can be: if the last 
level λ = 2n has been reached or if there is just one region 
left or if the desired number of regions is reached. In our 
displayed experiments the stopping criterion is to achieve 
a fixed number of regions. Then, we apply the algorithm 
described in section 3 where the selected parameters are 
detailed: Skin range color in HLS ([0-10], [20-230], [62-
255]) 
In the two sequences of pictures we can see in Green the 
boundaries of hair region. The color Red is used for 
boundaries of hand and face regions, the centroid of these 
regions is visualized with a solid red square. In Pink we 
display the upper-torso boundary and finally we use 
Black and White for other regions detected for the 
segmentation algorithm. 
In the first sequence we take a 2x2 initial segmentation 
and the system runs at 5 frames/second in a P4 1.6GHz. 
We display several different initial positions and cloth 
configuration; and we can see how the proposed method 
detects the interesting regions. In the second sequence, 
Figure 3, we display the same initial pose image and the 
results obtained with different size of initial segmentation, 
from top to bottom we use 1x1, 2x2, 4x4 respectively. 
Left column pictures are 320x240 and right ones are 
640x480. In the first case, the system runs at 0.32 
frames/second, 1.41 frames/sec and 6.70 frames/sec; and 
in the second 0.08 frames/second, 0.30 frames/sec and 
0.82 frames/sec respectively. 
Figure 4, we display from a population of 30 persons, 
where 29 persons have been perfectly detected. Figure 5 
displays 3D reconstruction images generated by OpenGL. 
 
6 Conclusions and Future Work 
 
In this paper we have proposed a new system for user 
detecting for HCI that does not use background 
substraction, therefore the system is robust to 
environment and illumination changes. Moreover, it 
analyzes the user to determine parameters that will be 
useful for a future tracking process. The region 
segmentation process based on the Koepfler-Morel-
Solimini algorithm adapted to multichannel images is 
sufficiently good and beneficial for our aims. Besides, the 
process is carried out in real time. The software 
implementation is efficient and OOP. The result of this 
process is the input of a tracking and reconstruction of an 
intelligent human computer interaction system. It remains 
as future work to do tracking of interesting body parts and 
to interpret movements in order to carry out action 

recognition that the user is performing. At the moment, 
we are working on particle filter tracking with a 
biomechanical model to reduce the search space 
solutions. Moreover, a stereo version is proposed to 
improve final results.  
This paper is subsidized by the project IST-2001-32202 
HUMODAN and CICYT TIC2001-0931. 
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Figure 2. Some results obtained in real time with a 

Sony VFW-V500 camera. Images are 320x240 
resolution in RGB color. 

 
 

 

 
Figure 3. Some results obtained with different size of 

initial segmentation. 

 

 

 

 

 

 

 
Figure 4. Some results from 30 persons test. 
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Figure 5. 3D Reconstruction. Captured images, frames 
0, 50, 60 and 65, from camera 1 (left image) and 

camera 2 (right image), down OpenGL image build 
with 3D scene. For frame 65 (right column) three 

difernts points of view. 
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Abstract

In this paper we present a real-time face tracking system.
It performs robustly under reasonable environment condi-
tions (e.g. those in an office) and with a minimal initialisa-
tion: a skin colour patch, and an image sequence with the
user performing a set of facial expressions. Depending on
the initialisation (e.g. face resolution), the system may per-
form robustly at more than 30 frames per second, in spite of
oclussions and illumination changes.

1 Introduction

Automatic face analysis has a broad range of applications
ranging from human-computer interaction to video confer-
encing or computer graphics. A good face analysis system
should be non-invasive, that is, the user should not have
any artificial marks on his face, nor wear any special de-
vice. Given the performance of present desktop comput-
ers, the inexpensive cost of digital cameras and the matu-
rity of many of it’s techniques, Computer Vision is possibly
the most promising approach for buiding an automatic face
analysis system.

Although very attractive from an application point of
view, a face it is not an easy object to analyse using Com-
puter Vision techiques. This is mainly due to the non-
rigid nature of motion of some of its most expressive parts,
namely, mouth, jaw, eyes and eyebrows. Tracking algo-
rithms try to represent non-rigid motion by modeling tar-
get appearance in various ways. Some use texture [1],
colour [2] or shape [3] statistics, or both [4], others em-
ploy textured 3D models [5], and finally, many use linear
subspace models of texture [6, 7] or shape and texture [8].

In this paper we present a real-time human face ex-
pression analysis system for video sequences consisting of
head-and-shoulder images. It is based on a tracking ar-
chitecture made of a set of different tracking algorithms
and a control automata which coordinates their execution.
This allows the adaptation of the tracker to variations in

the environment conditions (illumination, oclussions, etc)
by choosing the most appropriate visual cue for tracking.
This means that the precision on the estimation of target
pose will vary depending on scene conditions.

2 System overview

The system is organised in four levels, or trackers, with a
finite automaton co-ordinating their execution (see Fig. 1).
Each level represents a tracker with different tracking cues.

Colour based
tracker

Random
area selector

Template based
trackerFailure

Success Success

Failure Failure

Success

Success

Failure

Appearence
tracker

Figure 1: Tracking system state diagram

The first level is a random area selector. When the sys-
tem is in the initial state or when it has lost the target, it
randomly looks for the face in the camera field of view. The
second level is a colour-based tracker which uses a modified
version of the well known Grey World colour constancy al-
gorithm for modeling skin colour. Next level is a param-
eterised optical flow-based tracker that estimates the head
3D pose from an initial image template of the user. And
finally, the user’s facial expressions is estimated through an
appearance based tracker that estimates both, pose and the
parameters of a linear subspace model of the most expres-
sive parts of the face (the eyes and the mouth).

In the following sections we will present this facial ex-
pression analyser.

3 Colour based tracking

Skin colour is the most frequently used feature for face de-
tection and tracking [9]. The primary problem in automatic
skin detection is colour constancy. The colour of an image
pixel depends not only on the imaged object colour, but also
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on the lighting geometry, illuminant colour and camera re-
sponse. This means that the RGB (Red, Green and Blue)
values of a patch of skin can be very different depending
on the camera used to capture the image, the colour and in-
tensity of the illumination, the relative orientation between
camera, skin surface and light source, or the existence of
shadows or highlights in the image. Colour constancy al-
gorithms model these effects and try to obtain colour in-
variants that facilitate the identification of a given colour
under varying environmental conditions. For example [10],
if the scene light intensity is scaled by a actor s, then each
perceived pixel colour becomes [sR, sG, sB]. On the other
hand, a change in illuminant colour can be modelled as a
scaling α, β and γ in the R, G and B image colour chan-
nels. In this case the previous normalisation fails. The
Grey World (GW) algorithm [10] provides a constancy so-
lution independent of the illuminant colour by dividing each
colour channel by its average value:

[αR, βG, γB] 7→ [
αR

α
n

∑
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,
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n
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n
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i B
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In this section we introduce a colour constancy algorithm
that can be used for real-time colour-based image segmen-
tation. The algorithm is based on GW and exploits the re-
dundancy of the image sequence in order to compute the
relative change in illumination between the images of the
sequence.

3.1 Dynamic GW based tracking

According to the effect on the [RGB] values of geomet-
ric and colour changes in the illumination, two pixels I(ij)
and I(kl) of an image would have the following [RGB] val-
ues: [sijαrij , sijβgij , sijγbij ], [sklαrkl, sklβgkl, sklγbkl],
where [rij , gij , bij ] and [rkl, gkl, bkl] represent surface re-
flectance; i.e. real object colour, independent of the illumi-
nant.

Let us define the image average geometrical reflectance,
µ̄, as

µ̄ = [µr, µg, µb]

=
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where n is the number of image pixels. It represents the
average [RGB] image values, once the colour illuminant
component has been removed.

If we assume that the average geometrical reflectance is
constant over the image sequence, then the following nor-
malisation, called Projective GW Normalisation, removes
the illuminant colour and intensity changes:
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This normalisation is still valid just for static scenes. The
dynamic extension to the basic GW is based on the fact that
when a change in the average geometrical reflectance (µ̄) is
detected, the GW colour descriptors for the present image
It

r̂ĝb̂
can still be computed with the the average pixel values

of the previous image, µ̄It−1

rgb . In this situation we segment
the present image with the the average pixel values of the
previous one, and let the present image be the reference im-
age.

The problem now is how to detect a change of sub-
sequence. We do this just by searching for a change in
the average geometrical reflectance. This cannot be accom-
plished by analysing µ̄I

rgb, as it also changes with the illu-
minant colour. We solve this problem by monitoring the
average GW descriptors of some face pixels. As they are
invariant to illuminant colour changes, a change in these
descriptors is necessarily caused by a change in average ge-
ometrical reflectance.

4 Template based 3D planar tracking

Let P be the image of a planar object. Assuming no changes
in the scene illumination, the following minimisation1

min
µ̄

||I(f(x̄, µ̄), tn) − I(x̄, t0)||
2, (1)

can be solved linearly by computing µ̄ incrementally while
tracking. We can achieve this by making a Taylor series
expansion of (1) about (µ̄, tn) and computing the increment,
δµ̄, between two time instants [11]:

δµ̄ = −(M>
M)−1

M
>[I(x̄, µ̄n) − I(x̄, µ̄0)] (2)

where M is the Jacobian matrix of the image w.r.t. µ̄ and
the dependence of I on t has been dropped for convenience.

While tracking, matrix M must be recalculated in each
frame, as it depends on µ̄. This is computationally expen-
sive, as M is of dimension N × n, being N the number of
template pixels and n the number of motion parameters. In
the sequel we will factor M in order to simplify this com-
putation [7].

M can be written as

M(µ̄) =




∇xI(x̄1, µ̄0)
>fx(x̄1, µ̄)−1fµ(x̄1, µ̄)

...
∇xI(x̄N , µ̄0)

>fx(x̄N , µ̄)−1fµ(x̄N , µ̄)


 , (3)

1
I(x̄, t) is a column vector constructed scanning P .
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where ∇xI is the template image gradient, fx is the deriva-
tive of the motion model with respect to the pixel coordi-
nates and fµ is the derivative of the motion model with re-
spect to the motion parameters.

Depending on the motion model, M may be factored into
the product of two matrices [7],

M(µ̄)=




∇xI(x̄1, µ̄0)
>
Γ(x̄1)

...
∇xI(x̄N , µ̄0)

>
Γ(x̄N )


Σ(µ̄)=M0Σ(µ̄), (4)

a constant matrix M0 of dimension N × m and a matrix
Σ of dimension m × n, that depends on µ̄. As M0 can be
precomputed, this factorisation reduces the on line compu-
tation to

δµ̄ = −(Σ>
M

>
0 M0Σ)−1

Σ
>
M

>
0 [I(x̄, µ̄n) − I(x̄, µ̄0)].

(5)
Matrix M0 is the Jacobian of the template image. It is our
a priori knowledge about target structure, that is, how the
grey level value of each pixel changes as the object moves.
It represents the information provided by each template
pixel to the tracking process. Note that we cannot track
any object, as in order to solve (4), a non singular M

>
0 M0

matrix is needed. This is a generalisation of the well known
aperture problem in optical flow computation.

4.1 Projective model for planar tracking

Hager and Belhumeur [7] did the Jacobian matrix factori-
sation for the translation-scale, affine and one non linear
motion model. Although is said elsewhere that it is not pos-
sible [12], in this section we introduce the factorisation for
the projective case.

Let x̄ = (u, v)> and x̄h = (r, s, λ)> be respec-
tively the Cartesian and Projective coordinates of an im-
age pixel. They are related by: x̄h = (r, s, λ)> → x̄ =
(r/λ, s/λ)> = (u, v)>; λ 6= 0. The 2D projective linear
transformation can be written as

f(x̄h, µ̄) = Hx̄h =




a d g
b e h
c f 1







r
s
λ


 ,

where the motion parameter vector is now µ̄ =
(a, b, c, d, e, f, g, h)>. Taking derivatives of f with respect
to x̄ and µ̄ 2,

fx̄h
(x̄h, µ̄)−1 = H−1, (6)

fµ̄(x̄h, µ̄) =




r 0 0 s 0 0 λ 0
0 r 0 0 s 0 0 λ
0 0 r 0 0 s 0 0


 (7)

2The derivative of I w.r.t. x̄h is ∇x̄h
I(x̄h) =[

∂I

∂u
, ∂I

∂v
,−u ∂I

∂u
− v ∂I

∂v

]>

and introducing them into equation (4) the projective fac-
torisation of M arises:

Γ(x̄h) =
[
rI3×3 | sI3×3 | tI3×3

]
,

Σ(µ̄) =




H−1 0 0
0 H−1 0
0 0 H−1

12


 .

Note that the planar tracking algorithm has to iterate over
the equation (5) until convergence. In the current imple-
mentation we make the processing at two resolution levels
and two iterations per level at video frame rate.

4.2 3D pose estimation

The tracking model presented in the previous section com-
putes the homography H

n
0 between the present image and

the stored template. In this section we are going to show
that it is possible to estimate the 3D pose of the tracked
patch from H

n
0 by using a calibrated vision system.

So far we have only computed 2D information. In order
to have 3D information we have to compute two more ho-
mographies: one from P to the image plane at t̄0, H0

W , and
another from P to the image plane at t̄n, Hn

W , see Fig. 2.

Image plane at t

������������������������������������������������������������

O

X

Z

Y

P

I1 I2

c1 c2

HW
0 HW

n

Hn
0

Image plane at t0 n

Figure 2: Projective transformations involved in 3D plane
tracking.

Let (XP , YP )> be the Cartesian coordinates of a known
point in P and let (x0, y0)

> be Cartesian coordinates of the
projection of (XP , YP )> onto I at t0 (i.e. at the template
image). H

0
W can be computed off line from:

[x0 y0 1]
>

= H
0
W [XP YP 1]

>
. (8)

given the projection of, at least, four known points on P .
On the other hand, Hn

W can be computed from the cam-
era projection matrix by choosing the scene coordinate sys-
tem to have X and Y axes on plane P and axis Z perpen-
dicular to it (see Fig. 2).

[xn yn 1]
>

= λK[r̄1 r̄2 t̄]︸ ︷︷ ︸
H

n
W

[XP YP 1]
> (9)
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where R and t̄ are respectively the orientation and the po-
sition of P in the camera coordinate system, r̄i is the ith
column of matrix R, λ is a scale factor and K is the camera
intrinsics matrix.

Now, from (8) and (9) we get

[xn yn 1]
>

= λK[r̄1 r̄2 t̄](H0
W )−1

︸ ︷︷ ︸
H

n
0

[x0 y0 1]
>

. (10)

From which we obtain the relation between the homog-
raphy computed in the previous section, H

n
0 , and the pose

of P . So, if the intrinsics K and the homographies H
0
W and

H
n
0 are known, we can compute H

∗,

H
∗ = K

−1
H

n
0H

0
W = λ[r̄1 r̄2 t̄] (11)

The translation is obtained directly from the third column of
H

∗ but in order to obtain the rotation matrix we still have to
impose some constraints:

• ‖ r̄1 ‖=‖ r̄2 ‖= 1, as R is a rotation matrix. In this
way we get r̂1 and r̂2.

• r̄3 ⊥ r̄1 and r̄3 ⊥ r̄2, from where we get r̂3.

4.3 Pixel selection for faster tracking

In this section we will further improve the tracking proce-
dure presented in the previous section by reducing the num-
ber of template pixels used for solving equation (5). This
improvement comes not only from having a smaller ma-
trix M0, but mainly from diminishing the number of pixels
warped to compute I(x̄, µ̄n).

The Jacobian matrix M of image I can be expressed as:

M = (Iµ̄1
, Iµ̄2

, · · · , Iµ̄n
), (12)

where Iµ̄i
= ∂I(x̄,µ̄)

∂µ̄i
is a column vector with an entry for

every pixel in I . It represents the changes in image bright-
ness induced by motion µ̄i (see Fig. 3). Thus, M relates
variations in motion parameters to variations in brightness
values. Note that equation (5) works in the opposite di-
rection, i.e. it uses M to compute motion from observed
changes in brightness values. Let us call I>

µ̄ (x̄) the row in

Figure 3: Jacobian matrix for a translation (x, y), rotation
(θ) and scale (s) motion model. In reading direction each
image represents respectively Ix, Iy , Iθ, Is.

M corresponding to image pixel I(x̄). Each row entry is
the derivative of image pixel I(x̄) with respect to a model
parameter µ̄i (∀i = 1 . . . n). Intuitively, a pixel with a small
||Iµ̄(x̄)|| provides almost no information for solving (5). So,
a good pixel for tracking is one with a large ||Iµ̄(x̄)||. Given
two image pixels I(x̄1) and I(x̄2), one of them is redundant
if Iµ̄(x̄1) ≈ Iµ̄(x̄2). So, a good set of pixels for tracking is
one such that M>

M is not singular.

Selecting the “best” set of p pixels is a combinatorial
search problem, as all

(
p
N

)
sets of pixels should be con-

sidered in order to select the most informative one. In the
context of image registration, Dellaert selects p pixels ran-
domly from the top 20% of pixels with highest ||Iµ̄(x̄)||
[13]. In our experiments we have found that the best set of
pixels for tracking is the one with highest ||Iµ̄(x̄)||, lowest
redundancy and most even distribution on the image. In the
sequel we will present a procedure to select a set of pixels
with high ||Iµ̄(x̄)|| and low redundancy.

If we consider each row vector Iµ̄(x̄) as a point in n-
dimensional space, then the points in the convex hull of
this cloud are those with highest ||Iµ̄(x̄)|| and lowest re-
dundancy. Let us call this set of points the Jacobian cloud.
Computing the convex hull of a Jacobian cloud with thou-
sands of points in a 8-dimensional space (the projective mo-
tion model has 8 parameters) can be time consuming. On
the other hand, as can be seen in Fig. 4 (right), the distribu-
tion of points for this model is highly correlated, with two
space directions representing 99.96% of the total variance
in the cloud. So, a good approximation to the convex hull
of the cloud would be to compute the convex hull of its pro-
jection onto the two main directions (see Fig. 4, left). If we
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Figure 4: Eigenvalues of the Jacobian cloud’s covariance
matrix (left) and view of the projection of the Jacobian
cloud onto the two principal directions (right).

choose the points from the outer convex hulls (like peeling
off an orange) then only the pixels in the strongest edges
of the image would be selected. In order to achieve a more
even spatial distribution of the selected pixels we choose all
pixels of a randomly selected set of convex hulls from the
outer 30% of them (see Fig. 5).
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Figure 5: Points in the outer 30% convex hulls in projected
space.

5 Appearance based tracking

Let P be the image of a target. Appearance based track-
ing consists on estimating for each image in the sequence
the values of the motion, µ̄, and appearance, c̄, parameters
which minimise the error function

E(µ̄, c̄) = ||I(f(x̄, µ̄), t) − [Bc̄(t)](x̄)||2, (13)

where x̄ is the vector of co-ordinates of a point in image
I , B is the PCA subspace base matrix, c̄ is the vector of
PCA coefficients, and I(f(x̄, µ̄), t) is the image acquired
at time t rectified with motion model f(x̄, µ̄) and motion
parameters µ̄. By [Bc̄](x) we denote the value of Bc̄ for the
pixel with position x̄ in the image. Matrix B is of dimension
N × k, where N is the number of pixels per image and k is
the number of basis vectors.

In general, minimising (13) can be a difficult task as
it defines a non-convex objective function. Several pro-
cedures have been proposed to solve this problem which
can be grouped into those using gradient descent [6] and
those using Gauss-Newton iterations [12, 7, 14]. Black and
Jepson [6] presented an iterative solution by using a gradi-
ent descent procedure and a robust metric with increasing
resolution levels. Their algorithm lacked efficiency as, for
example, the Jacobian of each incoming image had to be
computed once on every frame for each level in the multi-
resolution pyramid.

We have developed a real-time procedure for minimising
equation (13) [15]. It is based on a factorisation of M, sim-
ilar to 4. By using it, we can make a modular eigentracking
[16] of the eyes and the mouth at 30 frames per second.

6 Experiments

The current implementation of the system has been tested
extensively in our lab in a great variety of conditions. In
this section we are going to show how the system performs
in a difficult sequence in which the user moves and performs
facial expressions at the same time (See Fig. 6).

The visual results of the tracking process are shown in
Fig. 6. Overlayed over each image are the area of interest
of each of the algorithms used. In yellow (and only in the
first image) is the random search result, in white, with a
cross in the centre,is the result of colour-based tracking and,
the difference from the template based from the appearance ⇐

??based tracker, is one red quadrangle over the face versus
three red quadrangles over the eyes and mouth.

Figure 6: Full system processing results. In this case the
system works at 30 frames per second processing 1668 im-
ages stored on disk. The system performs using the best
algorithm for each situation.

The system has been calibrated in different illumination
conditions (and even with a different camera) to the test se-
quence. It accurately tracks the face from the beginning of ⇐

??the sequence (see first frames in fig. 7 processed in the ran-
dom search state) until the user is too close to the camera
to correctly track him (see last frames in fig. 7). This can
be validated from the fact that the lower layer that is used, ⇐

??apart from the beginning and the end of the sequence, is the
colour tracker as shown in Fig. 7.

7 Conclusions

In this paper we have presented a facial analysis solution
based on the cooperation of a set of trackers. This allows
the adaptation of the system to the environment conditions
by choosing the best tracker at each time instant. With the
current implementation we can track a face at 30 frames per
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Figure 7: Full system processing layers. The layer index 0
represents the random area search, 1 the colour tracker, 2 the
template based tracker and 3 the appearance based tracker.

second achieving video-rate performance.
The system is not yet finished. Now we are working on

the appearance to animation parameters translation problem
and on introducing efficient illumination invariance within
the appearance-based tracking paradigm.
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Abstract

Incremental image alignment is a research topic which has
recently received very much atention for its applications
in real-time and deformable object tracking. In the paper
we compare some additive and compositional incremen-
tal alignment procedures pointing out their limitations and
strengths. We also present and compare an alternative ap-
proximate additive procedure which should be further re-
fined in order to be useful for tracking.

1 Introduction

Tracking planar patches is a subject of interest in computer
vision, with applications in augmented reality [?], mobile
robot navigation [?], face tracking [?], or the generation of
super-resolution images [?], to name a few. One of the most
usual approaches for patch tracking is based on incremental
registration. This is achieved by defining an image warping
function and by minimising image discrepancies through a
non linear cost function. Different approaches to solve the
minimisation problem have been proposed in the literature
depending on the minimisation procedure, on whether the
variation in model parameters are additively or composi-
tionally updated or on which term of the cost function the
linear approximation is made. In this paper we will compare
some of these approaches.

In the following section we will briefly introduce the in-
cremental registration problem and the associated cost func-
tion. In sections 3 to 8 we present different approaches for
minimising the mentioned cost function. Finally, in section
9 we make some experimental comparisons and in section
10 we draw conclusions.

2 Incremental image alignment

Let x represent the location of a point in an image and
I(x, t) represent the brightness value of that location in the

image acquired at timet. Let R = {x1,x2, . . . ,xN} be
a set ofN image points of the object to be tracked (target
region), whose brightness values are known in a reference
imageIr(x). These image points together with their bright-
ness values at the reference image represent thereference
templateto be tracked.

As the target moves, the relative motion between camera
and object causes the target region to shift and deform in
the image. Let us represent this deformation by amotion
model f(x,µ) parametrised byµ = (µ1, µ2, . . . , µn)>,
with N > n and f differentiable both inx and µ. Let
the vectorµI represent the set of parameters of the identity
transformation,f(x,µI) = x, and the vectorµ0 represent
the position and deformation of the target region in the ini-
tial image of the sequence,Ir(x) = I(f(x, µ0), t0), which
we will assume to be known.

Finally, let us also assume that variations in brightness
values are only caused by image motion, i.e. that theimage
constancy assumptionholds for all pixels inR

Ir(x) = Ir(f(x,µI)) = I(f(x,µ∗t ), t) ∀x ∈ R, (1)

whereµ∗t is the actual image deformation at timet.
For us, tracking the object means recovering the motion

parameter vector of the target region for each image in the
sequence. This can be achieved by minimising the follow-
ing least-squares objective function for every image in the
sequence

min
µ
‖ I(f(x,µt), t)− Ir(x) ‖2 (2)

whereI(x) is a column vector with all the pixel values in
imageI(x).

In general, (2) is a difficult minimisation problem, which
cannot be linearly solved. In the computer vision litera-
ture it has been traditionally computed by using the conti-
nuity of motion to estimate a starting point for the minimi-
sation [?, ?, ?, ?]. If at some initial time,t0, the parameters
of the motion model,µ0, are known, then (2) can be locally
linearised by making a Taylor series expansion at (µ0, t0).
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In this way, the position of the target region at timet0 + δt
can be linearly estimated, provided the displacement of the
target region between both time instants, represented by a
variationδµ in the model parameters, is small. By repeat-
ing this process for every new image in the sequence, the
model parametersµt at any timet > t0 can be estimated.

3 Lucas and Kanade’s Algorithm

Here we describe the alignment procedure introduced by
Lucas and Kanade in their seminal work [?]. Let us as-
sume that we have an estimate of the motion model param-
eters at timet, i.e. we have someµt such thatIr(x) ≈
I(f(x, µt), t). The tracking problem can be stated as that
of estimating fromI(z, t + δt), an offsetδµa in the motion
parameters such that

Ir(x) ≈ I(f(x, µt+δt), t+δt) = I(f(x, µt +δµa), t+δt).

Note that the increment in the model parameters is addi-
tively composed with the previous parameter estimates, i.e.
µt+δt = µt + δµa.

Then the minimisation in (2) can be rewritten as

min
δµa

‖ I(f(x, µt + δµa), t + δt)− Ir(x) ‖2 . (3)

This equation can be linearised by making a Taylor series
expansion at the(µt, t) The following minimisation results

min
δµa

‖ M(µt, t)δµa + I(f(x,µt), t + δt)− Ir(x) ‖2, (4)

whereM(µt, t) is the Jacobian of the image values in the
target region w.r.t. the motion parameters:

M(µt, t) =




∂I(f(x1,µ),t)
∂µ

∣∣∣
µ=µt

...
∂I(f(xN ,µ),t)

∂µ

∣∣∣
µ=µt




. (5)

This equation can be solved posing it as follows (note that
it is linear in the unknownsδµa):

M(µt, t)δµa = ε(t + δt), (6)

whereε(t + δt) = Ir(x)− I(f(x, µt), t + δt). Parameters
incrementδµa can be computed in a least-squares sense:

δµa = (M(µt, t)
>M(µt, t))

−1M(µt, t)ε(t + δt), (7)

M(µt, t) can be estimated from the image gradients at in-
stant t:

M(µt, t) =




∇f I(f(x1,µt), t)>fµ(x1, µt)
...

∇f I(f(xN ,µt), t)>fµ(xN , µt)


 , (8)

fµ(x,µ) =

(
∂f(x,µ)

∂µ1

∣∣∣∣
µ=µt

| . . . | ∂f(x,µ)
∂µn

∣∣∣∣
µ=µt

)
,

(9)
The main limitation of this algorithm, when used for track-
ing, is the computational cost of computing Jacobian vector
for each pixel inR with respect toµ.

4 Hager and Belhumeur’s Algorithm

Hager and Belhumeur proposed an efficient procedure to
compute the image Jacobians [?]. First they avoid the com-
putation of∇f I(f(x, µt), t) for each image in the sequence.
This is achieved by expressing it in terms of the gradient of
the reference template. If we assume that the present esti-
mation of the motion parameters is exact,µt = µ∗t , then
differentiating (1) gives us:

∇xIr(x)>
(

∂f(x,µt)
∂x

)−1

= ∇f I(f(x, µt), t)
>. (10)

The partial derivatives of the image values w.r.t. the motion
parameters can be now expressed as:

∂I(f(x, µ), t)
∂µ

= ∇xIr(x)>
(

∂f(x,µ)
∂x

)−1
∂f(x,µ)

∂µ
,

(11)
which means thatM(µ, t), at any time instant, depends
only on the motion model and on the spacial gradients of
the reference template (which are constant during all the se-
quence). SoM(µ, t) will be independent oft and we will
denote itM(µ). Unfortunately, in general, the other two
terms in equation (11),f−1

x andfµt
, are not constant. How-

ever, if f is chosen such that
(

∂f(x, µt)
∂x

)−1 (
∂f(x,µ)

∂µ

)

µ=µt

= Γ(x)Σ(µ), (12)

whereΓ(x) is a matrix that depends only on the position
of the pixel andΣ(µ) is a matrix that depends only on the
motion parameters, then we can writeM as

M(µ) =




∇f Ir(x1)>Γ(x)
...

∇f Ir(xN )>Γ(x)


Σ(µ) = M0Σ(µ)

(13)
whereM0 is constant.

Now the least-squares solution is of the form

δµa = (Σ(µ)>ΛΣ(µ)]−1Σ(µ)>M>
0 ε(x, t + δt). (14)

whereε(t + δt) = Ir(x) − I(f(x, µt), t + δt) andΛ =
M0>M0 is a constant matrix, which can be precomputed
offline. The size of this matrix depends on the factorisa-
tion (12), but in general it is small and related ton. In this
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case the on-line computation performed by this algorithm is
much smaller than the original one proposed by Lucas and
Kanade. The main limitation comes from the factorisation
of (12) which, in general, is not possible.

5 Szelisky’s compositional algorithm

Tracking problem can be introduced in a different way. R.
Szeliski proposed in [?] a compositional approach in which
we can find an updateδµc to the motion parameters in the
following way:

Ir(x)≈I(f(x, µt+δt), t+δt)=I(f(g(x, µI+δµc), µt), t+δt),
(15)

whereg(x,µI) = x. Note that we write the composition
with a different functiong to highlight the fact that it can be
different fromf .

Then the minimisation in (2) can be rewritten as

min
δµc

‖ I(f(g(x, µI + δµc),µt), t + δt)− Ir(x) ‖2, (16)

Using a first order Taylor series expansion at(µI , t) we get

min
δµc

‖ Mcs(µt, t)δµc + I(f(x, µt), t + δt)− Ir(x) ‖2,
(17)

which is linear in the unknownsδµc and can be solved by
least-squares

δµc = (Mcs(µt, t)
>Mcs(µt, t))

−1Mcs(µt, t)ε(t + δt),
(18)

whereε(t + δt) = Ir(x)− I(f(x, µt), t + δt). Mcs(µt, t)
can be computed from the gradients of the image values in
the target region

Mcs(µt, t) =




∇f I(f(x1, µt), t)>gµ(x1, µt)
...

∇f I(f(xN , µt), t)>gµ(xN ,µt)


 ,

(19)

gµ(x, µ) =

(
∂g(x, µ)

∂µ1

∣∣∣∣
µ=µt

| . . . | ∂g(x, µ)
∂µn

∣∣∣∣
µ=µt

)
.

(20)
Comparing the Shum and Szeliski algorithm [?] with the

Lucas and Kanade procedure [?], we avoid the computation
of the Jacobian of the motion model (that can be precom-
puted) but we still need to compute the gradient ofI(y, t)
for each image in the sequence. So, this algorithm is not as
efficient as the Hager and Belhumeur approach [?]. Another
limitation is that the set of motion models that can be used
must verifyf(x, µt+δt) = f(g(x, µI + δµc), µt).

6 Baker’s forward compositional al-
gorithm

In [?], S. Baker proposed a compositional approach in
which theg function is equal tof . The minimisation in
(2) can be rewritten as

min
δµc

‖ I(f(f(x, µI + δµc), µt), t + δt)− Ir(x) ‖2, (21)

whereµI is the identity for functionf . Performing a first
order Taylor series expansion at(µI , t) we get

min
δµc

‖ Mc(µI , t)δµc+I(f(x, µt), t+δt)−Ir(x) ‖2, (22)

which is linear in the unknownsδµc. It can be solved using
least-squares

µc = (Mcb(µt, t)Mcb(µt, t)
>)−1Mcb(µt, t)ε(t + δt),

(23)
whereε(t + δt) = Ir(x)− I(f(x,µt), t + δt).

As with the Shum and Szeliski’s algorithm we avoid the
computation of the Jacobian of the image (which can be
precomputed) but we still need to compute the gradient of
I(y, t) for each image in the sequence.

7 Baker’s Inverse compositional al-
gorithm

There is a second compositional algorithm proposed by
Baker in [?]. This is, in contrast with the forward composi-
tional , as efficient as the Hager and Belhumeur’s method .
In this case, the term in 2 is expanded.

Then, the minimisation in (2) can be rewritten as

min
δµc

‖ I(f(x,µt), t+δt)−Ir(f−1(x,µI+δµc)) ‖2 . (24)

Performing a first order Taylor series expansion of the ref-
erence template at(µI , t) we obtain

Ir(f
−1(x, µI +δµc)) = Ir(f

−1(x, µI))+Mc(µI)δµc +h.o.t.
(25)

The variance of the template brightness values w.r.t. the
motion parameters is represented by:

Mc(µI) =




∂Ir(f−1(x1,µ))
∂µ
...

∂Ir(f−1(xN ,µ))
∂µ


 . (26)

Note that this Jacobian only depends on the motion param-
eters at the initial instant,µI . So, Mc is a constant ma-
trix. Equation (25) can be solved for the unknownsδµc in
a least-squares sense as follows

δµc = (McM>
c )−1Mcε(t + δt). (27)
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Mc can be computed as follows

Mc =




∇xIr(x1)>f−1
µ (x1, µ)

...
∇xIr(xN )>f−1

µ (xN ,µ)


 , (28)

f−1
µ (x, µ) =

(
∂f−1(x, µ)

∂µ1

| . . . |∂f−1(x, µ)
∂µn

)
, (29)

andε(t + δt) = I(f(x, µt), t + δt)− Ir(x).
With this algorithm the Jacobian can be precomputed,

but we need a motion model,f , being closed under com-
position, invertible and having a parameter vector for the
identity transformation,µI . That is, we are looking for mo-
tion models that conform a group.

8 Approximate Additive Algorithm

Assuming that thebrightness constancy constraintholds,
we will derive a new assumption by just differentiating both
sides of (1) with respect to the motion parameters:

∂I(f(x, µ), t0)
∂µ

∣∣∣∣
µ=µ0

≈ ∂I(f(x, µ), t)
∂µ

∣∣∣∣
µ=µt

, (30)

whereI(f(x, µ), t0) = Ir(x). Now we can then re-write
the Jacobian of the image with respect to the motion param-
eters in terms of the gradient of the template image:

M(µ, t) =




∂I(f(x1,µ),t0)
∂µ

∣∣∣
µ=µ0

...
∂I(f(xN ,µ),t0)

∂µ

∣∣∣
µ=µ0




.

The partial derivatives ofI with respect toµ cannot be eval-
uated directly. Applying the chain rule we have:

∂I(f(x, µ), t0)
∂µ

∣∣∣∣
µ=µ0

=
∂I(u, t0)

∂u

∣∣∣∣
u=f(x,µ0)

∂f(x, µ)
∂µ

∣∣∣∣
µ=µ0

.

Note that the gradient of the template image is computed
with respect to its coordinate frame, andwarped using
f(x,µ0). Also note that the derivatives of this Jacobian are
evaluated att0 and for the initial motion parameters. There-
fore M(µ, t) is independent from the brightness values of
the image and the motion parameters at instantt. Let us call
the above JacobianM0.

With this approximation we have a constant Jacobian,
that can be precomputed off-line, which is the best feature
of the inverse compositional algorithm. At the same time,
as it is additive with no factorisation, it could be aplied to
any warping function.

9 Experimental Results

In order to compare the above algorithms, some experi-
mental tests will be carried out. The image used to make
the tests was generated synthetically using pov-ray1. Three
algorithms have been implemented in MATLAB: forward
compositional registration (see section 6), inverse composi-
tional registration (see section 7) and approximate additive
registration (see section 8).

For each algorithm we iteratively minimise the least-
squares equations described in their corresponding sections
andµ is updated withδµ until convergence is assured. This
minimisation will stop whenδµ is bellow a certain thresh-
old. We will compute at most 20 iterations of each algo-
rithm. This will prevent us from computing too many itera-
tions.

In this experiments we compare the performance of the
three algorithms in terms of re-projection error, percentage
of converged iterations, computation time and number of
iterations.

The motion model,y = f(x,µ), that is used in this ex-
periment represents the homography between a point in the
original target region,x, and its corresponding point onto
image at instantt, y. This homography can be parame-
terised using 8 components in the following form:

f(x,µ) =
1

1 + µ7x + µ8y

[
(1 + µ1)x + µ3y + µ5

µ2x + (1 + µ4)y + µ6

]
,

wherex = (x, y)> is a pixel position in the target region,
R, andµ = (µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8)> is the vector
of parameters of the homography.

We proceed as in [?]. We take the positions of the four
corners of our square target region,R, in the image. These
positions will be perturbed randomly and the image will we
warped according to the obtained quadrilateral. In this ex-
perimentσ will take values between 1 and 10. Then, we
will compute the motion parameters,µ, that transform the
initial target region into the distorted one. Figure 1 shows
this procedure. For eachσ we will average 100 different
trials for each one of the three algorithms.

Comparison of the obtained results with ground truth is
done by computing the Euclidean distance between the four
corners of the deformed target region and those computed
using the estimatedµ. This distance is plotted against the
noise variance in figure 2(a). It shows that, asσ increases,
the forward compositional algorithm obtains a very poor re-
sult. When the perturbation level is 10, we get an average
error of almost 30 pixels whereas this error is less than 3
pixels for the other two algorithms.

We also compute the frequency of convergence for each
algorithm. We consider that an algorithm has converged if

1www.povray.org
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Figure 1: Initial setup for this experiment. The original tar-
get region is marked in green colour. This target region is
distorted using Gaussian noise with standard deviationσ.
The resulting target region is marked in red.

the error between the initial positions of the template cor-
ners and those computed using the computed parameters
is less than 1.0 pixels. Results from these experiments are
shown in figure 2(b). They show that the final motion pa-
rameters computed for the inverse compositional and ap-
proximate additive algorithms produced “correct” pixel po-
sitions in more than 95% of the cases. However, for the
forward compositional algorithm the percentage decreases
asσ increments its value, reaching a 65% of correct pixel
positions forσ = 10. This is the explanation for the poor
performance shown in figure 2(a)
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Figure 2: Average RMS of points error and frequency of
convergence for test image shown in figure 1.

We also compute the number of iterations and the com-
putation time. Figures 3(a) and 3(b) show, respectively, the
average of the number of iterations and the computation
time for each algorithm.Remember that the number of it-
erations can be at most of 20.

As we expected (see the figure 3(a)), the number of iter-
ations increases withσ. Moreover, it is always smaller in
the forward compositional case than in the other two algo-
rithms. This means that the convergence of this algorithm
is faster than the inverse compositional or the approximate
additive one in terms of iterations. The computational cost
of each iteration is bigger, though.

Finally, we examine the convergence rate of each algo-
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Figure 3: Average iterations number and computation time
for test image shown in figure 1.

rithm. In order to do this, we plot the RMS of the error
against the number of iterations (see figure 4).

Results plotted in these figures show that, although the
forward compositional algorithm is the fastest and most ac-
curate when it converges, it quickly degradesσ increases.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
Point Error RMS vs. Number Iterations (s=2)

iterations

R
M

S

Forward Compositional
Inverse Compositional
Approximate Additive

(a) Point Error RMS vs number of
iterations forσ = 2.
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Figure 4: RMS of the error points vs. number of iterations
for µ0

The above results also show that the inverse composi-
tional and approximate additive algorithm have similar per-
formance. Note that the experiments are evaluated in the
ideal conditions for the approximate additive algorithm; i.e.
the Jacobian for our algorithm is evaluated atµ = µ0.In
this case the approximation in (30) is exact.

Let us evaluate both algorithms for a set of motion pa-
rameters different fromµ0. In this case,µ represents a dis-
placement of the template of 3 units in theX axis. Figure 5
shows the average values for 30 iterations of the RMS of
the points error versus the number of iterations forσ = 2
andσ = 5. As we can see, results for approximate addi-
tive algorithm are poorer than for the inverse compositional
one. This can be caused by an incorrect approximation of
the Jacobian in (30).
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Figure 5: RMS of the error points vs. number of iterations
for µ representing a translation of 3 units in x-axis.

10 Conclusions

Experiments suggest that the forward compositional algo-
rithm performs the best in terms of accuracy and number
of iterations. On the other hand, it lacks computational ef-
ficiency. The inverse compositional algorithm has similar
performance to the forward compositional one but with bet-
ter throughput. Unfortunately, all compositional algorithms
together with the Hager and Belhumeur’s one impose severe
restrictions on their motion models.

On the other hand, incremental additive algorithms like
the Lucas and Kanade’s technique and the approximate ad-
ditive registration do not impose such restrictive require-
ments on the motion model. However, Lucas and Kanade’s
algorithm lacks computational efficiency and the approxi-
mate additive algorithm does not converge properly when
conditions are not ideal. Future lines of work toward im-
proving the convergence of this algorithm are being ex-
plored in our research group.
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Abstract

We present new probabilistic motion models of interest for
the detection of meaningful dynamic contents (or events) in
videos. We separately handle the dominant image motion
assumed to be due to the camera motion and the residual
image motion related to scene motion. These two motion
components are then represented by different probabilistic
models which are further recombined for the event detec-
tion task. Two solutions are investigated for the residual
motion. The motion models (both for camera motion and
scene motion) associated to pre-identified classes of mean-
ingful events are learned from a training set of video sam-
ples. The detection scheme proceeds in two steps which ex-
ploit different kinds of information and allow us to progres-
sively select the video segments of interest using Maximum
Likelihood (ML) criteria. The efficiency of the proposed ap-
proach is demonstrated on sport videos.

1 Introduction

One of the actual challenges in computer vision is to some-
how approach the “semantic” content of video documents
while dealing with physical image signals and numerical
measurements. One objective can be to handle tasks such
as video summarization, video retrieval or video surveil-
lance. The main difficulty lies in the detection of “semantic
concepts” from low-level features. The characteristics of a
semantic event has to be expressed in terms of video primi-
tives (color, texture, motion, shape ...) sufficiently discrim-
inant w.r.t. content. This remains an open problem at the
source of active research activities.
Different kinds of video features have already been con-
sidered in several approaches. In [1], the pixel chromi-
nance components in the image are used to select key-
frames maximally distinct and carrying the most informa-
tion. [2] introduces statistical models for components of
the video structure to classify video sequences into different
genres (sports, news, movies, commercials, documentaries,
...). Recently, in [3], a semantic classification method based
on SVM (“Support Vector Machine”) using a motion pat-
tern descriptor has been described.

The analysis of image motion is widely exploited for the
segmentation of videos into meaningful units or for event
recognition. Efficient motion characterization can be de-
rived from the optical flow, as in [4] for human action
change detection. In [5], the authors use very simple lo-
cal spatio-temporal measurements, i.e., histograms of the
spatial and temporal intensity gradients, to cluster temporal
dynamic events. In [6], a principal component represen-
tation of activity parameters (such as translation, rotation
...) learned from a set of examples is introduced. The con-
sidered application was the recognition of particular human
motions, assuming an initial segmentation of the body. In
[7], two simple low-level motion features are used to char-
acterize the activity level of video sequences.
In this paper, we propose new probabilistic motion mod-
els of particular interest for the detection of meaningful dy-
namic events. The motion information is captured through
low-level motion measurements which convey more elabo-
rated motion information than those used in [5], while still
locally computable contrary to optic flow. They can be ef-
ficiently and reliabily computed in any video whatever its
genre and its content. Our approach consists in handling
separately the scene motion (i.e., the residual image mo-
tion) and the camera motion (i.e., the dominant image mo-
tion) in a sequence. Indeed, these two sources of motion
bring important, different but complementary, information
which have to be taken into account for event detection or
classification.
We have investigated two different probabilistic motion
models to specify the residual motion information. With
the first model, we evaluate temporal cooccurrences of the
local motion-related measurements which are first quan-
tized. The resulting cooccurrence matrix is then viewed
as a 2D histogram and represented by a 2D Gaussian mix-
ture model. On the other hand, the second model directly
exploits the local motion measurements, along with their
temporal contrasts in order to capture the temporal motion
evolution. Their histograms are computed over the video
segment and are represented by a specific mixture model.
An original probabilistic model is also proposed to cope
with the camera motion. It exploits 2D histograms of veloc-
ity vectors issued from the estimated affine motion models
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accounting for the image dominant motion.
We apply this statistical framework to the detection of rele-
vant events in a video following a two-step approach. The
first step consists of a pre-selection of candidate segments
among the successive segments of the processed video. It
involves two pre-learned groups representing respectively
“possibly important dynamic content” and “ definitively not
important dynamic content”. The second step is a classifi-
cation stage to recognize the relevant events (in terms of dy-
namic content) among the segments selected after the first
step. Such a two-step process allows us to restrict the recog-
nition issue on a limited and pertinent set of classes, to save
computation time and to make the overall detection more
robust and efficient.
The paper is organized as follows. In Section 2, we briefly
present the motion measurements used. Section 3 describes
the two statistical modelings of scene motion in a video that
we have explored. Section 4 is dedicated to the probabilis-
tic model for the camera motion. We present in Section 5
the full scheme for dynamic event detection. Experiments
on sport videos are reported in Section 6 and Section 7 con-
tains concluding remarks.

2 Motion Measurements

As stating above, we are investigating the probabilistic
modeling of the motion content of a video. Such a model-
ing enables to derive a parsimonious motion representation
while coping with errors in the motion measurements and
with variability in a given kind of motion content. Further-
more, no analytical motion models are available to account
for the variety of dynamic contents to be found in videos.
We have to specify and learn them from the image data.
Let us also stress that we aim at recognizing “broad” event
classes and not particular “quantitative” motions. The pro-
posed framework therefore exploits only low-level motion
features for generality and efficiency purposes. Although
the motion estimation step is not the purpose of this paper,
we have first to briefly describe the motion measurements
that we use.
It is possible to characterize the global image motion as pro-
posed in [8], by computing at each pixel a local weighted
mean of normal flow magnitude. However, the image mo-
tion is actually the sum of two motion sources: the dominant
motion (usually assumed to be due to camera motion) and
the residual motion (related to the scene motion). We be-
lieve that more information can be recovered when dealing
with these two motions separately rather than only with the
total motion. Thus, we compensate for the camera motion
(more precisely, we cancel the estimated dominant image
motion) in the sequence of images, in order to compute lo-
cal motion-related measurements revealing only the resid-
ual image motion.

The image dominant motion is represented by a determinis-
tic 2D affine motion model which is a usual choice:

wθ(p) =
(

a1 + a2x + a3y
a4 + a5x + a6y

)
, (1)

whereθ = (ai, i = 1, . . . , 6) is the model parameter vec-
tor andp = (x, y) is an image point. This simple motion
model can handle different camera motions such as pan-
ning, zooming, tracking, (including of course static shots).
Different methods are available to estimate such a motion
model. We use the robust real-time multiresolution algo-
rithm described in [9]. Let us point out that the motion
model parameters are directly computed from the spatio-
temporal derivatives of the intensity function.
Thus, the camera motion vectorwθ̂t

(p) is available at each
time t and for each pixelp. Then, the local motion-related
measurementvres(p, t) is defined as the local mean of nor-
mal residual flows weighted by the square of the norm of
the spatial intensity gradient. The normal residual flows are
computed from the Displaced Frame Difference (DFDθ̂t

)
given by the estimated dominant motion. We finally get:

vres(p, t) =

∑
q∈F(p) ‖∇I(q, t)‖.|DFDθ̂t

(q)|
NF(p). max

(
η2,

∑
q∈F(p) ‖∇I(q, t)‖2

) ,

(2)
whereDFDθ̂t

(q) = I(q + wθ̂t
(q), t + 1)− I(q, t). F(p)

is a local spatial window centered in pixelp andNF(p) is
the number of pixels inF(p). ∇I(q, t) is the spatial in-
tensity gradient of pixelq at timet. η2 is a predetermined
constant related to the noise level. Such measurements have
already been used for instance for the detection of indepen-
dent moving objects in case of a mobile camera.
Figure 2 displays three images of an athletics TV program,
the corresponding maps of dominant motion support and the
corresponding maps of local motion-related measurements
vres.

3 Probabilistic models of scene mo-
tion

We have explored two types of statistics derived from the
motion measurements defined in (2). The first one exploits
temporal cooccurrences of the motion measurements which
have to be first quantized. This choice enables to capture
not only the motion magnitude but also the global temporal
evolution of the motion magnitude. The computation of the
cooccurrences being expensive in practice, we have defined
an alternative approach where we directly consider the lo-
cal motion-related measurements and their temporal gradi-
ents (contrasts). These two options for scene motion charac-
terization and the respective designed probabilistic motion
models are presented in the following two subsections.
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3.1 GMM from temporal cooccurrences

With the first approach, the measures defined by (2) are
quantized on a setΛ, so that for a video segment of lengthT
and of spatial image supportR, the motion content is rep-
resented by the set of quantized local motion measurements
y = {y(p, t), p ∈ R, t = 1 . . . T}. The temporal cooc-
currences distributionΓ(y) of these quantities is a matrix
{Γ(ν, ν′|y)}(ν,ν′)∈Λ2 which is defined as follows:

Γ(ν, ν′|y) =
T−1∑
t=1

∑

p∈R
δ(ν, y(p, t)) · δ(ν′, y(p, t + 1)),

whereδ(i, j) is the Kronecker symbol (equal to 1 ifi = j
and to zero otherwise). The temporal cooccurrences matrix
Γ(y) is then considered as a 2D empirical histogram, and
we model it by a 2D Gaussian mixture model (GMM). The
log-likelihood of the sequencey is thus given by:

ln Pcooc.(y) =
∑

(ν,ν′)∈Λ2 Γ(ν, ν′|y) ln q(ν, ν′) (3)

with q(ν, ν′) =
∑K

k=1 πkφ(ν, ν′; mk, Σk),

whereK is the number of components in the mixture model
and φ(ν, ν′; mk,Σk) is the 2D Gaussian density function
with mean vectormk and covariance matrixΣk. The num-
ber of componentsK is determined with the Integrated
Completed Likelihood criterion (ICL, [10]), and the Max-
imum Likelihood (ML) estimate of the model parameters
is approximated using the Expectation-Maximisation algo-
rithm.

3.2 DGMM from temporal contrasts

As an alternative to the computation of temporal cooccur-
rences, the temporal contrasts∆vres of local motion-related
measurements are considered. The contrasts are defined as
the temporal difference of the variablesvres given by (2):

∆vres(p, t) = vres(p, t + 1)− vres(p, t). (4)

We have computed the histograms of these expressions over
different video segments and it has been found to be quite
similar to a Gaussian distribution except a usually promi-
nent peak at zero. Therefore, we model the temporal con-
trasts distribution by a specific mixture model with density:

P∆vres(γ) = βδ0(γ) + (1− β)φ(γ; 0, σ2)1Iγ 6=0 (5)

whereβ is the mixture weight,δ0 denotes the Dirac func-
tion at 0 (δ0(γ) = 1 if γ = 0 andδ0(γ) = 0 otherwise)
andφ(γ; 0, σ2) is the Gaussian density function with mean
0 and varianceσ2. The parametersβ andσ2 are estimated
using the Maximum Likelihood criterion. Nevertheless, if
we consider only the temporal contrasts∆vres, the absolute

motion magnitude would be lost. Consequently, the addi-
tion of the local motion-related measurements is required.
They are also modeled by a mixture model of a Dirac func-
tion at 0 and a zero-mean Gaussian distribution, but the
Gaussian distribution is here truncated to take into account
only the positive values since by definitionvres(p, t) ≥ 0.
The mixture weight and the variance of the truncated Gaus-
sian distribution are evaluated using the ML criterion. The
global probabilistic residual motion model is then defined
as the product of the two described models as follows :

Pcontr. = P∆vres
.Pvres

(6)

Let us notice that in that case we do not need to quantize
vres and∆vres, and we directly deal with the computed real
values. Naturally, this model does not allow us to capture
how the motion information is spatially distributed, but it
is not necessary for the objective we consider here. In the
sequel, this Dirac Gaussian mixture model will be referred
to as DGMM.

4 Probabilistic model of camera mo-
tion

We have to design a probabilistic model of the camera mo-
tion to combine it with the probabilistic model of the resid-
ual motion in the recognition process. It could be possible
to characterize directly the camera motion by the parameter
vectorθ defined in Section 2 and to represent its distribution
over the sequence by a probabilistic model. The main diffi-
culty in that case is to propose a valid probabilistic model.
Indeed, if the distribution of the two translation parameters
a1 anda4 can be easily described (these two parameters are
likely to be constant within a video segment so that a Gaus-
sian mixture could reasonably be used), the task becomes
more difficult when dealing with the other parameters which
are not constant anymore and which are not of the same na-
ture. For this reason, we propose to build the map of the
camera motion vectors obtained at each pixel of the image
once the affine motion model is estimated, and to exploit
these measurements as a 2D histogram. More precisely, at
each timet, the motion parametersθt of the camera motion
model (1) are estimated and the vectorswθ̂t

(p) are com-
puted for each pointp of the image support. The values of
the horizontal and vertical components ofwθ̂t

(p) are then
finely quantized, and we form the empirical 2D histogram
of their distribution over the considered video segment Fi-
nally, this histogram is represented by a mixture model of
2D Gaussian distributions. The number of components of
the mixture and their parameters are estimated in a similar
way as explained in subsection 3.1.

5 Event detection algorithm
We exploit now the designed probabilistic models of motion
content for the task of event detection. We proceed in two
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steps.
We suppose that the videos to be processed are segmented
into homogeneous temporal units. This preliminary step is
out of the scope of this paper which focuses on the motion
modeling and recognition issues. To segment the video,
we can use either a shot change detection technique or a
motion-based video segmentation method. The first step
of the event detection algorithm permits to sort the video
segments in two groups, the first group contains the seg-
ments likely to contain the relevant events, the second one is
formed by the video segments to be definitively discarded.
Typically, if we consider sport videos, we try to first dis-
tinguish between “play” and “no play” segments. This
step is based only on the residual motion which accounts
for the scene motion, therefore only 1D models are used
which saves computation. To this end, a motion model is
learned off-line in a training stage for each group of seg-
ments. Then, the sorting consists in assigning the label
“play” or “no play” to each segment of the processed video
using the ML criterion. In practice, because of the large
diversity of content in “play” or “no play” video segments
in some videos, it can be useful to learn several models per
group.
The second step of the proposed scheme consists in retriev-
ing several specific events among the previously selected
segments. Contrary to the first step, the two kinds of motion
information (residual and camera motion) are required since
the combination permits to characterize more precisely a
specific event. For a given genre of video document, an
off-line training step is again required. A residual motion
modelMj

res (cooccurrence-based GMM or contrast-based
DGMM) and a camera motion modelMj

cam have to be es-
timated from a given training set of video samples, for each
type j of event to detect. Let{s0, . . . , sN} be the previ-
ously selected video segments.{z0, . . . , zN} are the corre-
sponding motion measurements. If we consider the GMM
approach described in subsection 3.1,zi = yi whereyi are
the quantized local motion-related measurements for seg-
mentsi. If we consider the DGMM approach (subsection
3.2), zi = (γi, xi) whereγi are the temporal gradients of
the local motion-related measurementsxi for segmentsi.
The video segments retained after the first step are then la-
beled with one of theJ learned models of dynamic events
according to the Maximum Likelihood criterion. Thus, the
labelli of the segmentsi is defined as follows :

li = arg max
j=1,...,J

PMj
res

(zi)× PMj
cam

(wi) (7)

wherewi represents the motion vectors corresponding to
the estimated 2D affine motion models for the segmentsi,
andPMj

res
is either given byPcooc. (3) or by Pcontr. (6)

according to the chosen option.

Figure 1: Skating video:Left to right and top to bottom: audi-
ence, scores, skating and different dance figures.

Figure 2: Athletics video: Three images at different time in-
stants and their corresponding maps of dominant motion support
(in white) and of local related-motion measurementsvres (zero-
value in black). Top to bottom: pole vault, close-up of track race
and interview.

6 Experimental results

In subsection 6.1, we give the results of the first step of the
designed method for two different sport programs. Results
of event detection are shown and commented in subsection
6.2. Finally, we report experimental comparisons in subsec-
tion 6.3. We have carried out experiments on several video
programs. Due to page limitation, we report here results
obtained on two different sport videos.

6.1 Selecting video segments

The first video is a figure skating (dance) TV program.
We want to distinguish between “play” segments which cor-
respond to skating (simple skating motion, artistic effects,
dance movements) and “no play” segments involving low-

P R
GMM 1 0.83

DGMM 0.95 0.90

Table 1:Skating video:Results of the first step of the event detec-
tion algorithm for the two considered models (GMM and DGMM).
P = precision rate andR = recall rate.
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P R
GMM 0.79 0.94

DGMM 0.84 0.94

Table 2: Athletics video:Results of the first step of the event
detection algorithm for the two considered models (GMM and
DGMM). P = precision rate andR = recall rate.

level activity (views of the audience, static shot like waving
at the beginning and the end of each show, skaters waiting
for the scores) as illustrated in Figure 1. The first 23 min-
utes of the video (two shows) are used as the training set
and the last 9 minutes (one show) form the test set. The
video segments of the test set are sorted as described in sec-
tion 5. Here, each group (“play”, “no play”) is represented
by several motion models; then the ML criterion involves to
maximise also over the different models of each group. The
precision rateP and the recall rateR are defined as follows:

P =
#correct

#correct+ #intrusive
andR =

#correct
#correct+ #missed

,

where#correct is the number of video segments labeled as
“play” segments and which effectively belong to this group,
#intrusive is the number of “no play” segments labeled as
“play” segments and#missed is the number of “play” seg-
ments labeled as “no play” segments. Table 1 contains the
first-step results obtained respectively with the GMM and
DGMM models for the residual motion. Results are com-
parable and quite satisfactory.
We have also processed one athletics TV program which is
formed by 25500 images. The training set is 10 minutes
long and the test set is 7 minutes long. The “play” segments
are formed by jump events and track race shots and the “no
play” segments contain interview shots and large views of
the stadium. Some representative images of this video are
displayed on Figure 2. We present in Table 2 the first-step
results obtained on that video. Again, satisfactory results
are obtained.

6.2 Detecting relevant events

The aim is now to detect the relevant events of the athletics
video among the segments selected as “play” segments (16
segments selected from the first step when using the GMM
model and 17 when using the DGMM model for the residual
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Figure 3:Athletics video:2D histograms of the estimated camera
motion vectors. Left: pole vault, right: wide-shot of track race.

Assigned label
Pv Pr Rw Rc

Pv 2 0 0 0
Pr 0 2 0 0
Rw 0 1 3 1
Rc 0 0 0 6
NP 0 1 0 0

Assigned label
Pv Pr Rw Rc

Pv 2 0 0 0
Pr 0 2 0 0
Rw 0 1 4 1
Rc 0 0 0 6
NP 0 1 0 0

Table 3:Athletics video:Classification matrix obtained with the
two-step event detection method. Left: with the GMM model.
Right: with the DGMM model.

Figure 4:Athletics video:Top: ground-truth, middle: results ob-
tained with GMM model, bottom: results obtained with DGMM
model. Grey: “no play”, red: pole vault, yellow: replay of pole
vault, green: wide-shot of track race, blue: close-up of track-race

motion). For this second step, we introduce the probabilistic
camera motion model. The 2D histograms of the estimated
camera motion vectors for different classes are plotted on
Figure 3. The four events we try to detect are the follow-
ing: pole vault (Pv), replay of pole vault (Pr), wide-shots of
track race (Rw) and close-up of track race (Rc). Let us point
out that the class “Replay of pole vault” contains the run-
up and the jump, whereas the class “pole vault” contains
only the jump. On Figure 4, the processed video is repre-
sented by a time-line exhibiting the duration of video seg-
ments. Figure 4 represents in a combined way the results of
the two-step event detection method, also reported in a dif-
ferent and separate way by Table 2 (first step) and Table 3
(second step). “No play” is displayed in grey and a color is
associated to each event class. The first row represents the
ground-truth. The second and the third ones show the re-
sults obtained respectively using GMM model and DGMM
model as for the residual motion. The detection also in-
volves the camera motion model. From Figure 4 and Table
2 and 3, we can infer that the majority of events are appro-
priately detected. Let us note that the intrusive segments
appear on the lineNP in Table 3. The classification errors
concern two segments (two short segments at the end of the
video sequence) belonging to the class “wide-shot of track
race”. The misclassification is due to the fact that the first
segment involves a scene which is between wide-angle shot
and close-up, and the second one is quite similar to the run-
up of pole vault in terms of movement.

6.3 Experimental comparisons

Table 4 contains results when considering the camera mo-
tion only. Conversely, Table 5 gives results obtained when
using the residual motion model only. These two tables
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Assigned label
Pv Pr Rw Rc

Pv 2 0 0 0
Pr 0 2 0 0
Rw 0 1 2 2
Rc 1 0 0 5
NP 0 1 0 0

Assigned label
Pv Pr Rw Rc

Pv 2 0 0 0
Pr 0 2 0 0
Rw 0 1 1 4
Rc 1 0 0 5
NP 0 1 0 0

Table 4: Athletics video: Classification matrix obtained when
considering the camera motion only. Left: on the segments se-
lected after the first step based on the GMM model. Right: on the
segments selected after the first step based on the DGMM model.

Assigned label
Pv Pr Rw Rc

Pv 2 0 0 0
Pr 0 2 0 0
Rw 0 0 5 0
Rc 0 0 2 4
NP 0 0 1 0

Assigned label
Pv Pr Rw Rc

Pv 2 0 0 0
Pr 0 2 0 0
Rw 2 3 1 0
Rc 2 0 0 4
NP 0 0 1 0

Table 5: Athletics video: Classification matrix obtained when
considering the residual motion only. Left: with the GMM model.
Right: with the DGMM model.

demonstrate that the combination of both motions (resid-
ual motion and camera motion) yields better results as for
event detection.
On the other hand, whereas the GMM model was sup-
posed to capture more information with the cooccurences
statistics, Tables 2 and 3 show that the DGMM model fi-
nally yields similar results while being less time consum-
ing. Indeed, for the GMM model the computation time is
0.8 sec/image with a Pentium IV 2.4 Ghz, while it is 0.2
sec/image for the DGMM model.

7 Conclusion

In this paper, we have introduced new probabilistic motion
models which can be easily learned and computed from the
image data and can handle a large variety of dynamic video
contents. We explicitly handle the information related re-
spectively to the scene motion and to the camera motion.
Two probabilistic models involving different statistical rep-
resentations of the scene motion have been investigated and
compared. We have also introduced an original probabilis-
tic modeling of camera motion. These motion models were
proven to be efficient and appropriate for event detection
in videos. The proposed method induces a low computa-
tion time, and accurate results on sport videos have been
reported.
The proposed two-step method for event detection is gen-
eral and does not exploit very specific knowledge (related
to the video genre, e.g., type of sport) and dedicated solu-
tions. It can thus be successfully applied to a large range
of videos. In the same time, due to the considered statis-

tical framework, it is flexible enough to properly introduce
prior on the classes (then, skipping to MAP instead of ML
criterion) if available, or to incorporate other useful infor-
mation. A complete event detection scheme should also in-
tegrate colour (the dominant colour is useful for instance to
account for the presence of the play field or the tennis court
in sport videos), or audio features which are also of obvious
interest when processing videos. Such developments are in-
deed in progress for a video summarization application.
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Abstract

In domains like confocal microscopy, the imaging process
is based on detection of photons. It is established the ad-
ditive Gaussian noise model is a poor description of the
actual photon-limited image recording, compared with that
of a Poisson process. This motivates the use of restora-
tion methods optimized for Poisson noise distorted images.
In this paper, a novel restoration approach is proposed for
Poisson noise reduction and discontinuities preservation in
images. The method is based on a local modeling of the im-
age, with an adaptive choice of a neighborhood (window)
around each pixel in which the applied model fits the data
well. The restoration technique associates with each pixel
the weighted sum of data points within the window. We de-
scribe a statistical method for choosing the optimal window
size, in a manner that varies at each pixel, with an adap-
tive choice of weights for every pair of pixels in the window.
It is worth noting the proposed technique applied to confo-
cal microscopy is data-driven and does not require the hand
tuning of parameters.

1 Introduction

Confocal systems offer the chance to image thick biolog-
ical tissue in 2D or 3D dimensions. They operate in the
bright-field and fluorescence modes, allowing the formation
of high-resolution images. At each point of the image, the
emitted fluorescence for the object is focused on the detec-
tor. This light is converted by a photomultiplier tube (PMT)
into a an electrical signal and represented by a discrete
value after an A/D conversion [12]. Finally, the PMT essen-
tially behaves as a photon counter and the distortions caused
by the quantum nature of the photon detection process are
better described by Poisson statistics. Operations that in-
vert these distortions of the microscope are then necessary
to improve the quantitative analysis of images. Generally
restoration methods yield an estimate of the original image
given an imaging model, a noise model and additional cri-
teria. In previous work [15, 18, 19], the Richardson-Lucy

algorithm, which is a maximum likelihood estimator for the
intensity of a Poisson process, incorporates a non-negativity
constraint in the algorithm. This algorithm is generally ca-
pable of partially reducing the distortions found in confo-
cal 3D images. However, it is sensitive to noise [18] and
additional methods (Gaussian prefiltering) are necessary to
produce better restoration results [19].

In this paper, we also address the adaptive image
restoration problem and present a nonparametric estima-
tion method that smooth homogeneous regions and inhibits
smoothing in the neighborhood of discontinuities. The ob-
served data are imperfect and in the form of Poisson pro-
cess. Since we do not address the image formation of
the confocal fluorescence microscope, ideally modeled as
a convolution of the object function with the point spread
function [12], the proposed method can be seen also as a
sophisticated prefiltering method before starting the more
complexdeconvolutionprocess using the Lucy-Richardson
algorithm [19]. The proposedadaptive window approach
is conceptually very simple being based on the key idea
of estimating a locally regression function with an adaptive
choice of the window size (neighborhood) for which the ap-
plied model fits the data well [14]. At each pixel, we esti-
mate the regression function by iteratively growing a win-
dow and adaptively weighting input data to achieve an op-
timal compromise between the bias and variance [9, 8, 10].
The proposed algorithm complexity is actually controlled
by simply restricting the size of the larger window and set-
ting the window growing factor. In contrast to most digital
diffusion-based filtering processes for which the input noisy
image is “abandoned” after the first iteration [13, 3], the
adaptive window approach recycles at each step the origi-
nal data. Other related works to our approach are nonlin-
ear Gaussian filters [7] and their recent evolutions [17, 1])
that essentially average values within a local window, but
changes the weights according to local differences in the
intensity [17, 1].
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2 A nonparametric approach

In photon-limited imaging, the major source of errors is
Poisson noise due to the discrete nature of photon detection.
Unlike Gaussian noise, Poisson noise is signal dependent,
which makes separating signal from noise a very difficult
task [11]. However, by applying the Anscombe transform
[16], the Poisson datafi ∼ Poiss(νi) of intensity νi are
transformed to data with a Gaussian distribution with vari-
anceσ2 = 1. Such an assertion is asymptotically correct as
νi →∞. The Anscombe transform is given by:

Yi = 2

√
fi +

3
8
. (1)

This transformation allows one to use well-studied methods
for Gaussian noise on data corrupted with the much trick-
ier Poisson noise. Then we applied a method developed
for Gaussian noise. After denoising, the inverse Anscombe
transform is applied.

2.1 Image model and basic idea

We observe the regression functionu with some additive er-
ror εi: Yi = u(Xi)+εi, i = 1, · · · , n, wereXi ∈ Rd, d =
2, 3, represents the spatial coordinates of the discrete image
domainS of n pixels andYi ∈ R is the observed intensity
at locationXi. We suppose the errorsεi to be independent
identically distributed zero-mean random variables with un-
known variances, i.e., var(εi) = σ2. However, to cope with
more complex degradations, the noise variance is also an
unknown parameter of the method.

A classical nonparametric estimation approach is based
on the structural assumption that regression functionu(x)
is constant in the vicinity of a pointx. An important ques-
tion under such an approach is first how to determine for
each pixel the size and shape of the neighborhood under
concern from image data. The regression functionu(x) can
be then estimated from the observations lying in the esti-
mated neighborhood ofx by a local maximum likelihood
(ML) method.

Our procedure is iterative and mostly realizes this idea.
For the first step, suppose we are given a local windowU

(0)
i

containing the point of estimationXi. By û
(0)
i we denote

an approximation of̂u(0)(Xi). We can calculate an initial
ML estimateû

(0)
i at pointXi (and its variancêϑ(0)

i ) by av-

eraging observations over a small neighborhoodU
(0)
i of Xi

as

û
(0)
i =

1

|U (0)
i |

∑

Xj∈U
(0)
i

Yj and ϑ̂
(0)
i =

σ̂2

|U (0)
i |

(2)

whereσ̂2 is the unknown estimate of the noise variance and
|U (0)

i | denotes the number of pointsXj ∈ U
(0)
i . At the next

iteration, a larger neighborhoodU (1)
i with U

(0)
i ⊂ U

(1)
i cen-

tered atXi is considered, and every pointXj fromU
(1)
i gets

a weightw(1)
ij which is defined by comparing the estimates

û
(0)
i and û

(0)
j obtained at the first iteration. Then we re-

calculate the estimatêu(1)
i as the weighted average of data

points lying in the neighborhoodU (1)
i . We continue this

way, increasing withk the considered neighborhoodU (k)
i ;

for eachk ≥ 1, the ML estimatêu(k)
i and its variance are

given by

û
(k)
i =

∑

Xj∈U
(k)
i

w
(k)
ij Yj andϑ̂

(k)
i = σ̂2

∑

Xj∈U
(k)
i

[
w

(k)
ij

]2

(3)

where weightsw(k)
ij are continuous variables (0 ≤ w

(k)
ij ≤

1), computed by comparison of the preceding estimates
û

(k−1)
i andû

(k−1)
j . In the next section, statistical arguments

for calculating weightsw(k)
ij are given. To stabilize the pro-

cedure, we also add a control step to valid the window size
for each pixel, by comparing the new estimateû

(k)
i with

the estimatêu(k−1)
i obtained at the preceding iteration [14].

In equation (3), the weight functionw(k)
ij does not depend

on input data but are only calculated from neighboring lo-
cal estimates, which contributes to the regularization effect.
Finally, a global convergence criterion is introduced to op-
timally stop the estimation procedure.

2.2 Adaptive weights

In our approach, we may decide on the basis of the esti-
mateŝu(k−1)

i andû
(k−1)
j , whether pointsXi andXj ∈ U

(k)
i

are in the same region or not and then prevent from sig-
nificant discontinuities oversmoothing [14]. In the local
Gaussian case, significance is measured using a contrast
|û(k−1)

i − û
(k−1)
j |. If this contrast is high compared to the

local variancêϑ(k−1)
i , thenXj should not participate to the

estimation ofû(k)
i and w

(k)
ij → 0. Hence, motivated by

the robustness and smoothing properties of the Huber M-
estimator in the probabilistic approach of image denoising
[2], we introduce the following related weight function (but
other weight functions are possible [3]):

w
(k)
ij =

g
(k)
ij∑

Xj∈U
(k)
i

g
(k)
ij

, (4)

g
(k)
ij =





1 if
∣∣∣û(k−1)

i − û
(k−1)
j

∣∣∣ ≤ 3

√
ϑ̂

(k−1)
i

3

√
ϑ̂
(k−1)
i√∣∣∣û(k−1)

i −û
(k−1)
j

∣∣∣2+ε

otherwise

with ε positive and sufficiently small (of the order10−4).

Here3
√

ϑ̂
(k−1)
i is related to the spatially varying fraction
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of contamination of the Gaussian distribution (“rule of 3
sigma” for Gaussian distributions.): for the majority of
pointsXj ∈ Ui, the differenceŝu(k−1)

i − û
(k−1)
j can be

approximatively modeled as being constant (zero) with ran-
dom Gaussian noise. Large differences are assumed to be
outliers which should not have a large effect on the estima-
tor.

2.3 Localization by a window

Statistical inference under such a structural assumption fo-
cuses on searching for every pointXi the largest neighbor-
hood (window)Ui where the hypothesis of structural homo-
geneity is not rejected. The classical measure of the close-
ness of the estimator̂u obtained in the windowUi to its
target valueu is the mean squared error (MSE) which is
decomposed into the sum of the squared bias[Bias(ûi)]2

and variancêϑi. As explained before, we should choose a
window that achieves an optimal compromise between the
squared bias and variance. Accordingly, we make the rea-
sonable assumption that the squared bias is an increasing
function of the neighborhood size and the variance is a de-
creasing function of the neighborhood size. Then, in order
to minimize the MSE we search for the window where the
squared bias and the variance of the estimate are equal. The
corresponding critical MSE is (E[·] denotes the mathemati-
cal expectation):

MSE
(
û

(k?)
i

)
=

[
Bias

(
û

(k?)
i

)]2

+ ϑ̂
(k?)
i = 2ϑ̂

(k?)
i . (5)

Now, let us introduce a finite set ofkM windows
{U (0)

i , · · · , U (kM )
i } centered atXi ∈ S, with U

(k)
i ⊂

U
(k+1)
i , starting with a smallU (0)

i and the corresponding

estimateŝu(0)
i of the true imageu(Xi). Denote byU (k∗)

i the
ideal window size corresponding to the minimum value of
the MSE. ThenU (k∗)

i gives the optimal bias-variance trade-

off and the optimal windowU (k∗)
i can be obtained accord-

ing to the following statistical rule [8, 9, 10]:

k∗ = max
{

k : ∀k′ < k :
∣∣∣û(k)

i − û
(k′)
i

∣∣∣
2

≤ 8ϑ̂
(k′)
i

}
. (6)

In other words, as long as successive estimatesû
(k)
i stay

close to each other, we decide that the bias is small and the
size of the estimation window can be increased to improve
the estimation of the constant model (and to decrease the
variance of the estimatêu(k)

i ). If an estimated point̂u(k′)
i

appears far from the previous ones, we interpret this as the
dominance of the bias over the variance term. For each
pixel, the detection of this transition enables to determine
the critical window size that balances bias and variance.

2.4 Stopping rule

The stopping rule can be used to save computation time if
two successive solutions are very close and prevents from an
useless setting of the larger window size. In our approach,
we adopt the so-called Csiszár’s I-divergence [5, 19] to de-
tect global convergence defined as:

I(û(k), û(k+1)) =

n∑
i=1

[
û

(k)
i log

û
(k)
i

û
(k+1)
i

− û
(k)
i + û

(k+1)
i

]
. (7)

In practice, the I-divergence is normalized with its maximal
occurring value at iterationk = 0. WhenI(û(k), û(k+1))
sinks under a threshold (of the order10−3 for typical im-
ages) that sufficiently accounts for convergence, the algo-
rithm is stopped at the final iterationkc = k , with kc ≤ kM ,
wherekM is the maximal value fork set by the user. Finally,
the windows size increases at each iterationk if the conver-
gence criterion is not met (ork ≤ kM ), but the estimate
û

(k)
i at iterationk is frozen.

3 Algorithmic procedure

3.1 The procedure

The key ingredient of the procedure is an increasing se-
quence of neighborhoodsU (k)

i , k = 0, 1, · · · , kM with

U
(k)
i ⊂ U

(k+1)
i centered at each image pixelXi. In what

follows, |U (k)
i | denotes the number of pointsXj in U

(k)
i ,

i.e. |U (k)
i | = #{Xj ∈ U

(k)
i }. The procedure is as follows.

Initialization For each pointXi, we calculate initial es-
timatesû(0)

i andϑ̂
(0)
i using equation (2) and setk = 1. Here

σ̂2 is the noise variance robustly estimated from data as it is
explained in Section 3.2.

Adaptation For all Xj in U
(k)
i , we compute weights

w
(k)
ij using equation (4) and new estimatesû

(k)
i and ϑ̂

(k)
i

using equation (3).

Control After the estimatêu(k)
i has been computed, we

compare it to the previous estimatesû
(k′)
i at the same point

Xi for all k′ < k. From the rule (6), if there is at least one

indexk′ < k such that
∣∣∣û(k)

i − û
(k′)
i

∣∣∣ > 2
√

2
√

ϑ̂
(k′)
i then

we do not accept̂u(k)
i and keep the estimateŝu(k−1)

i from
the preceding iteration as the final estimate at locationXi

[8, 10]. This estimate is unchanged ifk > k∗.

Stopping Stop the procedure ifk = kM or if
I(û(k), û(k+1)) < 10−3, otherwise increasek by 1 and con-
tinue with the adaptation step.
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3.2 Implementation details

In this section, we discuss how the parameters of the proce-
dure can be obtained.

The windowU (0) should be taken possibly small. We
naturally choose|U (0)| = 1. The sequence of neighbor-
hoods{U (k)} is more or less pragmatical and not supported
by theory. The sequence should satisfy the two following
conditions: Xi ∈ U

(0)
i and U

(k−1)
i ⊂ U

(k)
i . It can be

recommended to select sequences{U (k)
i } in a way that the

number|U (k)
i | of points in every such neighborhood grows

exponentially withk. In our experiments, we arbitrarily
use neighborhoodsU (k) corresponding to successive square
windows of size|U (k)| = (2k + 1) × (2k + 1) pixels with
k = 0, 1, 2, . . . , kM .

We can use the parameterkM to bound the numerical
complexity of the procedure. However, increasingkM al-
lows additional variance reduction in large homogeneous
regions but usually does not change the estimates where lo-
cal structure is present. In our experiments,kM = 15 sat-
isfies a good compromise and over-estimates the number of
necessary iterations. In addition, the I-divergence criterion
prevents from a precise tuning of this parameter.

The estimation procedure described earlier relies on the
preliminary and off-line estimation of the noise variance. In
most applications, the noise varianceσ2 is unknown and an
estimatêσ2 can be obtained from data as

σ̂2 =
1
|S|

∑

Xj∈S

ê2
j (8)

whereS denotes the rectangular image domain and pseudo-
residualŝej can be computed as (we noteYj1,j2 the obser-
vationYj at sitej = (j1, j2)) [6]:

êj =
4Yj1,j2 − (Yj1+1,j2 + Yj1−1,j2 + Yj1,j2+1 + Yj1,j2−1)√

20
.

(9)

In presence of discontinuities, an estimate of the noise vari-
ance based on robust statistics is preferable. In this frame-
work, high discontinuities correspond to statistical outliers
with respect to local image contrasts. As in [3], we suggest
to defineσ̂2 as the following robust estimate:

σ̂ = 1.4826 median(| |êS | −median|êS | |) (10)

whereêS = {ê1, ê2, · · · , ên} is the set ofn = |S| pseudo-
residuals of the entire image.

3.3 Properties

We study an idealized situation where the underlying image
is constant:u(x) = uo. In this situation, we can show that

(a) (b)

Figure 1: Corrupted synthetic image with Poisson noise (a)
and denoised image (b).

all estimateŝu(k?)
i coincide with the mean values of obser-

vationsYi with a very large probability, and the deviations
ûi − u0 are of the ordern−1/2. Additionally, if the contrast
of the image is sufficiently large compared with the level of
noise, we typically obtainw(k)

ij = 0 for all pairs(Xi, Xj)
in two distinct regions with a probability close to 1. Fi-
nally, sinceû(k)

i is restricted to a local neighborhoodU (k)
i ,

the estimation procedure does not yield a segmentation of
the image domain. But, if the noise is small compared to
the contrast of the image, then, for sufficiently largek?, we
haveû

(k)
i ' û

(k)
j .

The complexity of the whole procedure is of the order
n(|U (1)| + |U (2)| + · · · + |U (kc)|) if an image containsn
pixels andkc ≤ kM . Since|U (k)| grows exponentially in
our set-up, the whole complexity is of orderO(n|U (kc)|).

4 Experiments

The potential of the adaptive window method is first shown
on a synthetic image artificially corrupted with a Poisson
noise (Fig. 1a, PSNR = 28.8 db). In Fig. 1b, the Pois-
son noise is drastically reduced in a natural manner and sig-
nificant geometric features such as object boundaries, and
original contrasts are visually well preserved (PSNR = 40.1
db). In this experiment, it is confirmed the additive Gaus-
sian noise is a poor description of the actual photon-limited
image recording (PSNR = 39.6). In addition, Figs. 2a (Pois-
son statistics) and 2c (Gaussian statistics) show the loca-
tions and sizes of optimal estimation windows; we have
coded small windows with black and large windows with
white. As expected, small windows are in the neighbor-
hood of image gradients in Fig. 2a but are more dispersed
in regions with high intensity values (Fig. 2c, Gaussian
statistics). Finally, Figs. 2b and 2d show respectively the

corresponding sets of average weights{w(k?)
ij } defined as

w
(k?)
ij = |U (k?)

i |−1
∑

Xj∈U
(k?)
i

w
(k?)
ij , where dark values

indicate the presence of high image discontinuities. Note
the average weights are notably more diffuse in Fig. 2d
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(a) locations/sizes of win-
dows (Poisson statistics)

(b) image of average weights

w
(k?)
ij (Poisson statistics)

(c) locations/sizes of win-
dows (Gaussian statistics)

(d) image of average weights

w
(k?)
ij (Gaussian statistics)

Figure 2: Visualization of estimation windows and weights.

(Gaussian statistics). In this experiment, the final iteration
kc = 7 was determined autonomously by the I-divergence
criterion (kM = 15). The processing of the256 × 256 im-
age required typically 3 seconds on a PC (2.6 Ghz, Pentium
IV) using a standard C++ implementation of the algorithm.

In the subsequent experiments, we have tested the algo-
rithm (also implemented for processing 3D data) on confo-
cal fluorescence microscopy images that contain complex
structures. Some of the current applications in biological
studies are in neuron research. The biological study aims at
examining the effect of intracellular calcium concentration
(Ca2) on neurite outgrowth in individual neuronal cells. In-
deed,Ca2 is known to be implicated as an important regu-
lator of neurite extension. We have tested the proposed de-
noising algorithm on a 2D confocal microscopy115 × 512
image (Fig. 3, courtesy of INSERM 413 IFRMPno23,
Rouen, France) depicting a neurite in cultured cerebellar
granule cells. Fig. 3a shows the highly noisy image where
high gray-level values correspond to elevated calcium con-
centration. Figures 3b and 3c contain the denoised images
using the adaptive window method combined with respec-
tively Poisson statistics and Gaussian statistics; the image
denoised using Poisson statistics contains larger homoge-

(a) confocal image

(b) denoised image using Poisson statistics

(c) denoised image using Gaussian statistics

Figure 3: Denoising of a confocal image showing an indi-
vidual neuronal cell.

neous regions. The adaptive window method using Poisson
statistics has been also applied to 3D data: a typical 2D
image taken from a 3D stack of 20 images depicting mem-
branes of about fifty cultured human cells is shown in Fig. 4
(courtesy of INRA - UFDNH, Nantes, France). The image
is denoised using the set of parameters used in the previous
experiments.

The performance of the restoration procedure is also
demonstrated for a 3D fluorescence microscopic (179 ×
144× 16) stack. Figure 5a shows a typical 2D image taken
from the 3D stack of 16 images depicting moving chro-
mosomes (with dark values) standing over a spatially vary-
ing background, during mitosis (courtesy of Institut Curie,
Paris, France). Figure 5b shows the image denoised us-
ing Poisson statistics, where the location of chromosomes
(dark spots) are well preserved. Figure 5c shows also the
locations and sizes of optimal estimation windows coded as
previously; small windows are mainly in the neighborhood
of chromosomes.

5 Conclusion

We have described a novel feature-preserving adaptive algo-
rithm that reduces Poisson noise with a controllable compu-
tational complexity. The proposed scheme can be seen also
as an alternative method to the anisotropic diffusion and bi-
lateral filtering or energy minimization methods. An ad-
vantage of the method is that no hidden parameters need to
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(a) original image (b) denoised image (c) locations/sizes of windows

Figure 5: Denoising of a fluorescence microscopic image showing human chromosomes.

Figure 4: Denoising of a 3D confocal stack depicting mem-
branes of cultured human cells.

be precisely adjusted as in many other methods and the al-
gorithm can be parallelized. Experimental results show its
effectiveness and demonstrate its potential for 2D and 3D
confocal microscopy image denoising.
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Abstract

This paper presents a framework for the motion segmen-
tation and estimation task on sequences of two grey im-
ages without a priori information of the number of mov-
ing regions present in the sequence. The proposed algo-
rithm combines temporal information, by using an accurate
Generalized Least-Squares Motion Estimation process and
spatial information by using an inlier/outlier classification
process which classifies regions of pixels, in a first step, and
the pixels directly, in a second step, into the different motion
models present in the sequence. The performance of the al-
gorithm has been tested on synthetic and real images with
multiple objects undergoing different types of motion.

1. Introduction
Segmentation of moving objects in a video sequence is ba-
sic task for several applications of computer vision, e.g.
a video monitoring system, intelligent-highway system,
tracking, airport safety, surveillance tasks and so on. In this
paper, Motion Segmentation, also called spatial-temporal
segmentation, refers to labelling pixels which are associ-
ated with different coherently moving objects or regions in
a sequence of two images. Motion Estimation refers to as-
signing a motion vector to each region (or pixel) in an im-
age.

Although the Motion Segmentation and Estimation
problem can be formulated in many different ways ([?], [?],
[?], [?]), we choose to approach this problem as a multi-
structural parametric fitting problem. In this context, the
segmentation problem is similar to robust statistical regres-
sion. The main difference is that robust statistical regression
usually involves statistics for data having one target distri-
bution and corrupted with random outliers. Motion segmen-
tation problems usually have more than one population with
distinct distributions and not necessarily with a population
having absolute majority.

The problem of fitting an a priori known model to a set
of noisy data (with random outliers) was studied in the sta-

tistical community for a number of decades. One important
contribution was the Least Median of Squares (LMedS) ro-
bust estimator but it has the break down point of 50%. This
means that LMedS technique needs the population recov-
ered to have at least a majority of 50% (plus 1). Other ro-
bust estimators have been developed in order to overcome
this problem, which is frequently encountered in different
computer vision tasks. They are Adaptive Least k-th Or-
der residual (ALKS) [?] and Minimum Unbiased Scale Es-
timator (MUSE) [?]. These techniques minimize the k-th
order statistic of the square residuals where the optimum
value for the k is determined from the data. The problem
of both techniques is the estimation of the correct value of
k suffers high computation effort. Bab-Hadiashar and Suter
presented a method named Selective Statistical Estimator
(SSE) [?] which is a variation of the Least K-th order statis-
tic data regression where the user proposes the value k as
the lower limit of the size populations one is interested in.
All the Motion Segmentation LKS-based algorithms start
selecting an initial model using random sampling, and clas-
sifying all the pixels into this model using a scale measure.
With the remaining pixels the process is repeated until all
the pixel have been classified. The main problem of these
algorithms is that there are frequently pixels that can be
more suitable to belong to a model but they have been clas-
sified in an earlier model.

Danuser and Stricker [?] presented a similar framework
for parametric model fitting. Their algorithm has a fitting
step that is one component of the algorithm which also col-
lect model inliers, detects data outliers and determines the
a priori unknown total number of meaningful models in the
data. They apply a quasi simultaneous application of a gen-
eral Least Squares fitting while classifying observations in
the different parametric data models. They applied their al-
gorithm to multiple lines and planes fitting tasks. The most
important advantages with respect to LKS-based algorithms
are the use of an exchange step, that permits change of ob-
servations among models, and the use of a inliers/outliers
classification process, which increases the accuracy of the
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segmentation.
In [?] a quasi-simultaneous motion segmentation and es-

timation method based on a parametric model fitting algo-
rithm was presented. The method accurately estimates the
affine motion parameters using a generalized least squares
fitting process. It also classifies the pixels into the motion
models present in two consecutive frames. This algorithm
uses each pixel of the image as observation. It suffers from
problems of isolated points because it does not use neigh-
bourhood information and need given good initial models
to obtain the final motion segmentation. Nevertheless, it
indicates that the quasi-simultaneous application of the in-
liers/outliers classification algorithm and the accurate mo-
tion estimator can be useful to be applied in Motion Seg-
mentation tasks.

This paper presents a Motion Segmentation and Estima-
tion algorithm that, in a first step uses regions of pixels as
observations in order to obtain good initial models that in a
second step will be improved using each pixel as observa-
tion. The use of regions in the first step makes the segmen-
tation more spatial consistent. In addition, the algorithm
uses neighbourhood constraints to collect new inliers to the
model, only regions (or pixels) that are neighbour of the
model are considered to be inliers. This algorithm over-
comes the need of a good enough previous segmentation of
the models (they are obtained in the first step) and allows
extracting the models without a priori information of the
number of moving regions present in the sequence.

The rest of the paper is organized as follows: Section 2
explains the complete Motion Segmentation and Estimation
algorithm. Section 3 presents a set of experiments in order
to verify the results obtained with our approach. Finally,
some conclusions drawn from this work are described.

2 Algorithm Outline

In this paper we use the termModel as a structure with
two elements, the first is a parametric motion vector and
the second is a list of regions of the image that support the
parametric motion vector. We refer asRegion to a set of
pixels with grey-level coherence.

The input of the algorithm are two consecutive images
of a sequence, the first oneI1 captured at timet and the
second oneI2 captured at timet + 1. The output of the
algorithm are a motion-based segmentated imageIs and a
list of motion parameters corresponding at each region in
Is. For the sake of clarity, we describe the first part of the
proposed algorithm in6 steps:

1. Preliminaries: In this step,I2 is segmented using a
given grey level segmentation algorithm. The regions
obtained are used as input of the algorithm. An adja-
cency graph of the previous segmentation is created.

(a) (b)

Figure 1: Two examples of initial models

In addition the spatial derivates of the imagesI1 and
I2 are estimated.

The purpose of the grey-level segmentation process is
to classify the pixels into regions. Our Motion Seg-
mentation algorithm requires that each segmented re-
gion should not have pixels belonging to more than one
final motion models. Any grey level segmentation al-
gorithm that wherever possible tries to fulfil the previ-
ous constraint can be used.

2. Get Initial Model : The aim of this process is find the
best possible start point to the global Motion Segmen-
tation and Estimation algorithm. A good initial model
is make up of a set of regions that have a high likeli-
hood to belong to the same model. The process starts
selecting a region randomly. A model with this re-
gion and its neighbours is formed. The motion is es-
timated for this model using the process in subsection
2.1. A goodness measureGM is calculated for this
model. The previous step is repeatedq times. The
model with the best goodness measure is selected as
the initial model.

The goodness measure is calculated using the follow-
ing expression:GM = ((1−lavg)∗2+(lbest−lworst))
wherelavg is the average of the likelihoodLMn(R) for
each regionR using the motion modelMn (see point
3), lbest is the highest likelihood of the regions and
lworst is the lowest likelihood of the regions. There-
fore, the best initial model is the one which has the
lessGM .

Figure 1 shows an illustrative example of two pos-
sible initial models for a sequence with three differ-
ent motion models: static (left part of the image) and
two translational motion (the part of the image show-
ing a tree and the bottom right part). The pixels be-
longing to the region that have been selected randomly
have been painted using white color. The limits of the
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model made up with the previous region and its possi-
ble neighbours are drawn with a continuous white line.
Note that in the left image the majority of the pixels
perform the same motion (the model of the three) and
only a small area performs a different motion. There-
fore, itsGM will have a very small value. In addition,
its GM will be lower than in the case of the right im-
age where there is not a majority of pixels performing
the same motion.

3. Improve the model: An iterative classification pro-
cess is started in order to find the inliers and to reject
outliers between thek regions that make up the initial
model. With the set of resulting regions, we start an-
other classification process with the neighbours of the
last inserted regions not yet processed. This process
continues until there are not more new neighbour re-
gions to be processed.

The loop of the inliers/outliers classification consists
of:

(a) Estimate the motion parameters using all the pix-
els belonging the regions of the model (see sub-
section 2.1).

(b) Look for outliers into the regions of the model,
if there are outliers, improve the motion param-
eters. A regionR is considered outlier (with re-
spect to modelMn) if the likelihood of regionR
belonging to a modelMn is lower than a thresh-
old.

(c) Test each outlier if it can be now considered
inlier according the new estimated parameters.
If there are new inliers, the parameters are im-
proved again. A regionR is considered inlier
(with respect to modelMn) if the likelihood of
the regionR belonging to a modelMn is higher
than a threshold.

(d) Go to step b and repeat until there are not changes
in the set of regions of the model.

In order to estimate a likelihood of a regionR belong-
ing to a modelMn, the next expressions are used:

LMn(R) = (
∑

pi∈R

LMn(pi))/NR

LMn(pi) = e−0.5∗F2
Mn

(pi)

σ2

(1)

whereNR is the number of pixels of the regionR. For
each pixelpi belonging to the regionR the likelihood
LMn(pi) of the pixel belonging to a modelMn is cal-
culated. This likelihood ([?]) has been modelled as a

Gaussian like function whereFMn(pi) is the residual
for the pixelpi of the objective function using the mo-
tion parametric vector of the modelMm.

4. Exchange of regions: If a valid modelMn has been
extracted, then a region exchange procedure is started.
The goal of this procedure is to reclassify regions that
have been captured by an early modelMm where
m < n. A region is moved if it lies closer to the new
extracted model and there is a neighbour relationship
between the region and the new model. If all the re-
gions of the modelMm lie closer to the new Model
Mn then the modelMm is deleted. When for each re-
gion of modelMm we can not decide if it lies closer
to the modelMm or to the modelMn, then the models
are merged, that is, it is considered both models have
similar motion parameters.

5. Repeat: Go to step 2 and repeat the same process with
another initial model if any. If there is any problem es-
timating the motion of some model, e.g. not enough
texture information, not enough number of observa-
tions, etc., the regions of this model are moved to a
set calledregions with problems(RWP).

6. End: When all possible models have been extracted,
the models that only have one region are tested in or-
der to try to merge them with their neighbour models.
In addition, each region in the RWP set is tested in
order to move it into some of the models in its neigh-
bourhood.

At the end of the first part of the algorithm, a set ofNM
motion models have been extracted. Each motion model is
made up of a vector of parametric motion models and a set
of regions which support the motion. Our Motion Segmen-
tation algorithm requires that each region from the given
grey-level segmentation should not have pixels belonging
to more than one final motion model. It is very likely that
some regions will not fulfill this constraint. The second part
of the algorithm is performed in order to improve motion
segmentation in these regions. In this step, instead of using
a region of pixels as observation, each pixel is considered
as observation. This process consists of:

1. Find Outliers : For each extracted modelMn (n =
1 . . . NM ), find all the pixels that can be considered
as outliers. They are the pixelspi which their likeli-
hood respect to the modelMn, LMn(pi) is less than a
threshold. All the outlier pixels are included in a set,
together with the pixels belonging to the region which
have been considered outliers in the previous part.

2. Improve parameters: The motion parameters for the
motion models that have new outliers are improved
(see subsection 2.1).
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3. Find Inliers : For each outlier, test if it can be in-
cluded in some of the motion models. A pixelpi will
be included in the model with the greatest likelihood
LMn

(pi), n = 1 . . . NM , if it is bigger than a thresh-
old and there is a neighbourhood relationship between
the pixelpi and the modelMn.

4. Improve parameters: The motion parameters for the
motion models that have new inliers are improved (see
subsection 2.1).

5. Repeat: Repeat 1 to 4 while there are changes in the
set of pixels.

At the end of the two parts of the algorithm the pixels
have been classified into the different motion models cor-
responding to the moving objects in the scene. The pixels
that could not be included in any model will be considered
as outliers.

2.1 Motion Estimation

The Generalized Least Squares (GLS) algorithm is used in
order to obtain the motion parameters of a model. The GLS
algorithm [?] is based on minimizing an objective function
O over a setS of r observation vectors,S = {L1, . . . , Lr}.

O =
∑

Li∈S

(Fi(χ,Li))2 (2)

whereχ = (χ1, . . . , χp) is a vector ofp motion parameters
and Li is a vector ofn observationLi = (L1

i , . . . , L
n
i ),

i = 1 . . . r.

The equation (2) is non-linear, but it can be linearized us-
ing the Taylor expansion and neglecting higher order terms.
This implies that an iterative solution has to be found. At
each iteration, the algorithm estimates∆χ, that improves
the parameters as follows:χt+1 = χt +∆χ. The increment
∆χ is calculated (see [?]) using the following expressions:

∆X =
(
AT (BBT )−1A

)−1
AT (BBT )−1W

B =




B1 0 0 0
0 B2 0 0
... ... ... ...
0 0 0 Br




(r×(r×n))

A =




A1

A2

...
Ar




(r×p)

W =




w1

w2

...
wr




(r×1)

Bi =
(

∂Fi(χt, Li)
∂L1

i

,
∂Fi(χt, Li)

∂L2
i

, ...,
∂Fi(χt, Li)

∂Ln
i

)

(1×n)

Ai =
(

∂Fi(χt, Li)
∂χ1

,
∂Fi(χt, Li)

∂χ2
, ...,

∂Fi(χt, Li)
∂χp

)

(1×p)

wi = −Fi(χt, Li)
(3)

In motion estimation problems ([?]) the objective func-
tion is based on the assumption that the grey level of all the
pixels of a region remains constant between two consecu-
tive images. The motion parameters vector,χ, depends on
the motion model being used. For each pointi, the vector
of observationLi has three elements: column, row and grey
level of second image at these coordinates. The objective
function is expressed as follows:

O =
∑

Li∈S

(Fi(χ,Li))2 =
∑

Li∈S

(I1(x′i, y
′
i)− I2(xi, yi))2

(4)
whereI1(x′i, y

′
i) is the grey level of the first image in the

sequence at the transformed pointx′i, y
′
i, andI2(xi, yi) are

the grey level of the second image in the sequence at point
xi, yi. Here,Li = (xi, yi, I2(xi, yi)).

The affine motion model is used in this work, which is
able to cope with translations, scaling, rotation and shear of
images and is defined with a vector ofχ = (a1, b1, c1, a2,
b2, c2).

3 Experimental Results

In order to show the performance of the approach presented,
two types of experiments have been carry out. In the first ex-
periment, synthetic sequences have been used, where the fi-
nal motion segmentation and the motion parameters of each
model are known. In the second experiment real scenes are
used, where the final motion segmentation and the motion
parameters are unknown.

Figures 2(a,b) show both images of an example of syn-
thetic sequence. In this synthetic sequence three different
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(a) 1st image (b) 2nd image

(c) Initial gray segmen-
tation

(d) Final segmentation

Figure 2: Both images of the synthetic sequence and results

(a) 1st image (b) 2nd image

(c) Initial gray segmen-
tation

(d) Final segmentation

Figure 3: Both images of the real sequence and results

Figure 4: Optic Flow computed from results of the synthetic
sequence

Figure 5: Optic Flow computed from results of the real se-
quence
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motion models can be found. The first one is the back-
ground, which performs a null-motion. The second motion
model performs a change of scale and the third one cor-
responds to a rotational motion. Figure 3(a,b) show both
images of an example of real sequence.

Figures 2(c,d) and 3(c,d) show the result after the first
step of the algorithm and the final results for both se-
quences. The white pixels in figures 2c and 3c, are the
ones that have not been classified in any model. These re-
gions correspond mainly to regions belonging to occluded
areas due to the motion and to regions that do not fulfill the
requirement of belonging only to a model, i.e. some pix-
els belong to a model and some other belong to a different
model.

Figures 2d and 3d show the segmentation performed af-
ter the second step showing how segmentation has been im-
proved in previous regions. Now, white pixels are the ones
considered as outliers. They are mainly pixels belonging to
occluded areas due to the motion and pixels where our al-
gorithm could not estimate the motion due to lack of texture
or to the presence of too large motions.

Figures 4 and 5 show the optic flow for both sequences.
They have been computed using the motion parameters of
each model in all the pixel belonging to them. They are
presented in order to illustrate the motion models estimated.

4 Conclusions

In this paper, a motion segmentation and estimation algo-
rithm has been presented, which can extract different mov-
ing regions present in the scene quasi-simultaneously and
without a priori information of the number of moving ob-
jects. The main properties of our approach are:

• A GLS Motion Estimation is used, which produces ac-
curate estimation of the motion parameters.

• A classification process which collects inliers, rejects
outliers and exchanges regions among models allows
to improve motion segmentation.

• It uses, in the first step, regions of pixels and neigh-
bourhood information, that improves the spatial con-
sistency and provides a good initial point to start the
second step of the algorithm, which using pixels as ob-
servations improves the segmentation in the regions.

• The pixels considered as outliers are mainly pixels be-
longing to occluded areas due to the motion, thus, de-
tection of outliers provides valuable information about
occluded areas.

Future work must study hierarchical techniques in or-
der to improve the speed of the algorithm and to cope with

larger motion. The possibility of using sequences with more
than two images will be also studied.

78



A Variational Approach to 3D Geometry Reconstruction from Two or
Multiple Views

L. Alvarez, C. Cuenca, A. Salgado, J. Sanchez
Dpto. Informatica y Sistemas

Universidad de Las Palmas de Gran Canaria
{lalvarez,ccuenca,a2652,jsanchez}@dis.ulpgc.es

Abstract

In the last years we have developed some methods for
3D reconstruction. First we began with the problem of
reconstructing a 3D scene from a stereoscopic pair of
images. We developed some methods based on energy
functionals which produce dense disparity maps by pre-
serving discontinuities from image boundaries. Then
we passed to the problem of reconstructing a 3D scene
from multiple views (more than 2). The method for
multiple view reconstruction relies on the method for
stereoscopic reconstruction. For every pair of consecu-
tive images we estimate a disparity map and then we
apply a robust method that searches for good corre-
spondences through the sequence of images. Recently
we have proposed several methods for 3D surface regu-
larization. This is a postprocessing step necessary for
smoothing the final surface, which could be afected by
noise or mismatch correspondences. These regulariza-
tion methods are interesting because they use the in-
formation from the reconstructing process and not only
from the 3D surface. We have tackled all these prob-
lems from an energy minimization approach. We in-
vestigate the associated Euler–Lagrange equation of the
energy functional, and we approach the solution of the
underlying partial differential equation (PDE) using a
gradient descent method.

1 Introduction

This paper is about three different main topics: The
first topic is the 3D reconstruction from two views. The
second is the problem of reconstructing a 3D scene from
multiple views – more than two – that, in our case,
make use of the previous method. The third one deals
with the problem of regularizing a 3D surface. This
method takes into account the information from the
two previous topics.

For the first problem we present a variational ap-
proach to recover a dense disparity map from a set of

two weakly calibrated stereoscopic images. To solve this
problem, we first make full use of the knowledge of the
so-called fundamental matrix to derive the equations
that relate corresponding pixels in the two views, and
then combine regularization and scale-space tools to es-
timate iteratively and hierarchically the disparity map.
The solution obtained at a coarse spatial scale is used
to restrict searching at finer scales. We minimize an
energy term that takes into account the epipolar line
constraint as well as the edge information constraint
through an appropriate regularization term. In order
to reduce the risk to be trapped within some irrelevant
local minima during the iterations, we use a focusing
strategy based on a linear scale-space. This method is
explained in paper [1]. We have also implemented a
symmetric method for computing the disparity map in
both senses (see [4]). In papers [2] and [3] we have pro-
posed methods for computing the optical flow between
two images which are very similar to the disparity map
estimation method except that we do not use any geo-
metric constraint as the epipolar geometry.

For the second problem – reconstruction from mul-
tiple views – we have developed a robust method to re-
cover a 3D model. After computing the disparity maps
for every two consecutive frames we search for the best
sequences of corresponding points through the set of
frames. We estimate sequences of corresponding points
across the multiple view image sequence. Basically, we
try to connect points between images following the dis-
parity map estimation. We select sequences of corre-
spondent points for which the forward and backward
disparity estimations are coherent. That is, if we take
the initial point and go through the sequence using the
forward disparity estimations and then go back using
the backward disparity estimations we have to arrive to
the same point (modulus a threshold parameter). From
each selected corresponding point sequence we recover
a 3D point by intersecting the projection lines of the
points in the sequence. By collecting the 3D points ob-
tained from each sequence we recover an unstructured
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set of 3D points. Recently, a new accurate technique
based on a variational approach has been proposed in
[17, 18]. Using a level set approach, this technique opti-
mizes a 3D surface by minimizing an energy that takes
into account the surface regularity as well as the projec-
tion of the surface on different images.In this paper we
propose a different approach which is also based on a
variational formulation but only using a disparity esti-
mation between images and without defining explicitly
any 3D surface.

For the third problem we present a method for the
regularization of a set of unstructured 3D points ob-
tained from a sequence of stereo images. Typically, the
recovered set of 3D points is noisy, because of errors
in the camera calibration process, errors in the dis-
parity estimations, errors in the corresponding point
sequences computations, etc., so some kind of regular-
ization is needed. The regularization model we propose
is a variational approach. We propose a model based
on an energy. This method takes into account the in-
formation supplied by the disparity maps computed
between pair of images to constraint the regularization
of the set of 3D points. As in the first problem there is
a regularization term that relies on an operator that is
very similar to the Nagel–Enkelmann operator which
allows for the regularization of the set of 3D points
by preserving discontinuities presented on the dispar-
ity maps. One interesting advantage of this approach
is that we regularize the set of 3D points by only using
the 2D image projection information and, in particular,
we do not need to define any 3D triangulation on the
set of 3D points. In paper [5] we proposed a general
method for regularizing a set of 3D points according to
the information of the disparity maps, and in paper [6]
there is an explanation of a 3D regularization method
for cylindrical surfaces. In this paper we present the
first approach for general surfaces.

The paper is organized as follows: In Section 2.1, we
present the model for stereoscopic reconstruction from
two views. In Section 2.2 we explain the 3D recon-
struction method from multiple views. In Section 3 we
present the regularization model and in Section 4 the
conclusions.

2 Reconstruction model

2.1 Reconstruction from two views

In order to estimate a dense disparity map between
two images we present an energy based approach. This
energy also preserves discontinuities resulting from im-
age boundaries. We derive a simplified expression for
the disparity that allows us to easily estimate it from

a stereo pair of images using an energy minimization
approach. We assume that the epipolar geometry is
known, and we include this information in the energy
model. Discontinuities are preserved by means of a
regularization term based on the Nagel–Enkelmann op-
erator. We investigate the associated Euler–Lagrange
equation of the energy functional, and we approach the
solution of the underlying partial differential equation
(PDE) using a gradient descent method. In order to
reduce the risk to be trapped within some irrelevant
local minima during the iterations, we use a focusing
strategy based on a linear scale-space.

In order to estimate the disparity (λ(x, y)), one can
proceed in a classical way and try to recover this im-
portant information using a simple correlation scheme.
Unfortunately, this naive solution will not provide a
correct and accurate solution, in particular in the re-
gions where the disparity map may present some dis-
continuities, as is often the case close to image edges.
It is well known that the disparity map obtained using
this classical method tends to be very smooth across
the boundaries of the images. The idea we would like
to formalize and develop here is to estimate a λ(x, y)
function which is smooth only along the image bound-
aries and not across them. This leads us to consider
the minimization of the following energy functional:

E(λ) =
∫

Ω

(Il(x, y)− Ir(x + u(λ), y + v(λ)))2 dxdy

+ C

∫

Ω

Φ(∇Il,∇λ) dx dy (1)

where Ω is the image domain, C is a positive con-
stant, and Φ(∇Il,∇λ) determines the regularization
term. This function includes a diffusion tensor first
proposed by Nagel and Enkelmann that guides the
diffusion along the contours at image boundaries and
in all directions at homogeneus regions. The associ-
ated Euler-Lagrange equations give us a diffusion PDE,
which is then embedded into a gradient descend process
to reach the solution:

∂λ

∂t
= C div (D (∇Il) ∇λ) +

(
Il(x, y)− Iλ

r (x, y)
)

a
(

∂Ir

∂y

)λ

(x, y)− b
(

∂Ir

∂x

)λ
(x, y)

√
a2 + b2

. (2)

In Figure 1 we show an example of disparity map
computation from a stereoscopic pair of a human face.
We also show the result given by a common correlation
based technique.

In Figure 2 we show four views of the 3D reconstruc-
tion of the previous stereo pair.
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Figure 1: Top: the original stereo pair. Bottom left:
the computed disparity map using a correlation win-
dow of size 13× 13. Bottom right: the result from our
method, with the correlation result as initialization.

2.2 Reconstruction from several views

We have developed a robust method to recover a 3D
model from several views. All the views have been
taken at the same time and all of them pointing to
a common 3D scene. We make use of the previous
model for stereoscopic images. This method follows
these steps:

• For each pair of consecutive images, we estimate a
dense disparity map using the accurate technique
developed in [1]. We estimate such disparity map
forward and backward, that is, from one image to
the next one and in the opposite direction.

• We estimate sequences of corresponding points
across the multiple view image sequence. Basi-
cally, we try to connect points between images fol-
lowing the disparity map estimation. We select
sequences of correspondent points for which the
forward and backward disparity estimations are
coherent. That is, if we take the initial point and
go through the sequence using the forward dispar-
ity estimations and then go back using the back-
ward disparity estimations we have to arrive to the
same point (modulus a threshold parameter). We
keep trace of the pixels belonging to a sequence in
order to avoid that the same pixel is included in
different groups.

Figure 2: Four views of the 3-D reconstruction of the
stereo pair in Figure 1, using the disparity map from
our method.

• From each selected corresponding points sequence
we recover a 3D point by intersecting the projec-
tion lines of the points in the sequence. By col-
lecting the 3D points obtained from each sequence
we recover an unstructured set of 3D points.

• Typically, the recovered set of 3D points is noisy,
because of errors in the camera calibration pro-
cess, errors in the disparity estimations, errors in
the corresponding point sequences computations,
etc., so some kind of regularization is needed. In
this paper, we propose a new variational model to
smooth the unstructured set of 3D points. This
regularization model is based on the 2D image in-
formation and does not require to define any kind
of geometric relation between the 3D points.

In Figure 4, we show the front and profile views of
the reconstruction of the Bust sequence.

3 Regularization model

In this section we present a method for the regulariza-
tion of a set of unstructured 3D points obtained from a
sequence of stereo images. This is a postprocessing step
to the reconstruction from multiple views explained in
the previous section. This method takes into account
the information supplied by the disparity maps com-
puted between pair of images to constraint the regu-
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Figure 3: Some images of the Bust sequence and the
corresponding disparity maps associated to them. We
search for sequences of corresponding points which
have a small error going forward and backward, there-
fore we have to compute disparity maps for every pair
of images in both senses.

Figure 4: Front and profile views of the 3D reconstruc-
tion of the Bust sequence.

larization of the set of 3D points. We propose a model
based on an energy which is composed of an attach-
ment term that minimizes the distance from 3D points
to the projective lines of camera points, and a second
term which relies on an operator that is very similar
to the Nagel–Enkelmann operator. This second term
allows for the regularization of the set of 3D points
by preserving discontinuities presented on the dispar-
ity maps. One interesting advantage of this approach
is that we regularize the set of 3D points by only using
the 2D image projection information and, in particu-
lar, we do not need to define any 3D triangulation on
the set of 3D points. We embed this energy in a 2D
finite element method to take advantage of the under-
lying float precision mesh. Delauny triangulations are
managed to give support to this finite element method.

Figure 5: Notation

After minimizing, this 2D finite element method results
in a large system of equations that can be optimized
for fast computations over no-null values. We derive
an efficient implicit numerical scheme which reduces
the number of calculations and memory allocations.

The energy to be minimized for the regularization
of the set of 3D point is:

E
(
X̄0., X̄Nc−1

)
=

Nc−1∑
c=0

(∫

Ω

dist(X̄c, R̄c)2 +

α

2∑

i=0

∫

Ω

∇T XcD(h̄c)∇Xc

)
(3)

where α is a parameter that states the balance between
the two terms and dist(X̄c, R̄c) denotes the distance
from point X̄c to the straight line R̄c and is given by
formula

dist(X̄c, R̄c)2 =
2∑

i=0

(
Xc,i − F c,i

)2

−
(

2∑

i=0

lc,i
(
Xc,i − F c,i

)
)2

. (4)

In Figure 5 is the notation that we have used for
equations (3) and (4) and in Figure 6 we show the
result of applying this method to the 3D reconstruction
on Figure 4.

4 Conclusions

Our method for 3D reconstruction from a pair of stereo-
scopic images combines some techniques developed in
the context of optic flow estimation [2, 22] with some
other techniques developed in the context of dense dis-
parity map estimation which take into account the geo-
metric constraints associated to a stereo pair. We think
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Figure 6: Front and profile views of a regularization of
the 3-D reconstruction on Figure 4

that the combination of these ideas is fruitful in that
it produces new tools to estimate dense disparity fields
which benefit from the research efforts in stereo vision
as well as in optic flow estimation.

The method for 3D reconstruction from multiple
views is very robust in the sense that it intensively looks
for the best matching sequences of points. This yields
a set of 3D points that are probably the most accu-
rate ones and discards those points that have not good
matches or do not appear in enough views – maybe due
to occlusions.

In this paper we have presented a novel method for
the regularization of a set of 3D points. We have
established an energy in a traditional attachment–
regularizing couple of terms. In the regularizing term
we have made used of an operator similar to the Nagel–
Enkelmann operator for 3D regularizations.

This energy model has been embedded into a 2D
finite element approach to take advantage of the un-
derlying precision of data. Then we have managed to
derive this energy and propose a very efficient and op-
timal numerical scheme that allows us to speed up the
process and reduce the memory needs.

One of the main advantages of the method is that
it regularizes sets of unstructured 3D points without
using any geometric relation in 3D. We only use the
information of the projection of the points in the cam-
eras. In particular, this method could be used as a
preprocessing step before the construction of 3D sur-
faces fitting the 3D points. We notice that most of the
techniques for such surface reconstruction are very sen-
sitive to the noise in the 3D points representation, and
they require the set of 3D points to be regular enough
to work properly.
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laud, Two deterministic half-quadratic regularization
algorithms for computed imaging, Proc. IEEE Int. Conf.
Image Processing (ICIP–94, Austin, Nov. 13–16, 1994),
Vol. 2, IEEE Computer Society Press, Los Alamitos,
168–172, 1994.

[8] Frédéric Devernay and Olivier D. Faugeras. Computing
differential properties of 3-D shapes from stereoscopic
images without 3-D models. Proc. IEEE Conference
on Computer Vision and Pattern Recognition, Seattle,
WA, June 21–23, 1994, pages 208–213.

83



[9] W. Enkelmann, Investigation of multigrid algorithms
for the estimation of optical flow fields in image se-
quences, Computer Vision, Graphics and Image Pro-
cessing, Vol. 43, 150–177, 1988.

[10] Olivier Faugeras, Bernard Hotz, Hervé Mathieu,
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ABSTRACT

Textures are an important feature when we try to identify
or classify elements in a scene. Analyzing the textures in
a given environment at different scales provides more infor-
mation than considering the features which can be extracted
from a single one. Thus, the relations between the simplest,
the most complex or the intermediate patterns which are
present in the texture can be studied in the texels, or re-
peated elements which constitute a textured region.

However, there are some aspects which differ from per-
fectly generated artificial textures and natural ones. In the
first class, the information is limited by the generation of
the texture and an increase or decrease in the scale within
certain bounds does not produce a change in the elements,
but in its resolution. On the other hand, natural textures
produce, when the scale is increased, a parallel change in
the elements which are visible and thus, in the information
which can be extracted, since some elements appear while
other disappear.

In this paper, we present a multiscale approach for clas-
sifying and indexing textures, and some considerations on
the analysis of natural textures, which must be taken into
account when analyzing similar scenes at different resolu-
tions, are introduced.

1 Introduction

In this paper, we present a method for texture analysis based
on the distribution of the orientation of the edges across tex-
tured regions. To this end, we estimate the gradient in ev-
ery point of the image and build an orientation histogram
to describe it. This allows performing satisfactory classi-
fications in most cases, but some of them are not properly
classified. A multiscale analysis of the textures improves
the results, considering the evolution of the textures along
the scale. In natural textures, the changes produced when
a certain scene is observed at different distances introduce
new elements which must be taken into account when com-
paring the views. This method and the properties of natural

textures have been tested with two different databases of
textured images.

The paper in structured as follows: Section 2 shows
how textures can be described through their orientation his-
tograms. Section 3 describes the classification of textures
from their orientation histograms. In section 4, multiscale
analysis is introduced to improve the classification method,
and some considerations are analyzed in natural textures.
Finally, section 5 presents some conclusions of the work.

2 Texture Description through Ori-

entation Histograms

In order to describe a texture in terms of the orientations of
the edges which are present in it, we must estimate the mag-
nitude and the orientation of the gradient in every point of
the region. With these values, we can build an orientation
histogram which reflects what the relative importance of ev-
ery orientation is. We have used the structure tensor method
to estimate both and build the orientation histogram.

In order to estimate the magnitude of the gradient, we
first calculate an initial estimation for every point using the
following mask for the horizontal componentux:

1
4h




−(2−√2) 0 (2−√2)
−2(

√
2− 1) 0 2(

√
2− 1)

−(2−√2) 0 (2−√2)


 (1)

and the following one for the vertical componentuy:

1
4h



−(2−√2) −2(

√
2− 1) −(2−√2)

0 0 0
(2−√2) 2(

√
2− 1) (2−√2)


 (2)

If we have an estimation of the gradient(xn, yn) for a
certain point, the vector(a, b) would be parallel to that gra-
dient if the following product is0:
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ayn− bxn = (a, b)(xn, yn)⊥ = ‖(a, b)‖ ‖(xn, yn)‖ cos(α)
(3)

where α is the angle formed by the directions of
(xn, yn)⊥ and(a, b). Thus, if we want to find the direction
which best represents the estimations for a set of points, we
must calculate the vector(a, b) which minimizes the fol-
lowing sum:

(a, b)

( ∑N
i=0 y2

i −∑N
i=0 xiyi

−∑N
i=0 xiyi

∑N
i=0 x2

i

)(
a
b

)
(4)

For every component of the sum in the matrix, there are
two eigenvalues and two eigenvectors. One of the eigenval-
ues is0, and its corresponding eigenvector is the estimation
of the orientation of the gradient(xi, yi):

(
y2

i −xiyi

−xiyi x2
i

)(
xi

yi

)
=

(
0
0

)
(5)

Since any two-dimensional vector can be expressed as a
linear combination of the two linearly independent eigen-
vectors, the maximum variation will be achieved by the
eigenvector associated to the maximum eigenvalue. We can
see that this vector is(−yi, xi), and its corresponding eigen-
value is

(
x2

i + y2
i

)
, i.e. the square of the norm of the gradi-

ent estimation:

(
y2

i −xiyi

−xiyi x2
i

)( −yi

xi

)
=

(
x2

i + y2
i

) ( −yi

xi

)

(6)
Consequently,

(
x2

i + y2
i

)
is the highest eigenvalue, and

its square root is the norm of the gradient. The orientation
can be estimated with the eigenvector associated to the low-
est eigenvalue of the matrix.

Once the orientation and the magnitude of the gradient
have been calculated in every point of the textured region,
by adding the magnitude in the points with the same ori-
entation, we can build the orientation histogram for such
texture, as shown in Fig. 1.

3 Orientation-Based Texture Classi-
fication

In order to relate two textures, an energy function is built, in
which the Fourier coefficients of both histograms are com-
pared. We must achieve rotational invariance, in the sense
that the result must not be affected if the textures are ro-
tated. A change in the orientation of a texture will only
cause a cyclical shift in the histogram. For this reason, the

Figure 1: Examples of two textures and their corresponding
orientation histograms

Fourier coefficients are modified as follows: letfn andgn

be the orientation histograms of lengthL corresponding to
the same texture but shifteda positions, i.e. the texture
has been rotated an angleθ = 2πa/L, and letfk andgk

be thekth Fourier coefficients of these histograms, then
fk = gke−i 2πka

L . Thus, a measure of how similar the co-
efficients of both textures are is given by:

E(a) =

L
2∑

k=1

(
fk − gke−i 2πka

L

)(
fk − gke−i 2πka

L

)∗
(7)

In addition, the fact that the number of discrete orienta-
tions used for the histograms is constant and the normaliza-
tion of the weights make the lengths of the signals and the
total weight equal in both textures. Consequently, a change
in the size of the region where the texture is analyzed will
not cause the generation of a different distribution. Due
to the fact that the higher frequencies are more affected by
noise than the lower ones, a monotonic decreasing weight-
ing functionw(.) can be used to emphasize the discrimina-
tion, thus obtaining the following expression, in which the
first terms have a more important contribution than the last
ones:

E(a) =

L
2∑

k=1

w

(
2k

L

) (
fk − gke−i 2πka

L

) (
fk − gke−i 2πka

L

)∗

(8)
To test this technique, we have used two sets of textures

contained in two databases (see examples in Fig. 2 and
Fig. 3). The first database has been made publicly available
for research purposes by Columbia and Utrecht Universi-
ties, Columbia-Utrecht Reflectance and Texture Database
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[2]. We work with grayscale images and thus, a single his-
togram is used to represent the orientations of the edges in
light intensity. If we were working with color images, a
three subchannel mechanism could be used when hue, and
not only intensity, is relevant for texture identification. Us-
ing the techniques previously described, a certain texture is
compared with all those in the database and the most sim-
ilar ones are selected. The similarity between two textures
is given by the energy obtained when comparing their ori-
entation histograms.

In Fig. 4 and Fig. 5, and in tables 1 and 2, we show some
results of the application of the technique explained above.
From the image databases, one is selected and the5 best
comparisons are shown. Of course, as the selected image
belongs to the set, the best match corresponds to itself, and
the energy factor is0.

order txt. number wtd. energy

1 51 0.00000
2 40 1.65841
3 56 1.99648
4 27 3.74986
5 12 4.10221

Table 1: Results for texture 51 in database 1

order txt. number wtd. energy

1 25 0.00000
2 29 0.09970
3 26 0.18930
4 34 0.26078
5 33 0.30463

Table 2: Results for texture 25 in database 2

As mentioned before, the orientation histograms ex-
tracted from the textures describe how the different orienta-
tions are quantitatively distributed across the region which
is studied, but they do not provide any information about
the spatial neighborhood of the pixels with a certain orien-
tation. Thus, a completely noisy image, in which all orien-
tations are equally but disorderly present in the image would
generate a similar histogram than a circle, where the orien-
tation is gradually increased along its outline. This forces
us to search for a certain technique which complements the
information provided by this kind of histograms in order to
enhance the recognition capabilities.

A multiscale analysis of the images will provide us with
a series of images which represent the evolution of each
texture at different scales. In this evolution, the orienta-
tions will be differently affected by the others, depending
on their spatial proximity. This will allow us to distinguish

Figure 2: Examples of textures of different materials
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Figure 3: Texture database with natural pictures

Figure 4: Examples of similar textures extracted for a tex-
ture in database 1
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Figure 5: Examples of similar textures extracted for a tex-
ture in database 2

among textures where orientations are originally distributed
in a similar way, but which are actually different.

4 Multiscale Texture Analysis

The interpretation of the information we perceive from the
environment depends on the scale we use to process it. At
the same time, the information provided by each scale is
useful and the study of the same scene at different scales
makes it possible to perceive a wider range of realities.
Furthermore, elements which are not distinguishable at a
certain scale may be clearly distinct at a different one and
the rough and detailed information extracted from an image
may help us decide when comparing textures. The mul-
tiscale analysis approach has been successfully used in the
literature for texture enhancement and segmentation (see [5]
and [6] for more details).

A multiscale analysis can be determined by a set of trans-
formations{Tt}t≥0, wheret represents the scale. LetI be
an image, i.e.I : Ω −→ <, whereΩ is the domain where
the image is defined. In what follows, we will consider for
simplicity in the exposition thatΩ = <n andI ∈ H2(Ω)
that is,I and∇I have finiteL2 norm. It = Tt(I) is a new
image which corresponds toI at a scalet. For a given image
I, to which the multiscale analysis is applied, we can ex-
tract a histogram{ht

i}i=0,..,L−1 which determines the dis-
tribution of the orientations ofI at the scalet. In this case,
the normalization of the values within a histogram is per-
formed with respect to the initial addition, and not with re-
spect to the addition at that scale. In order to compare the
histograms of two images, the scale must be first adjusted.

4.1 Gaussian Multiscale Analysis

As said before, a multiscale analysis generates, for a given
image, a series of images which show the evolution of the
input signal when a certain process is applied. We will use
a Gaussian filter, whose properties are described in [3] and
[4]. In one dimension, we use the following Gaussian ker-
nel, where the scalet is related to the standard deviationσ
according to the expression2t = σ2:

Kt(x) =
1√
4πt

e−
x2
4t (9)

Tt(f)(x) =
∫

<

1√
4πt

e−
(x−y)2

4t f(y)dy (10)

Afterwards, we quantize it as follows:

(Kt)n =
1√
4πt

e−
n2
4t (11)

(x ∗Kt)m =
∞∑

n=−∞
xn

1√
4πt

e−
(m−n)2

4t (12)
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At this point, it is important to consider the relationship
between the Gaussian filtering and the heat equation, given
by ∂u/∂t = ∂2u/∂x2, whereu(t, x) is the solution of the
equation. Given a signalf , the result of convolvingf with
the Gaussian filterKt is equivalent to the solution of the
heat equation usingf as the initial datau(t, s) = Kt∗f(x).

Considering this relationship, a discrete version of the
heat equation can be used to accelerate the approximation
of the Gaussian filtering (see [1] for more details), which
results in a recursive scheme in three steps for each direc-
tion, as shown below, whereI0 is the original image:

I
n+ 1

3
j = In

j + vI
n+ 1

3
j−1 ∀j ∈ Z

I
n+ 2

3
j = I

n+ 1
3

j + vI
n+ 2

3
j+1 ∀j ∈ Z

In+1
j = v

λI
n+ 2

3
j ∀j ∈ Z

(13)

This process will be performed by rows and by columns
in order to obtain a discrete expression for a two-
dimensional Gaussian filtering. Making use of the features
of the Gaussian kernels, the result of applying a Gaussian
filter with an initial scalet can be used to obtain a Gaus-
sian filtering of the initial image for a different scale with-
out needing to start again from the input. We will discretize
the scale consideringσn = nσ0 for a givenσ0. Taking into
account the relationσ2 = 2t, the step size∆t to go from
σn to σn+1 is given by:

∆t =
((n + 1)σ0)

2

2
− (nσ0)

2

2
=

(
n +

1
2

)
(σ0)

2 (14)

If we useniter iterations of the recursive scheme in (13)
to computeIσn+1 from Iσn , the discretization scheme for
the heat equation is given by:

δn+1
t =

(
n + 1

2

)
(σ0)

2

niter
(15)

4.2 Scale Estimation

We must take into account that, for a certain texture, the use
of different resolutions forces us to apply Gaussian func-
tions with different standard deviations, thus requiring an
adaptation stage. To do that, we first extract the evolution
of the addition of the squares of the gradients at different
scales, and then we use these factors to compare the tex-
tures. Even if the quantitative distribution of the orienta-
tions may be alike for different textures, the spatial distribu-
tion will cause a divergence in the evolution and interaction,
so the factors will differ.

One of the properties of the Gaussian filtering is the re-
lationship between the resolution of two images and the ef-
fects of this kind of filters. In fact, the result of applying a

Gaussian filter with standard deviationσ to an image with
resolution factork is equivalent to applying a Gaussian fil-
ter with standard deviationkσ to the same image acquired
with a resolution factorkx.

Lemma 1 Let I0(x, y), I ′0(x, y) be such that there exists a
constantk satisfying thatI ′0(x, y) = I0(kx, ky) ∀(x, y) ∈
Ω, thenI ′t(x, y) = Ik2t(kx, ky).

Proof. The result follows from the uniqueness of the solu-
tion of the heat equation taking into account that the func-
tion Ik2t(kx, ky) is a solution of the heat equation for the
initial datumI ′0(x, y).

Given two textures,I0 andI ′0, we will estimate the scale
factork using the normalized evolution of the norm of the
gradient, that is, we will use:

φ(I0, Ω, t) =

√∫
Ω

|5It|2
√∫

Ω

|5I0 |2
(16)

It is well known (see for instance [3]) that
φ(I0,Ω, t) is a decreasing function with respect tot
andLimt→∞φ(I0, Ω, t) = 0. On the other hand, from the
previous lemma, we deduce that ifI ′0(x, y) = I0(kx, ky)
∀(x, y) ∈ Ω then:

φ(I0, Ω, t) = φ(I ′0, kΩ, k2t) = φ(I ′0,Ω, k2t) (17)

So in order to estimate a scale factork between two tex-
turesI0 andI ′0, we will compare the functionsφ(I0, Ω, t)
and φ(I ′0,Ω, t). Let r1

n = φ(I0, Ω, (σn)2 /2) and r2
n =

φ(I ′0,Ω, (σn)2 /2) be the ratios obtained for two textures
at the scaleσn = nσ0, the best adjusting coefficientk to fit
the series ofr2

n to that ofr1
n, both consisting ofN terms,

can be obtained as follows: First, we fit a value0 < h < 1
and we interpolate the values in the seriesr1

n andr2
n to ob-

tain two new seriesσ1
n andσ2

n which estimate the scales for
which the ratios(1, 1−h, 1−2h, 1−3h, ..., 1− (N −1)h)
are obtained. In other words, we estimate the scale where
φ(I, Ω,

(
σ1

n

)2
/2) = 1 − nh.We point out that ifnh < 1,

σ1
n andσ2

n are well-defined becauseφ(I,Ω, t) is a decreas-
ing function with respect tot andLimt→∞φ(I0, Ω, t) = 0.
With these values, we minimize the following error to ob-
tain the scale factork:

e(k) =
1
N

N−1∑

i=0

(
σ1

i − kσ2
i

)2
(18)

de(k)
dk = 0 =⇒ k =

∑N−1
i=0 (σ1

i σ2
i )∑N−1

i=0 (σ2
i )

2 (19)
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Figure 6: Comparison of two similar textures at different
scales

4.3 Multiscale Texture Orientation His-
togram Comparison

We can study how the energy obtained when comparing the
orientation histograms evolves as we apply a Gaussian fil-
tering to the textures. We use the adjusting factork, as in
(19), to relate the scales to be compared. Finally, we obtain
the energies for the comparison of the histograms atN dif-
ferent scales, given by (20), wheren = {0, .., N − 1} and
σN is the minimum ofσ1

N andkσ2
N .

σn = n
N σN and σ′n = nk

N σN (20)

Figure 6 shows the results of comparing two images of
the database corresponding to similar textures, acquired at
different distances. As observed, not only the initial en-
ergy is low, but also the subsequent energies, obtained when
comparing the images at the corresponding scales, decrease
when we increase the scale. On the other hand, Fig. 7
shows the comparison of two images of different textures
and the energies, far from decreasing, increase from the ini-
tial value.

4.4 Ratio Comparison in Natural Textures

We have extracted the evolution of the square of the gradient
across the image for all the textures in the second database,
in which different scenes have been acquired at different
distances. With these values, we have extracted a ratio for
every comparison of two pictures in the database. Instead
of observing a great variability in the ratios according to
the different natures and distances, they are very close to
1 in most of the cases. The fact that certain particular ele-
ments appear when we approach them, while other global

Figure 7: Comparison of two different textures at different
scales

elements disappear, thus generating new gradients while
other ones are eliminated, makes the total addition similar,
and the information, in terms of changes present in the im-
age, is approximately constant. In fact, the mean ratio for
the comparison of two textures, considering in each case
the ratio which is lower than 1, is 0.91975, with standard
deviation 0.06191. In artificial textures, a change in the res-
olution produces a change in the evolution of the addition of
the squares of the gradients and no additional information is
added, thus generating more variable ratios.

5 Conclusion

In this work, we have presented a new approach to texture
classification and a study on multiscale analysis of natural
textures. By using the structure tensor, we have obtained
an estimation of the gradient in every point of the textures.
The extraction of orientation histograms to describe the dis-
tribution of the orientations across a textured region permits
us to perform an initial clustering of the textures according
to the quantitative and relative distribution of the different
orientations.

The comparison of the Fourier coefficients and certain
normalization processes which have been included allow
a satisfactory classification in many cases, including size
and rotational invariance. However, due to the ambiguities
that are generated by the non-injectivity of the generation
of these histograms, a further study has been carried out,
by comparing the evolution of the histograms at different
scales.

This multiscale analysis of the histograms has produced
quite satisfactory results, since the visual similarity or dif-
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ference between two textures is much more reliably de-
tected by the evolution of the energies resulting when com-
paring the histograms at different scales, which have been
previously adjusted. We have extracted the scale factor
which must be used when comparing two textures to per-
form the comparison appropriately. We have observed how
this ratio is not far from 1 when natural images are con-
sidered, since the information contained in them changes
qualitatively, but not so much quantitatively.

The numerical results obtained in the tests which have
been implemented confirm the usefulness of the multiple
comparison of the images, since they endow us with a much
more robust discrimination criterion. At the same time, the
tests on natural images show the changes in the information
contained in the different views of a scene.
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Abstract

In this paper, we present a brief description of a master the-
sis done by Agustı́n Salgado in the computer science depart-
ment of Las Palmas University. The master thesis deals with
the problem of inclusion of3 − D virtual objects in a real
video sequence. We do not introduce any new real relevant
contribution in the field, we focus our attention in the hole
problem and we try to provide a solution for the different
tasks we have to deal with. In particular, we study tech-
niques for characteristic point extraction, tracking, multi-
ple camera calibration, synchronization of real and virtual
cameras and the rendering of virtual objects in the real
video sequence. Finally, we present the experimental re-
sults obtained. In particular, we insert some3 −D virtual
objects in a real video sequence and we show the result ob-
tained and the problems we have noticed.

1. Introduction
The digital image technology has experimented an impor-
tant increase for the last years, mainly, due to the increase
of computers performance and the digital video. This tech-
nology allows the combination of synthetic objects and real
scenes. We can add virtual objects to real video sequences
in such a manner as to appear part of the 3D world. This
technology can be applied in many fields, like movies or
advertisement. This is the context of the master thesis we
present here.

In this work, we use a real video sequence recorded with
a video camera which has been moved thought a 3D scene.
We want to include one or various virtual 3D objects. After
that, a new video sequence will be created with the original
sequence and the 3D objects. The final video sequence will
be equivalent that the virtual objects would have been in the
scene when the video sequence was recorded.

The organisation of the paper is as follows: In section 2,
we introduce the Harris corner detector technique that we
use to extract characteristic points in an image. In section 3,
we study the problem of tracking the characteristic points,
obtained in each image by the Harris detector, across the
video sequence. In section 4, we present an overview of

multiple camera calibration techniques. In section 5, we
study the render process to generate new video sequences
from the inclusion of virtual 3D objects in a real video se-
quence. In section 6, we present a video processing soft-
ware for combining real and virtual scenes. Finally, in sec-
tion 7 and 8, we present the experimental results and the
main conclusions of the paper.

2. Harris corner detector
An image contains information about a scene. However,
only a few of this information let’s us to understand the
scene. We will try to extract that information that help us
to know the camera movement. A corner is a kind of infor-
mation it presents in many images and it is useful for the
camera calibration.

In this section, we focus in the Harris corner detector al-
gorithm develop by AMI group. This corner detector has
two important features, it is very fast and the corners in-
formation is precise. This implementation can estimate the
corner position in subpixel precision by interpolating the
Harris values and computing the maxima of some interpo-
lated function.

We tested the Harris detector on real images. The num-
ber of corners detected depends directly of the three param-
eters of Harris detector. The behaviour of this corner detec-
tor is determined by three parameters, which are described
as follows:

• Harris radio. It shows the minimum distance (in pix-
els) allowed between two corners. When the detection
process finishes, the best corners are chosen by spacial
location.

• Sigma. It shows the standard deviation of the Gaus-
sian. It is used to balance the derivates values around a
pixel.

• Threshold. It is the Harris value threshold used to
choose the pixels which are corners. It affects directly
the number of corners detected.

When we select the value of the Harris detector param-
eters, we must be a deal, between the number of corners
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detected and the total computational time. Restricted val-
ues reduce the computational time. If the number of cor-
ners is high, it will affect to the total computational time of
the whole video creation process. The experiment results
have shown that the corner method has good detection and
excellent location performance.

3. Tracking sequences of correspond-
ing singular points across the video
sequence

In this section, we describe the tracking process. This pro-
cess computes automatically sequences of corresponding
singular points across the video sequence. The path of a
3D point is a list of projection points in following frames,
where that 3D point is shown.

3.1. Succession criterias
The tracking computes sequences of corresponding singular
points across the video sequence. The corners detected are
local information in each frame. So, we must try to relation
the corners in following frames. The tracking process needs
some criterias to know when two corners are in correspon-
dence. We define two criterias: Harris and Correlation test.
These criterias are the tracking ”intelligence”.

The Harris detector gives us for each corner, its location
(x, y) in subpixel precision and its Harris value. If two cor-
ners, placed in following frames, correspond to the same
3D point they will have similar Harris values. The Harris
test compares the Harris values of two corners. The sec-
ond test, correlation test, computes the correlation between
two windows centred in two corners. These tests are passed
when the comparation and correlation results are less than a
threshold.

3.2. Tracking process description
The tracking is an iterative process. Its aim is to compute
the path of the singular points across a video sequence. This
process is divided into the following steps:

Step 1:
In the first step we extract the singular points from all

frames of the video sequence. We use the Harris detector
described in the previous section.

Step 2:
It is a simplification of the tracking process. We have

only two frames and we want to know the correspondence
of a set projections in these frames. If we want to extrap-
olate this solution to the rest of the sequence, we consider

Corre Har 15% 30% 50%
5% 363.825 332.989 311.059
10% 345.129 300.762 266.779
20% 330.398 275.143 230.590

Table 1: Number of sequences obtained.

in the next iteration, the second frame first one, and the fol-
lowing (to that second frame) second one.

Now, for each corner, we try to find its predecessor point
in the previous frame.

1. Looking for predecessor.

Fixed a singular point, we look for its predecessor
point into a windowNxN , centred in the corner loca-
tion, in the previous frame. We will go to the next step,
only if we find a candidate predecessor point. Other-
wise, we consider this singular point the beginning of
a new sequence.

2. Apply the Harris and correlation test.

In this step, we apply the succession criterias. If the
two tests are passed, we consider these singular points
in correspondence. When one of these tests is not
passed, we came back the previous step and the search
continues.

3.3. Tracking process experimental results
In this part, we examine the performance of the tracking
process. We tested the tracking process on a real video se-
quence of 171 frames, where an average 1200 corners per
frame was detected. This process was tested and compared
on their basis tests:Harris andCorrelation. In figure 1, we
can see the graphical results obtained. In table 1, we can see
the results obtained when we change the thresholds values
for the Harris and Correlation test.

The Harris test avoids to apply the Correlation to non-
correspondence corners. So, it reduces the compute time.
However, the thresholds must not be restricted, because the
sequences length will be short. Short sequences are not use-
ful for the camera calibration.

With the same way it happened in the previous sec-
tion, we have to get a deal between restricted and tolerated
threshold values, to obtain good results in short time.

4. Camera Calibration
The problem of multiple camera calibration consists in re-
covering the camera positions and orientations with respect
to the world coordinate system, using as input data tokens,
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Figure 1: Graphical results of the table 1. It shows the num-
bers of sequences obtained when we modify the Harris and
Correlation thresholds.

Figure 2: Motion parameters derived from point matches.

such as pixels or lines, in correspondence in different im-
ages. Figure 2 shows this scenario for a system with three
cameras.

The specification of the i-th camera position is the 3D
point C

(world)
i , where the superscript is the reference sys-

tem in which the magnitude is expressed. The orientation
specification is a rotation matrixR(world)

i or any equiva-
lent representation, such as quaternions or Euler angles.

When the image tokens in correspondence are projec-
tions of a set of 3D points{Mj}j=1..N whereN is the
number of points, it is possible to reconstruct each 3D point
expressed in the world coordinate system by simply esti-
mating the intersection point of the line set:

{
ri ≡ C

(world)
i + λ

−−−−−−−−−−−−−−−→
C

(world)
i R

(world)
i m

(i)
ij

}

i=1..N

whereC
(world)
i are the coordinates of the optical center in

the world reference system, andm
(i)
ij are the coordinates of

the projection ofMj in the normalised reference system for
the i-th camera. A reference system is said to be normalised
when the optical center is in the origin, the focal distance is
1 and the pixel is a square of size1. We will assume that
the intrinsic parameters of the cameras are known, which
allows us to normalise the reference system.

In order to estimate the intersection 3D point of the line
set it is necessary to know the position of the optical center
and the rotation matrix for each one of the cameras. The
computation of these parameters solves the problem of the
multiple camera calibration. After estimating these param-
eters, we can evaluate the accuracy of the solution by pro-
jecting the reconstructed 3D points in each camera, and the
best solution for the calibration problem is the one that min-
imises the energy function:

f(C(world)
0 , C

(world)
1 , ..., R

(world)
0 , R

(world)
1 ...)

=
∑

i,j

∥∥∥m
′(i)
ij −m

(i)
ij

∥∥∥
2

wherem
′(i)
ij is the projection of the reconstructed point

Mj in the i-th camera.
To study the problem of camera calibration, we will use

the classical ”pinhole model” which assumes the simplest
projective model for the camera image acquisition. To cal-
ibrate the camera means to find out the parameters which
determine the way that the projection works. There are two
types of parameters: intrinsic and extrinsic parameters. The
extrinsic parameters determine the3 − D location of the
camera in the scene with respect to somea priori fixed ref-
erence system. They are a translation vector and rotation
matrix. The intrinsic parameters do not depend on the cam-
era location in the3 −D scene. They are dependent of the
camera, and are the focal length, the pixel size and the focus
position. A camera is defined by the projection matrix. This
matrix determines the projection from the 3D space (world
points) into 2D space (projection plane).

The calibration algorithm returns one projection matrix
for each frame. We use this information to position the cam-
era into the scene.

5. Inclusion a virtual object in the
video sequence, render and cre-
ation of a new video sequence

In this section, we describe the inclusion of virtual3 − D
objects process into a scene and the making of a new video
sequence. We have two types of cameras, a real and other
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artificial, designed for solving problems completely differ-
ent. Our aim is the projections of both cameras will be iden-
tical. If you get to fit the projections, the final video will be
equivalent that the virtual objects would have been in the
scene when the video sequence was recorded.

5.1. Inclusion a virtual object in the video se-
quence

To simule the inclusion a 3D virtual object in a real video
sequence, we make a 3D world and the3−D objects are in-
cluded into it. In our virtual 3D world, the user can modify
the3 − D objects, as their location as the transformations
to apply them. To complete our 3D world we put in the
background a frame (extracted from the video sequence).

To make the 3D world we use a graphical library, such
as Open Inventor. Open Inventor is a library of objects and
methods used to create interactive 3D graphics applications.

5.2. Render process
This process is automatically computed by Open Inventor
render engine, so we avoid the complexity of this process.

5.3. Creation the new video sequence process
When the3D objects are placed into the scene, we create
the new video sequence with the virtual objects inserted.
To keep the sense the objects are in the real-world scene,
we have to put in the background the frame that is watched
from the camera location. This process is divided into the
following steps, which are executed for each frame:

1. We create a new frame, which size is the same that the
original. We copy the original frame on a new one.

2. The camera is positioned in the scene, with the in-
formation extracted from the projection matrix of this
frame. After that, Inventor renders our scene (only ob-
jects) and its output is stored in a buffer.

3. Finally, we join the frame (background) and the render
output. We overwrite on the frame those pixels that
correspond with the objects projection.

5.4. Experimental results
When the virtual objects are inserted in the scene, we as-
sume they stay static. This master thesis does not consider
dynamic objects. To keep the static objects sense, the pro-
jections of the real and Inventor cameras must be identi-
cal. However, the real and Inventor cameras have been de-
signed for solving problems completely different and they
have some difference.

In one hand, the real camera has intrinsic and extrinsic
parameters. The extrinsic parameters determine the3 − D

Camera (X1, Y1) (X2, Y2)
1 P2D (163.50, 888.07) (293.78, 987.6)

PIV 2D (163.25, 888.07) (293.59, 987.6)
Dif (0.25, 0.0) (0.19, 0.0)

50 P2D (336.63, 889.75) (469.28, 988.31)
PIV 2D (336.47, 889.75) (469.18, 988.31)
Dif (0.16, 0.0) (0.10, 0.0)

100 P2D (551.16, 889.34) (686.21, 983.86)
PIV 2D (551.10, 889.34) (686.22, 983.86)
Dif (0.06, 0.0) (-0.01, 0.0)

Table 2: Projection comparative of a 3D point in the real
and Inventor cameras.

location of the camera in the scene with respect to some
a priori fixed reference system. The intrinsic parameters
do not depend on the camera location in the3 − D scene.
They are dependent of the camera, and are the focal length,
the pixel size and the focus position. In the other hand, the
Inventor camera projects objects in a 3D virtual scene. So,
this camera has extrinsic parameters but it has not intrinsic
parameters (or it has ideal intrinsic parameters).

To patch the difference between the intrinsic parameters
of both cameras, we assume in the real camera that the focus
projection is in the center of the projection plane and the
pixel is square (the same width and height). In table 2, we
can see the experimental results obtained, when we placed
two spheres in the corner location in the real-world.

6. AMICam
One of this master thesis aims was the design and building
of an application. This application is calledAMICam. AMI-
Cam is an application that offers to users tools for inclusion
of 3−D objects in a video sequence. The tools are easy to
use for any user.

Our application is divided in two parts: the interface and
compute programs. The interface manages and stores the
information the user inserts in the system. The compute
programs are in a lower level, and they computes the most
important process of this master thesis (tracking, camera
calibration and render). An AMICam snapshot is shown
in figure 3.

7. Experimental results. Inclusion of
virtual objects in a real video se-
quence

One of the main applications of video sequence calibration
is the inclusion of virtual3 −D objects in a real video se-
quence. We tested our methods in a real video sequence of
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Figure 3: Main window of AMICam.

120 frames where we included eight artificial objects. The
video sequence was taken with a digital camera. The cam-
era zoom was constant and the camera was placed in the end
of the office.

We have used AMICam to create the new video sequence
with the virtual3−D objects inserted. We placed in the of-
fice some white sheets with black squares printed on them.
The black squares corners are easily detected by Harris cor-
ner detector. The points sequences detected by tracking
process were long (average of 70 points per sequence, 120
frames). When the tracking finished, we selected the best
sequences for the calibration process.

We have inserted eight virtual3−D objects, in different
planes and depth. In table 3 and 4, we present six frames of
the real video sequence (left column) and the same frames
with the inclusion of the virtual objects using the calibration
parameters obtained (right column).

The final results are very well, the objects stay in their
location. However, it exists an error between half and one
pixel. This results could be improved if we use a nonlinear
algorithm, like Levenberg-Maquard.

8. Conclusions

In this paper, we present a master thesis oriented to inclu-
sion 3 − D object in a video sequence. In this field, the
techniques must be, efficiency, robustness, precise and flex-
ibility. We have focus on reach these aims: (1) development
and implementation of methods for inclusion3−D objects
in a video sequence and (2) development of a user interface
that manages those methods (AMICam).

The final results, how we could see, were excellent and
the range of application of the proposed methods are very
wide.
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Table 3: On the left, four frames (1, 30, 51 and 91) of a real video sequence
and on the right the same frames with the inclusion of the virtual objects (a
red bottle, a mug, a teapot and a plant).
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Table 4: On the left, two frames (101 and 120) of a real video sequence and
on the right the same frames with the inclusion of the virtual objects (a red
bottle, a mug, a teapot and a plant).
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