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ABSTRACT

Bayesian methods rely on image priors that encapsulate prior image
knowledge and avoid the ill-posedness of image restoration prob-
lems. In this paper a new prior based on the l1 norm of vertical
and horizontal first order differences of image pixel values is intro-
duced and its parameters are estimated . The results obtained from
its application studied and compared with the ones provided by other
methods in the literature.

1. INTRODUCTION

In many application areas such as remote sensing, medical imaging,
astrophysics and digital photography, the acquired images are de-
graded and therefore need to be restored. Image degradations may
be due to the finite resolution of the acquisition instruments, limited
exposure times, adverse environmental conditions, or the motion be-
tween the camera and the scene.

A standard formulation of the image degradation model is given
in lexicographical form by [1]

y = Hx + n , (1)

where the P × 1 vectors x, y, and n represent, respectively, the
original image, the available noisy and blurred image, and the white
Gaussian noise with independent elements of variance σ2

n = β−1,
and H represents the known blurring matrix. The images are as-
sumed to be of sizem×n, with P = m×n. The restoration process
aims to find an estimate of x from y and H and some knowledge
about n and possibly x.

A number of approaches to the restoration problem have been
developed (see, for example [1, 2, 3] and the references therein).
Bayesian image restoration techniques are based on the study of
the posterior probability distribution of the unknown image x given
the available data. In the Bayesian framework a prior image model
on x is introduced, whose aim is to encapsulate our prior image
knowledge and consequently to avoid the ill-posedness of the image
restoration problem. The selection of this Bayesian prior model
is a critical issue. Prior models imposing image smoothness, like
the Continuous Auto-Regression (CAR) or the Simultaneous Auto-
Regression (SAR) image models (see [4, 3]), are known to over-
smooth edge regions. More sophisticated priors have been proposed
based on wavelets [5, 6, 7], Compound Gauss Markov Random
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Fields (CGMRF) [8, 9], Total-Variation (TV) [10, 11, 12, 13], or
Fields of Experts (FoE) [14, 15].

In this paper we present a new prior based on the l1 norm of
the horizontal and vertical differences between image pixel values.
For this model the image and hyperparameter values are estimated
within the Bayesian framework, utilizing variational distribution ap-
proximations. Variational approximations not only provide point es-
timates, but also probability distribution estimates, thus allowing to
avoid local minima (See [16, 17]) and to properly take into account
the available prior knowledge on hyperparameter values [18].

The paper is organized as follows. In section 2 we discuss the
Bayesian model and in section 3 the Bayesian inference we use. Ex-
perimental results are described in section 4. Finally, section 5 con-
cludes the paper.

2. BAYESIAN MODELING

Our Bayesian inference on the unknown image x and hyperparame-
ters given the observed image y will be based on the posterior prob-
ability distribution

p(Θ,x|y) =
p(Θ,x,y)

p(y)
, (2)

where Θ represents the set of model parameters. The approximation
of this posterior probability distribution, that can not be expressed
in closed form, by applying variational methods is explained in sec-
tion 3. Let us now study the joint probability distribution p(Θ,x,y)
that can be expressed, within the Hierarchical Bayesian paradigm
(see [19]), in terms of the hyperprior model p(Θ), the prior model
p(x|Θ) and the degradation model p(y|x,Θ) as

p(Θ,x,y) = p(Θ)p(x|Θ)p(y|x,Θ) . (3)

2.1. Hyperprior Model

Our prior knowledge on the different model parameters θ ∈ Θ has
been modeled with the help of gamma hyperpriors

p(θ) = Γ(θ|aoθ, boθ) , ∀ θ ∈ Θ. (4)

The gamma distribution has the form

Γ(θ | u, v) =
vu

Γ(u)
θu−1 exp[−vθ], (5)

where θ > 0, u > 0 and v > 0 with mean and variance

E[θ] = u/v, var[θ] = u/v2 (6)
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(u and v are referred to as scale and precision parameters, respec-
tively).

2.2. Prior Model

The prior model we use is

p(x|αh, αv) =
1

Z(αh, αv)
×

exp

{
−

P∑
i=1

[
αh ‖ ∆h

i (x) ‖1 +αv ‖ ∆v
i (x) ‖1

]}
, (7)

where ∆h
i (x) and ∆v

i (x) represent the horizontal and vertical first
order differences at pixel i respectively, αh and αh are model param-
eters, and Z(αh, αv) is the partition function that we approximate as

Z(αh, αv) ∝ (αhαv)−P . (8)

The value Z(αh, αv) = (αhαv)−P corresponds to the approxima-
tion when p(x|αh, αv) is separately integrable in every coordinate.
This approximation of the partition function is similar in form to the
one defined in [11] for the TV prior. An obvious special case of
this model, that has been considered in the experimental section, is
obtained when αh = αv = α.

2.3. Degradation Model

Given the degradation model of Eq. (1), the distribution of the ob-
served image y given x is

p(y|x, β) ∝ β
P
2 exp

[
−1

2
β ‖ y −Hx ‖2

]
. (9)

Although the estimation of the parameter β could have been easily
incorporated into our method, we assume here that the noise variance
is known or estimated in advance (see for instance [19]).

Our set of model parameters is then

Θ = (αh, αv) , (10)

and the joint distribution is given by

p(Θ,x,y) = p(αh)p(αv)p(x|αh, αv)p(y|x) . (11)

3. BAYESIAN INFERENCE

Since p(Θ,x|y) in Eq. (2) can not be found in closed form, be-
cause p(y) can not be calculated analytically, we apply variational
methods to approximate this distribution by the distribution q(Θ,x)
minimizing the Kullback-Leibler (KL) divergence, that is given by
[20, 21]

CKL(q(Θ,x)||p(Θ,x|y)) =∫
q(Θ,x) log

(
q(Θ,x)

p(Θ,x|y)

)
dΘdx

=

∫
q(Θ,x) log

(
q(Θ,x)

p(Θ,x,y)

)
dΘdx + const

= M(q(Θ,x)) + const , (12)

which is always non negative and equal to zero only when q(Θ,x) =
p(Θ,x|y).

Due to the form of the prior proposed in Eq. (7) the above inte-
gral is difficult to evaluate, but we can however majorize the l1 prior

by a function which renders the integral easier to calculate. The ma-
jorization to be applied here to our prior model highly resembles the
one applied in [13] to the TV prior.

Our prior can be rewritten in the more convenient form

p(x|αh, αv) ∝ (αhαv)P×

exp

{
−

P∑
i=1

[
αh
√

(∆h
i (x))2 + αv

√
(∆v

i (x))2

]}
. (13)

Let us consider the following inequality, also used in [11], which
states that, for any w ≥ 0 and z > 0

√
w ≤ w + z

2
√
z
. (14)

Let us define, for x, uh and uv , where uh and uv are any P-
dimensional vectors uh ∈ (R+)P , uv ∈ (R+)P with components
uhi and uvi , i = 1, . . . , P , the following functional

M(αh, αv,x,uh,uv) = (αhαv)P×

exp

{
−
∑P
i=1

[
αh

(∆hi (x))2+uhi

2
√

uhi

+αv
(∆vi (x))2+uvi

2
√

uvi

]}
. (15)

Now, using the inequality in Eq. (14) and comparing Eq. (15) with
Eq. (13), we obtain p(x|αh, αv) ≥ c ·M(αh, αv,x,uh,uv). As
will be shown later, vectors uh and uv are quantities that need to
be computed and have an intuitive interpretation related to the un-
known image x. This leads to the following lower bound for the
joint probability distribution

p(Θ,x,y) ≥ c · p(αh)p(αv)M(αh, αv,x,uh,uv)p(y|x)

= F(Θ,x,y,uh,uv) , (16)

Hence, by defining

M̃(q(Θ,x),uh,uv)=

∫
q(Θ,x) log

(
q(Θ,x)

F(Θ,x,y,uh,uv)

)
dΘdx,

(17)
and using Eq. (16), we obtain forM(q(Θ,x)), defined in Eq. (12),
what follows

M(q(Θ,x)) ≤ min
{uh,uv}

M̃(q(Θ,x),uh,uv) . (18)

Therefore, by finding a sequence of distributions {qk(Θ,x)}
that monotonically decrease M̃(q(Θ,x),uh,uv) for fixed uh and
uv , a sequence of an ever decreasing upper bound ofCKL(q(Θ,x)||
p(Θ,x|y)) is also obtained due to Eq. (12). However, also mini-
mizing M̃(q(Θ,x),uh,uv) with respect to uh and uv , generates
vector sequences {uhk} and {uvk} that tighten the upper-bound for
each distribution qk(Θ,x). Therefore, the sequence {qk(Θ,x)} is
coupled with the sequences {uhk} and {uvk}. We use the following
iterative algorithm to find such sequences.

Algorithm 1 Posterior image distribution and parameter estima-
tion using
q(Θ,x) = q(Θ)q(x).
Given q1(Θ), an initial estimate of q(Θ), and uh

1
, uv1 ∈ (R+)P ,

for k = 1, 2, . . . until a stopping criterion is met:
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1. Find

qk(x) = arg min
q(x)

∫
q(x)qk(Θ)

×log

(
q(x)qk(Θ)

F(Θ,x,y,uhk,uvk)

)
dxdΘ (19)

2. Find

{uhk+1
,uvk+1} = arg min

{uh,uv}

∫
qk(x)qk(Θ)

× log

(
qk(x)qk(Θ)

F(Θ,x,y,uh,uv)

)
dxdΘ (20)

3. Find

qk+1(Θ) = arg min
q(Θ)

∫
qk(x)q(Θ)

×log

(
qk(x)q(Θ)

F(Θ,x,y,uhk+1,uvk+1)

)
dxdΘ (21)

Set q(Θ) = limk→∞ qk(Θ), q(x) = limk→∞ qk(x).

To calculate qk(x), we observe that differentiating the integral
on the right-hand side of Eq. (19) with respect to q(x) and setting it
equal to zero, we obtain

qk(x) = N
(
x | Eqk(x)[x], covqk(x)[x]

)
, (22)

with

cov−1

qk(x)
[x] = βHtH

+
(
Eqk(Θ)[α

h]∆t
hW(uh

k
)∆h+Eqk(Θ)[α

v]∆t
vW(uvk)∆v

)
(23)

and
Eqk(x)[x] = β covqk(x)[x]Hty . (24)

In Eq. (23) ∆h and ∆v represent p × p convolution matrices asso-
ciated with the first order horizontal and vertical differences, respec-
tively, and, ∀u ∈ (R+)P , W(u) is the diagonal P × P matrix with
entries W(u)ii = 1√

ui
for i = 1, . . . , P . The matrices W(uh

k
)

and W(uvk) can be interpreted as spatial adaptivity matrices since
they control the amount of horizontal and vertical smoothing at each
pixel location depending on the strength of the intensity variation at
that pixel, as expressed by the horizontal and vertical intensity gradi-
ents, respectively. That is, for pixels with high spatial activity around
the horizontal direction, the corresponding entries of W (uh

k
) are

very small, which means that no horizontal smoothness is enforced,
while for pixels in a flat region the corresponding entries ofW (uh

k
)

are very large, which means that smoothness is enforced; the same
stands for the vertical direction.

To calculate {uhk+1
,uvk+1} we have from Eq. (20) that

uh
k+1

= arg min
u

P∑
i=1

Eqk(x)

[
(∆h

i (x))2
]

+ ui
√

ui
(25)

and

uvk+1 = arg min
u

P∑
i=1

Eqk(x)

[
(∆v

i (x))2
]

+ ui
√

ui
, (26)

and consequently

uh
k+1

i = Eqk(x)

[
∆h
i (x))2

]
, (27)

and
uvk+1

i = Eqk(x)

[
∆v
i (x))2] , (28)

for i = 1, . . . , P .
It is clear from Eqs. (27) and (28) that vectors uh

k+1
and uvk+1

are respectively functions of the spatial first order horizontal and
vertical differences of the unknown image x under the distribution
qk(x) and represent the local spatial activity of x.

Finally, differentiating the right hand side of Eq. (21) with re-
spect to q(Θ) and setting it equal to zero we find that

qk+1(Θ) ∝ exp
{
Eqk(x)

[
ln F(Θ,x,y,uh

k+1
,uvk+1)

]}
.

(29)
Thus we obtain qk+1(Θ) = qk+1(αh)qk+1(αv), where qk+1(αh)
and qk+1(αv) are respectively the gamma distributions

qk+1(αh) = Γ

(
αh
∣∣P + aoαh ,

∑
i

√
uhi

k+1
+ boαh

)
(30)

and

qk+1(αv) = Γ

(
αv
∣∣P + aoαv ,

∑
i

√
uvi

k+1 + boαv

)
. (31)

The following point estimates for αh

Eqk+1(αh)

[
αh
]

=
P + aoαh∑

i

√
uhi

k+1
+ bo

αh

, (32)

and for αv

Eqk+1(αv) [αv] =
P + aoαv∑

i

√
uvi

k+1 + boαv
, (33)

can be utilized. It is possible to express the inverses of these point
estimates in the more meaningful way

1

Eqk+1(αh) [αh]
= γαh

1

αho
+ (1− γαh)

∑
i

√
uhi

k+1

P
(34)

and

1

Eqk+1(αv) [αv]
= γαv

1

αvo
+ (1− γαv )

∑
i

√
uvi

k+1

P
(35)

as convex linear combinations between the inverses of the given val-

ues αho =
a0
αh

b0
αh

and αvo =
a0αv

b0
αv

, and their corresponding ML esti-

mates. It is mentioned here that γhα and γvα take values into [0, 1),
and can be interpreted as the confidence on the given parameter val-
ues, and are given by

γαh =
aoαh

P + ao
αh

and γαv =
aoαv

P + aoαv
. (36)

In section 2.2 reference was made to the particularization of our
prior model corresponding to αh = αv = α. In this particular case
we would have qk+1(Θ) = qk+1(α), where

qk+1(α) = Γ

(
α
∣∣2P + aoα,

∑
i

(√
uhi

k+1
+
√

uvi
k+1

)
+ boα

)
,

(37)
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with the point estimate for α

1

Eqk+1(α) [α]
= γα

1

αo
+ (1− γα)

∑
i

(√
uhi

k+1
+
√

uvi
k+1

)
2P

,

(38)
with

αo =
a0
α

b0α
and γα =

aoα
2P + aoα

. (39)

Equation (24) can be solved iteratively utilizing the Conjugate
Gradient (CG) method without the need to explicitly obtain the
full covariance matrix of Eq. (23), but estimation of uh and uv in
Eqs (27) and (28) requires the evaluation of

Eqk(x)

[
∆h
i (x))2

]
= (∆h

i (Eqk(x) [x)]))2

+Eqk(x)

[
∆h
i (x−Eqk(x) [x)]))2

]
(40)

and

Eqk(x)

[
∆v
i (x))2] = (∆v

i (Eqk(x) [x)]))2

+Eqk(x)

[
∆v
i (x−Eqk(x) [x)]))2] . (41)

Exact evaluation of these expressions would require the evaluations
of the full covariance matrix, which constitutes a formidable prob-
lem, to be sorted here utilizing the same kind of approximation that
in [13]

covqk(x)[x] ≈ B−1 =
{
βHtH+(

Eqk(Θ)[α
h]z(uh

k
)∆t

h∆h+Eqk(Θ)[α
v]z(uvk)∆t

v∆v

)}−1

, (42)

with
z(u) =

1

P

∑
i

1√
ui
,∀u ∈ (R+)P . (43)

Now we have

Eqk(x)

[
∆h
i (x−Eqk(x) [x)]))2

]
≈ 1

P
tr(B−1∆t

h∆h) , (44)

and

Eqk(x)

[
∆v
i (x−Eqk(x) [x)]))2] ≈ 1

P
tr(B−1∆t

v∆v) . (45)

4. EXPERIMENTS

A number of experiments have been carried out in order to evaluate
the performance of the proposed Algorithm 1 (thereafter ALG1), and
its particularization for αh = αv = α (ALG2), compared with the
TV-based algorithm in [13] (TV) and the algorithm in [19] (SAR).
In [13] novel Bayesian variational algorithms were proposed that
favorably compare with other state of the art TV-based algorithms.
The algorithm in [19] models image distribution by a SAR model
and simultaneously estimates image, noise variance and SAR prior
hyperparameter.

The image set utilized in the experiments is shown at Fig. 1.
Motion blurring with a displacement of 9 pixels have been applied
to the original images and Gaussian noise of 20 dB, 30 dB and 40
dB added. Restoration quality has been numerically measured uti-
lizing the improvement in signal-to-noise ratio (ISNR), defined as
ISNR = 10 log10(‖ x− y ‖2 / ‖ x− x̂ ‖2), where x, y and x̂ are
the original, observed and reconstructed images respectively. We

have also included image quality measures utilizing the Structural
Similarity Index Measure (SSIM) defined in [22], whose maximal
value, corresponding to exactly equal images, is +1.

The proposed algorithms were initialized utilizing the observa-
tions and were ran until the criterion ‖xk − xk−1‖2/‖xk−1‖2 <
10−6 was satisfied, where xk denotes an image point estimate at the
k-th iteration step. The Gamma hyperprior parameter values aoθ and
boθ, ∀θ ∈ Θ (see Eq. (4)) were determined experimentally for each
image.

Table 1 shows a numeric comparison of the results obtained uti-
lizing the different methods and Fig. 2 details of the different restora-
tions of the 30 dB SNR observed image in Fig. 1a. Although dif-
ferences between figures of merit shown in table 1 are small, it is
claimed that the use of the l1 norm allows to obtain better results in
general, better if a different prior parameter for horizontal and ver-
tical differences is considered. In some image regions, like the one
shown in Fig. 2, the improvement is visually appreciable.

5. CONCLUSION

A new Bayesian method for the restoration of blurred and noisy im-
ages with a prior based on the l1 norm of horizontal and vertical dif-
ferences in images has been proposed. The new method compares
favorably to state of the art restoration methods in the literature.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. 100× 100 detail of (a) the original image in Fig. 1a ; (b) blurred image with SNR=30 dB; its restorations utilizing (c) SAR , (d) TV ,
(e) ALG1 and (f) ALG2 algorithms.
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