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ABSTRACT

Current approaches for uncertainty estimation in deep learning often produce too
confident results. Bayesian Neural Networks (BNNs) model uncertainty in the
space of weights, which is usually high-dimensional and limits the quality of
variational approximations. The more recent functional BNNs (fBNNs) address
this only partially because, although the prior is specified in the space of functions,
the posterior approximation is still defined in terms of stochastic weights. In this
work we propose to move uncertainty from the weights (which are deterministic)
to the activation function. Specifically, the activations are modelled with simple
1D Gaussian Processes (GP), for which a triangular kernel inspired by the ReLu
non-linearity is explored. Our experiments show that activation-level stochasticity
provides more reliable uncertainty estimates than BNN and fBNN, whereas it
performs competitively in standard prediction tasks. We also study the connection
with deep GPs, both theoretically and empirically. More precisely, we show that
activation-level uncertainty requires fewer inducing points and is better suited for
deep architectures.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved state-of-the-art performance in many different tasks,
such as speech recognition (Hinton et al., 2012), natural language processing (Mikolov et al., 2013)
or computer vision (Krizhevsky et al., 2012). In spite of their predictive power, DNNs are limited in
terms of uncertainty estimation. This has been a classical concern in the field (MacKay, 1992; Hinton
& Van Camp, 1993; Barber & Bishop, 1998), which has attracted a lot of attention in the last years
(Lakshminarayanan et al., 2017; Guo et al., 2017; Sun et al., 2019; Wenzel et al., 2020). Indeed, this
ability to “know what is not known” is essential for critical applications such as medical diagnosis
(Esteva et al., 2017; Mobiny et al., 2019) or autonomous driving (Kendall & Gal, 2017; Gal, 2016).

Bayesian Neural Networks (BNNs) address this problem through a Bayesian treatment of the network
weights1 (MacKay, 1992; Neal, 1995). This will be refered to as weight-space stochasticity. However,
dealing with uncertainty in weight space is challenging, since it contains many symmetries and is
highly dimensional (Wenzel et al., 2020; Sun et al., 2019; Snoek et al., 2019; Fort et al., 2019). Here
we focus on two specific limitations. First, it has been recently shown that BNNs with well-established
inference methods such as Bayes by Backprop (BBP) (Blundell et al., 2015) and MC-Dropout (Gal &
Ghahramani, 2016) underestimate the predictive uncertainty for instances located in-between two
clusters of training points (Foong et al., 2020; 2019; Yao et al., 2019). Second, the weight-space
prior does not allow BNNs to guide extrapolation to out-of-distribution (OOD) data (Sun et al., 2019;
Nguyen et al., 2015; Ren et al., 2019). Both aspects are illustrated graphically in Figure 3, more
details in Section 3.1.

∗Work developed mostly while visiting Cambridge University, UK.
1The bias term will be absorbed within the weights throughout the work.
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Figure 1: Graphical representation of the artificial neurons for closely related methods. The subscript
d and the superscript l refer to the d-th unit in the l-th layer, respectively. (a) In standard Neural
Networks (NN), both the weights and the activation function are deterministic. (b) In Bayesian
NNs, weights are stochastic and the activation is deterministic. (c) In auNN (this work), weights are
deterministic and the activation is stochastic. (d) Deep GPs do not have a linear projection through
weights, and the output is modelled directly with a GP defined on the Dl−1-dimensional input space.

As an alternative to standard BNNs, Functional Bayesian Neural Nets (fBNN) specify the prior and
perform inference directly in function space (Sun et al., 2019). This provides a mechanism to guide
the extrapolation in OOD data, e.g. predictions can be encouraged to revert to the prior in regions of
no observed data. However, the posterior stochastic process is still defined by a factorized Gaussian
on the network weights (i.e. as in BBP), see (Sun et al., 2019, Sect. 3.1). We will show that this
makes fBNN inherit the problem of underestimating the predictive uncertainty for in-between data.

In this work, we adopt a different approach by moving stochasticity from the weights to the activation
function, see Figure 1. This will be referred to as auNN (activation-level uncertainty for Neural
Networks). The activation functions are modelled with (one-dimensional) GP priors, for which a
triangular kernel inspired by the ReLu non-linearity (Nair & Hinton, 2010; Glorot et al., 2011) is used.
Since non-linearities are typically simple functions (e.g. ReLu, sigmoid, tanh), our GPs are sparsified
with few inducing points. The network weights are deterministic parameters which are estimated to
maximize the marginal likelihood of the model. The motivation behind auNN is to avoid inference in
the complex space of weights. We hypothesise that it could be enough to introduce stochasticity in
the activation functions that follow the linear projections to provide sensible uncertainty estimations.

We show that auNN obtains well-calibrated estimations for in-between data, and its prior allows to
guide the extrapolation to OOD data by reverting to the empirical mean. This will be visualized in
a simple 1D example (Figure 3 and Table 1). Moreover, auNN obtains competitive performance
in standard benchmarks, is scalable (datasets of up to ten millions training points are used), and
can be readily used for classification. The use of GPs for the activations establishes an interesting
connection with deep GPs (DGPs) (Damianou & Lawrence, 2013; Salimbeni & Deisenroth, 2017).
The main difference is the linear projection before the GP, recall Figure 1(c-d). This allows auNN
units to model simpler mappings between layers, which are defined along one direction of the input
space, similarly to neural networks. However, DGP units model more complex mappings defined
on the whole input space, see also Figure 2a. We will show that auNN units require fewer inducing
points and are better suited for deep architectures, achieving superior performance. Also, a thorough
discussion on additional related work will be provided in Section 4.

In summary, the main contributions of this paper are: (1) a new approach to model uncertainty
in DNNs, based on deterministic weights and simple stochastic non-linearities (in principle, not
necessarily modelled by GPs); (2) the specific use of non-parametric GPs as a prior, including the
triangular kernel inspired by the ReLu; (3) auNN addresses a well-known limitation of BNNs and
fBNNs (uncertainty underestimation for in-between data), can guide the extrapolation to OOD data
by reverting to the empirical mean, and is competitive in standard prediction tasks; (4) auNN units
require fewer inducing points and are better suited for deep architectures than DGP ones, achieving
superior performance.

2 PROBABILISTIC MODEL AND INFERENCE

Model specification. We focus on a supervised task (e.g. regression or classification) with training
data2 {xn,:,yn,:}Nn=1. The graphical model in Figure 2b will be useful throughout this section. We

2The output is represented as a vector since all the derivations apply for the multi-output case.
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DGP auNN
(a) (b) (c)

Figure 2: (a) Type of mappings modelled by DGP and auNN units (colours represent different
values). Whereas DGP units describe complex functions defined on the whole Dl−1 dimensional
input space, the linear projection through wl

d in auNN yields simpler functions defined on just one
direction. This is closer in spirit to NNs, requires fewer inducing points, and is better suited for deep
architectures. The inducing points are shown in black (for auNN, these correspond to (hyper)planes
in the input space before the projection). (b) Probabilistic graphical model for an auNN layer. Yellow
variables are to be estimated (light ones through point estimates and the dark one through a posterior
distribution). The box highlights the auxiliary variables (inducing points and their values). (c)
Graphical representation of the UCI gap splits. In red, a segment that crosses the gap joining two
training points from different components, which will be used in the experiments.

assume a model of L layers, each one with Dl units as in Figure 1c. Each activation is modelled
with a (1D) GP prior, i.e. f ld(a

l
d) ∼ GP(µl

d, k
l
d), with µl

d : R → R and kld : R × R → R. The GP
hyperparameters θl

d will be omitted for clarity (for the kernels used here, θl
d includes the amplitude

and the lengthscale). Assuming independence between units, each layer depends on the previous one
as:

p(Fl|Fl−1,Wl) = p(Fl|Al) =
∏Dl

d=1 p(f
l
d|al

d), (1)
where Fl is the N ×Dl matrix of outputs of the l-th layer for N inputs, Wl is the Dl−1 ×Dl matrix
of weights in that layer, and Al is the N ×Dl matrix of pre-activations, i.e. Al = Fl−1 ·Wl. As
usual, the columns and rows of Fl are denoted as f ld and f ln,:, respectively (and analogously for the
other matrices). Since the activation is defined by a GP, we have p(f ld|al

d) = N (f ld|µl
d,K

l
d), with µl

d

(resp. Kl
d) the result of evaluating µl

d (resp. kld) on al
d (that is, µl

d is a N -dimensional vector and Kl
d

is a N ×N matrix). To fully specify the model, the output Y is defined from the last layer with a
distribution that factorizes across data points, i.e. p(Y|FL) =

∏N
n=1 p(yn,:|fLn,:). This formulation

resembles that of DGPs (Damianou & Lawrence, 2013; Salimbeni & Deisenroth, 2017). The main
difference is that we model Fl|Fl−1 through Dl 1D GPs evaluated on the pre-activations Al (i.e. the
projections of Fl−1 through Wl), whereas DGPs use Dl GPs of dimension Dl−1 evaluated directly
on Fl−1, recall Figure 1(c-d).

Variational Inference. Inference in the proposed model is intractable. To address this, we follow
standard sparse variational GP approaches (Titsias, 2009; Hensman et al., 2013; 2015), similarly
to the Doubly Stochastic Variational Inference (DSVI) for DGPs (Salimbeni & Deisenroth, 2017).
Specifically, in each unit of each layer we introduce M l inducing values ul

d, which are the result of
evaluating the GP on the one-dimensional inducing points zld. We naturally write Ul and Zl for the
corresponding M l × Dl matrices associated to the l-th layer, respectively. Following eq. (1), the
augmented model for one layer is

p(Fl,Ul|Fl−1,Wl,Zl) = p(Fl|Ul,Al,Zl)p(Ul|Zl) =
∏Dl

d=1 p(f
l
d|ul

d,a
l
d, z

l
d)p(u

l
d|zld). (2)

Variational inference (VI) involves the approximation of the true posterior p({Fl,Ul}l|Y). Following
(Hensman et al., 2013; Salimbeni & Deisenroth, 2017), we propose a posterior given by p(F|U) and
a parametric Gaussian on U:

q({Fl,Ul}l) =
∏L

l=1 p(F
l|Ul,Al,Zl)q(Ul) =

∏L
l=1

∏Dl

d=1 p(f
l
d|ul

d,a
l
d, z

l
d)q(u

l
d), (3)

where q(ul
d) = N (ul

d|ml
d,S

l
d), with ml

d ∈ RM l

and Sl
d ∈ RM l×M l

variational parameters to be
estimated. Minimizing the KL divergence between q({Fl,Ul}l) and the true posterior is equivalent
to maximizing the following evidence lower bound (ELBO):

log p(Y|{Wl,Zl}l) ≥ ELBO =

N∑
n=1

Eq(fLn,:)

[
log p(yn,:|fLn,:)

]
−

L∑
l=1

Dl∑
d=1

KL
(
q(ul

d)||p(ul
d)
)
. (4)

3



Published as a conference paper at ICLR 2021

In the ELBO, the KL term can be computed in closed-form, as both q(ul
d) and p(ul

d) are
Gaussians. The log likelihood term can be approximated by sampling from the marginal pos-
terior q(fLn,:), which can be done efficiently through univariate Gaussians as in (Salimbeni &
Deisenroth, 2017). Specifically, Ul can be analytically marginalized in eq. (3), which yields
q({Fl}l) =

∏
l q(F

l|Fl−1,Wl) =
∏

l,dN (f ld|µ̃
l
d, Σ̃

l

d), with:

[µ̃l
d]i = µl

d(a
l
id) +αl

d(a
l
id)

ᵀ(ml
d − µl

d(z
l
d)), (5)

[Σ̃
l

d]ij = kld(a
l
id, a

l
jd)−αl

d(a
l
id)

ᵀ(kld(z
l
d)− Sl

d)α
l
d(a

l
jd), (6)

where αl
d(x) = kld(x, z

l
d)[k

l
d(z

l
d)]
−1 and al

n,: = Wlf l−1n,: . Importantly, the marginal posterior q(f ln,:)
is a Gaussian that depends only on al

n,:, which in turn only depends on q(f l−1n,: ). Therefore, sampling
from f ln,: is straightforward using the reparametrization trick (Kingma & Welling, 2013):

f lnd = [µ̃l
d]n + ε · [Σ̃l

d]
1/2
nn , with ε ∼ N (0, 1), and f0n,: = xn,:. (7)

Training consists in maximizing the ELBO, eq. (4), w.r.t. variational parameters {ml
d,S

l
d}, inducing

points {zld}, and model parameters (i.e. weights {wl
d} and kernel parameters {θl

d}). This can be
done in batches, allowing for scalability to very large datasets. The complexity to evaluate the ELBO
is O(NM2(D1 + · · ·+DL)), the same as DGPs with DSVI (Salimbeni & Deisenroth, 2017).3

Predictions. Given a new x∗,:, we want to compute4 p(fL∗,:|X,Y) ≈ Eq({Ul})
[
p(fL∗,:|{Ul})

]
. As in

(Salimbeni & Deisenroth, 2017), this can be approximated by sampling S values up to the (L− 1)-th
layer with the same eq. (7), but starting with x∗,:. Then, p(fL∗,:|X,Y) is given by the mixture of the
S Gaussians distributions obtained from eqs. (5)-(6).

Triangular kernel. One of the most popular kernels in GPs is the RBF (Williams & Rasmussen,
2006), which produces very smooth functions. However, the ReLu non-linearity led to a general boost
in performance in DNNs (Nair & Hinton, 2010; Glorot et al., 2011), and we aim to model similar
activations. Therefore, we introduce the use of the triangular (TRI) kernel. Just like RBF, TRI is an
isotropic kernel, i.e. it depends on the distance between the inputs, k(x, y) = γ · g(|x− y|/`), with γ
and ` the amplitude and lengthscale. For RBF, g(t) = e−t

2/2. For TRI, g(t) = max(1− t, 0). This
is a valid kernel (Williams & Rasmussen, 2006, Section 4.2.1). Similarly to the ReLu, the functions
modelled by TRI are piecewise linear, see Figure 6a in the main text and Figure 8 in Appendix C.

Comparison with DGP. The difference between auNN and DGP units is graphically illustrated in
Figure 2a. Whereas DGP mappings from one layer to the next are complex functions defined on
Dl−1 dimensions (Dl−1 = 2 in the figure), auNN mappings are defined just along one direction via
the weight projection. This is closer in spirit to NNs, whose mappings are also simpler and better
suited for feature extraction and learning more abstract concepts. Moreover, since the GP is defined
on a 1D space, auNN requires fewer inducing points than DGP (which, intuitively, can be interpreted
as inducing (hyper)planes in the Dl−1-dimensional space before the projection).

3 EXPERIMENTS

In this section, auNN is compared to BNN, fBNN (Sun et al., 2019) and DSVI DGP (Salimbeni &
Deisenroth, 2017). BNNs are trained with BBP (Blundell et al., 2015), since auNN also leverages a
simple VI-based inference approach. In each section we will highlight the most relevant experimental
aspects, and all the details can be found in Appendix B. In the sequel, NLL stands for Negative Log
Likelihood. Anonymized code for auNN is provided in the supplementary material, along with a
script to run it for the 1D illustrative example of Section 3.1.

3.1 AN ILLUSTRATIVE EXAMPLE

Here we illustrate the two aspects that were highlighted in the introduction: the underestimation
of predictive uncertainty for instances located in-between two clusters of training points and the

3As in (Salimbeni & Deisenroth, 2017), there exists also a cubic term O(M3(D1 + · · · + DL)) that is
dominated by the former (since the batch size N is typically larger than M ). Moreover, in auNN we have the
multiplication by weights, with complexity O(NDl−1Dl) for each layer. This is also dominated by the former.

4The distribution p(yL
∗,:|X,Y) is obtained as the expectation of the likelihood over p(fL∗,:|X,Y). A

Gaussian likelihood is used for regression, and the Robust-Max (Hernández-Lobato et al., 2011) for classification.
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Figure 3: Predictive distribution (mean and one standard devia-
tion) after training on a 1D dataset with two clusters of points.
This simple example illustrates the main limitations of NN, BNN
and fBNN, which are overcome by the novel auNN. See Table 1
for a summary and the text for details.

Table 1: Visual overview of con-
clusions from the 1D experiment
in Figure 3. This shows that NN,
BNN, fBNN and auNN increas-
ingly expand their capabilities.

Epistemic
uncertainty

Reverts
to the mean

In-between
uncertainty

NN 7 7 7
BNN 3 7 7

fBNN 3 3 7
auNN 3 3 3

extrapolation to OOD data. Figure 3 shows the predictive distribution of NN, BNN, fBNN and auNN
(with RBF and TRI kernels) after training on a simple 1D dataset with two clusters of points. All the
methods have one hidden layer with 25 units, and 5 inducing points are used for auNN.

In Figure 3, the deterministic nature of NNs prevents them from providing epistemic uncertainty
(i.e. the one originating from the model (Kendall & Gal, 2017)). Moreover, there is no prior to
guide the extrapolation to OOD data. BNNs provide epistemic uncertainty. However, the prior in
the complex space of weights does not allow for guiding the extrapolation to OOD data (e.g. by
reverting to the empirical mean). Moreover, note that BNNs underestimate the predictive uncertainty
in the region between the two clusters, where there is no observed data (this region is usually called
the gap). More specifically, as shown in (Foong et al., 2020), the predictive uncertainty for data
points in the gap is limited by that on the extremes. By specifying the prior in function space, fBNN
can induce properties in the output, such as reverting to the empirical mean for OOD data through
a zero-mean GP prior. However, the underestimation of in-between uncertainty persists, since the
posterior stochastic process for fBNN is based on a weight-space factorized Gaussian (as BNN
with BBP), see (Sun et al., 2019, Section 3.1) for details. Finally, auNN (either with RBF or TRI
kernel) addresses both aspects through the novel activation-level modelling of uncertainty, which
utilizes a zero-mean GP prior for the activations. Table 1 summarizes the main characteristics of
each method. Next, a more comprehensive experiment with deeper architectures and more complex
multidimensional datasets is provided.

3.2 UCI REGRESSION DATASETS WITH GAP SPLITS

Standard splits are not appropriate to evaluate the quality of uncertainty estimates for in-between
data, since both train and test sets may cover the space equally. This motivated the introduction of
gap splits (Foong et al., 2019). Namely, a set with D dimensions admits D such train-test partitions
by considering each dimension, sorting the points according to its value, and selecting the middle 1/3
for test (and the outer 2/3 for training), see Figure 2c. With these partitions, overconfident predictions
for data points in the gap manifest as very high values of test negative log likelihood.

Using the gap splits, it was recently shown that BNNs yield overconfident predictions for in-between
data (Foong et al., 2019). The authors highlight the case of Energy and Naval datasets, where BNNs
fail catastrophically. Figure 4a reproduces these results for BNNs and checks that fBNNs also
obtain overconfident predictions, as theoretically expected. However, notice that activation-level
stochasticity performs better, specially through the triangular kernel, which dramatically improves
the results (see the plot scale). Figure 4b confirms that the difference is due to the underestimation
of uncertainty, since the predictive performance in terms of RMSE is on a similar scale for all the
methods. In all cases, D = 50 hidden units are used, and auNN uses M = 10 inducing points.

To further understand the intuition behind the different results, Figure 5 shows the predictive distribu-
tion over a segment that crosses the gap, recall Figure 2c. We observe that activation-level approaches
obtain more sensitive (less confident) uncertainties in the gap, where there is no observed data. For
instance, BNN and fBNN predictions in Naval are unjustifiably overconfident, since the output in that
dataset ranges from 0.95 to 1. Also, to illustrate the internal mechanism of auNN, Figure 6a shows
one example of the activations learned when using each kernel. Although it is just one example, it
allows for visualising the different nature: smoother for RBF and piecewise linear for TRI. All the
activations for a particular network and for both kernels are shown in Appendix C (Figure 8).
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Figure 4: Test NLL (a) and RMSE (b) for the gap splits in Energy and Naval datasets (mean and one
standard error, the lower the better). Activation-level uncertainty, specially through the triangular
kernel, avoids the dramatic failure of BNN and fBNN in terms of NLL (see the scale). The similar
values in RMSE reveal that this failure actually comes from an extremely overconfident estimation
by BNN and fBNN, see also Figure 5.
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Figure 5: Predictive distribution (mean and one standard deviation) over a segment that crosses the
gap, joining two training points from different connected components. auNN avoids overconfident
predictions by allocating more uncertainty in the gap, where there is no observed data.

In addition to the paradigmatic cases of Energy and Naval illustrated here, four more datasets are
included in Appendix C. Figure 7 there is analogous to Figure 4 here, and Tables 4 and 5 there show
the full numeric results and ranks. We observe that auNN, specially through the triangular kernel,
obtains the best results and does not fail catastrophically in any dataset (unlike BNN and fBNN,
which do in Energy and Naval). Finally, the performance on the gap splits is complemented by that
on standard splits, see Tables 6 and 7 in Appendix C. This shows that, in addition to the enhanced
uncertainty estimation, auNN is a competitive alternative in general practice.

3.3 COMPARISON WITH DGPS

As explained in Section 2, the choice of a GP prior for activation stochasticity establishes a strong
connection with DGPs. The main difference is that auNN performs a linear projection from Dl−1

to Dl dimensions before applying Dl 1D GPs, whereas DGPs define Dl GPs directly on the Dl−1

dimensional space. This means that auNN units are simpler than those of DGP, recall Figure 2a. Here
we show two practical implications of this.

First, it is reasonable to hypothesise that DGP units may require a higher number of inducing points
M than auNN, since they need to cover a multi-dimensional input space. By contrast, auNN may
require a higher number of hidden units D, since these are simpler. Importantly, the computational
cost is not symmetric in M and D, but significantly cheaper on D, recall Section 2. Figure 6b shows
the performance of auNN and DGP for different values of M and D on the UCI Kin8 set (with
one hidden layer; depth will be analyzed next). As expected, note the different influence by M and
D: whereas auNN improves “by rows” (i.e. as D grows), DGP does it “by columns” (i.e. as M
grows)5. Next section (Section 3.4), will show that this makes auNN faster than DGP in practice. An
analogous figure for RMSE and full numeric results are in Appendix C (Figure 9 and Tables 9-10).

Second, auNN simpler units might be better suited for deeper architectures. Figure 6c shows the
performance on the UCI Power dataset when depth is additionally considered. It can be observed that
auNN is able to take greater advantage of depth, which translates into better overall performance.

5Interestingly, the fact that DGP is not greatly influenced by D could be appreciated in its recommended
value in the original work (Salimbeni & Deisenroth, 2017). They set D = min(30, D0), where D0 is the input
dimension. This limits D to a maximum value of 30.
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Figure 6: (a) One example of activation function (mean and standard deviation) learned by auNN
with each kernel. RBF’s one is smoother, whereas TRI’s is piecewise linear, inspired by ReLu. Black
dots represent (the mean of) the inducing point values. Green dots are the locations of input data
when propagated to the corresponding unit. (b) Test NLL of auNN and DGP for different values of
M (number of inducing points) and D (number of hidden units). The lower the better. The results
are the average over five independent runs with different splits. Whereas DGP improves “by columns”
(i.e. with M ), auNN does it “by rows” (i.e. with D). This is as hypothesized, and is convenient
from a scalability viewpoint. (c) Test NLL with increasing depth (L = 2, 3, 4). This supports that
auNN might benefit more than DGP from deeper networks. Moreover, the aforementioned different
influence of M and D on DGP and auNN is confirmed here.

Moreover, the aforementioned different influence ofD andM on DGP and on auNN is also confirmed
here. The results on RMSE are similar, see Figure 10 and Tables 11-12 in Appendix C.

Finally, it may be argued that auNN closely resembles a DGP with additive kernel (Duvenaud et al.,
2011; Durrande et al., 2011) (DGP-add hereafter). Recall that an additive kernel models functions
that are decomposed as f(x) = f1(x1) + · · ·+ fD(xD). Therefore, the model for al+1|al in auNN
is very similar to that of f l+1|f l in DGP-add, see Figure 11 in Appendix C. Specifically, in both
cases, the input (al in auNN, f l in DGP-add) goes through 1D GPs and then these are aggregated
(linear combination through W in auNN, summation in DGP-add) to yield the output (al+1 in auNN,
f l+1 in DGP-add). However, there exists a key difference. In auNN, all the nodes in the (l + 1)-th
layer (i.e. al+1

i ) aggregate a shared set of distinct functions (namely, f li ), each node using its own
weights to aggregate them. While in DGP-add, there is not such shared set of functions, and each
node in the (l+1)-th layer (i.e. f l+1

i ) aggregates a different set of GP realizations (i.e. the unlabelled
blue nodes in Figure 11c). This subtle theoretical difference has empirical implications, since many
more functions need to be learned for DGP-add. Indeed, Figures 12 and 13 in Appendix C compare
the performance of DGP-add and auNN-RBF (the experimental setting is analogous to that of Figure
6c)6. We observe that the results obtained by DGP-add are worse than those by auNN-RBF, probably
due to the larger number of functions that need to be learned in DGP-add.

3.4 CLASSIFICATION, SCALABILITY, AND ADDITIONAL METRICS

So far, we have experimented with small to medium regression datasets, and uncertainty estimation
has been measured through the (negative) log likelihood and the visual inspection of the predictive
distribution (Figures 3 and 5). Here we focus on two large scale classification datasets (up to 107

instances), and additional metrics that account for uncertainty calibration are reported. We use the
well-known particle physics binary classification sets HIGGS (N = 11M, D = 28) and SUSY (N =
5M, D = 18) (Baldi et al., 2014). We consider DGP as a baseline, as it obtained state-of-the-art results
for these datasets (Salimbeni & Deisenroth, 2017). For all the methods, we consider a Robust-Max
classification likelihood (Hernández-Lobato et al., 2011).

The metrics to be used are the Brier score (Gneiting & Raftery, 2007) and the Expected Calibration
Error (ECE) (Guo et al., 2017). The former is a proper score function that measures the accuracy of
probabilistic predictions for categorical variables. In practice, it is computed as the mean squared

6For a fair comparison, here we use auNN-RBF (and not TRI), because DGP-add leverages a RBF kernel.
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Table 2: Brier score and expected calibration error (ECE) for auNN and DGP in the large scale
classfication datasets HIGGS and SUSY (the lower the better in both metrics). The standard error (on
three splits) is close to zero in all cases, see Table 13 in Appendix C.

auNN DGP

N D RBF-2 RBF-3 RBF-4 TRI-2 TRI-3 TRI-4 DGP-2 DGP-3 DGP-4

Brier HIGGS 11M 28 0.3363 0.3159 0.3098 0.3369 0.3172 0.3118 0.4527 0.4399 0.4378
SUSY 5M 18 0.2746 0.2739 0.2737 0.2749 0.2742 0.2738 0.3815 0.3816 0.3804

ECE HIGGS 11M 28 0.2196 0.2383 0.2427 0.2198 0.2390 0.2397 0.4352 0.4303 0.4251
SUSY 5M 18 0.3453 0.3496 0.3504 0.3462 0.3485 0.3465 0.5304 0.5291 0.5273

Table 3: Average training time per batch over 50 independent runs (in seconds). The standard error is
low in all cases, see Table 14 in Appendix C.

auNN DGP

RBF-2 RBF-3 RBF-4 TRI-2 TRI-3 TRI-4 DGP-2 DGP-3 DGP-4

HIGGS 0.0962 0.1607 0.2259 0.0922 0.1647 0.2308 0.1918 0.3102 0.3930
SUSY 0.0926 0.1564 0.2245 0.0923 0.1563 0.2265 0.1430 0.2129 0.2771

difference between a one dimensional vector with the probability for each class label and the one-hot
encoding of the actual class. The latter measures miscalibration as the difference in expectation
between confidence and accuracy. This is done by partitioning the predictions in M equally spaced
bins and taking a weighted average of the bins’ accuracy/confidence difference, see (Guo et al., 2017,
Eq.(3)) for details.

Table 2 shows the Brier score and ECE for auNN and DGP for different values of L (depth). We
observe that auNN outperforms DGP in both metrics, achieving superior uncertainty estimation. Both
TRI and RBF kernels obtain similar results for auNN. Notice that the Brier score generally improves
with the network depth, whereas the performance in ECE decreases with depth. Interestingly, this
behavior was also observed for standard NNs (Guo et al., 2017, Figure 2a).

Finally, as was theoretically justified in Section 2, auNN can scale up to very large datasets (HIGGS
has more than 107 training instances). Regarding the practical computational cost, Table 3 shows
the average training time per batch for both auNN and DGP in the previous datasets. Although the
theoretical complexity is analogous for both methods (recall Section 2), the experiments in Figures
6b-c showed that DGP requires larger values of M , whereas auNN needs larger D 7. Since the
computational cost is not symmetric on M and D, but significantly cheaper in the latter (recall
Section 2), auNN is faster than DGP in practice.

4 RELATED WORK

Activation-level uncertainty is introduced here as an alternative to weight-space stochasticity. The
expressiveness of the latter has been recently analyzed in the recent work (Wenzel et al., 2020),
where the authors advocate a modified BNN objective. Alternatively, different prior specifications are
studied in (Hafner et al., 2020; Pearce et al., 2019; Flam-Shepherd et al., 2017), in addition to the
fBNN discussed here (Sun et al., 2019). However, none of these works consider stochasticity on the
activations.

Since we present a straightforward use of VI for auNN, in this work we have compared empirically
with the well-known VI-based BBP for BNNs. Yet, we expect auNN to benefit from independent
inference refinements like those proposed over the last years for BNNs. For instance, natural-gradient
VI allows for leveraging techniques such as BatchNorm or data augmentation (Osawa et al., 2019),
and the information contained in the SGD trajectory can be exploited as well (Maddox et al., 2019).
Also, getting rid of the gradient variance through deterministic approximate moments has provided
enhanced results in BNNs (Wu et al., 2019).

7In this section, both DGP and auNN are trained with one hidden layer and their optimal configuration
according to the previous experiment: large M for DGP (M = 100, D is set as recommended by the authors,
i.e. D = min(30, D0)), and large D for auNN (D = 50, M is set to the intermediate value of M = 25).
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A key aspect of auNN is the modelling of the activation function. This element of neural nets has
been analyzed before. For instance, self-normalizing neural nets (Klambauer et al., 2017) induce
the normalization that is explicitly performed in related approaches such as BatchNorm (Ioffe &
Szegedy, 2015) and weight and layer normalization (Salimans & Kingma, 2016; Ba et al., 2016).
Learnable deterministic activations have been explored too, e.g. (He et al., 2015; Agostinelli et al.,
2014). However, as opposed to auNN, in all these cases the activations are deterministic.

Probabilistic neural networks such as Natural-Parameter Networks (NPN) (Wang et al., 2016) prop-
agate probability distributions through layers of transformations. Therefore, the values of the
activations are also described by probability distributions (specifically, the exponential family is
used in NPN). Fast dropout training (Wang & Manning, 2013) and certain variants of NPNs can be
also viewed in this way (Shekhovtsov & Flach, 2018; Postels et al., 2019). However, in auNN the
activations are modelled themselves as stochastic learnable components that follow a GP prior. Along
with the deterministic weights, this provides a conceptually different approach to model uncertainty.

A very preliminary study on GP-based activation functions is proposed in (Urban & van der Smagt,
2018). However, the method is not empirically evaluated, no connection with deep GPs is provided,
and the inference approach is limited. Namely, the output of each unit is approximated with a
Gaussian whose mean and covariance are computed in closed-form, as was done in (Bui et al., 2016)
for DGPs. However, this is only tractable for the RBF kernel (in particular, it cannot leverage the
more convenient TRI kernel studied here), and the Gaussian approximation typically yields worse
results than Monte Carlo approximations to the ELBO as used here (indeed, DSVI (Salimbeni &
Deisenroth, 2017) substantially improved the results for DGPs compared to (Bui et al., 2016)).

5 CONCLUSIONS AND FUTURE WORK

We proposed a novel approach for uncertainty estimation in neural network architectures. Whereas
previous methods are mostly based on a Bayesian treatment of the weights, here we move the
stochasticity to the activation functions, which are modelled with a simple 1D GP and a triangular
kernel inspired by the ReLu. Our experiments show that the proposed method obtains better calibrated
uncertainty estimates and is competitive in standard prediction tasks. Moreover, the connection with
deep GPs is analyzed. Namely, our approach requires fewer inducing points and is better suited for
deep architectures, achieving superior performance.

We hope this work raises interest on alternative approaches to model uncertainty in neural networks.
One of the main directions of future research is to deeply understand the properties induced by
each one of the kernels considered here (i.e. the triangular one and RBF). In particular, it would be
interesting to automatically learn the optimal kernel for each unit in a probabilistic way. Also, the use
of a GP prior for the activation function may hamper the scalability of auNN to wider and/or deeper
networks. In these cases, the GP-based activation model could be substituted by a simpler Bayesian
parametric one. This would allow for a cheaper modelling of uncertainty within the activations.
Finally, since only the activation function is modified, important deep learning elements such as
convolutional layers can be still incorporated.
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A PRACTICAL SPECIFICATIONS FOR AUNN

Whitening transformation for q(ul
d). The proposed parametric posterior for each unit is given

by the Gaussian q(ul
d) = N (ul

d|ml
d,S

l
d). The GP prior on ul

d is p(ul
d) = N (ul

d|µl
d,K

l
d), with
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d) and Kl
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l
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l
d). For numerical stability and to reduce the amount of operations,

we use a white representation for q(ul
d), as is common practice in (D)GPs (De G. Matthews et al.,

2017; Salimbeni & Deisenroth, 2017). That is, we consider the variable vl
d ∼ N (m̃l

d, S̃
l
d), with

ul
d = µl

d + (Kl
d)

1/2vl
d. Specifically, in the code the variable m̃l

d is denoted as q_mu, and S̃l
d is

represented through its Cholesky factorization (S̃l
d)

1/2, which is named q_sqrt.

Initialization of the variational parameters {ml
d}. These are the mean of the posterior distribution

on the inducing points. Therefore, their value determines the initialization of the activation function.
If the RBF kernel is used, {ml

d} are initialized to the prior µl
d = µl

d(z
l
d) (since we are using

the aforementioned white representation, q_mu is initialized to zero). This is the most standard
initialization in GP literature. For the TRI kernel, {ml

d} are initialized according to the ReLu which
TRI is inspired by, i.e. ml

d = ReLu(zld).

Initialization of the variational parameters {Sl
d}. The posterior distribution covariance matrices

are initialized to the prior Kl
d = kld(z

l
d, z

l
d) (that is, q_sqrt is initialized to the identity matrix).

Following common practise for DGPs (Salimbeni & Deisenroth, 2017), the covariance matrices of
inner layers are scaled by 10−5.

Initialization of the weights. The Glorot uniform initializer (Glorot & Bengio, 2010), also called
Xavier uniform initializer, is used for the weights. The biases are initialized to zero.

Initialization of the kernel hyperparameters. The kernels used (RBF and TRI) have two hyper-
parameters: the variance γ and the lengthscale `. Both are always initialized to 1 (except for the
lengthscale in the 1D example in Section 3.1, where ` is initialized to 0.1).

Initialization of the inducing points. In order to initialize zld, theN input data points are propagated
through the network with the aforementioned initial weights, biases, and activation function. Then, in
each layer and unit, zld is initialized with a linspace between the minimum and maximum of the
N values there (the minimum (resp. the maximum) is decreased (resp. increased) by 0.1 to strictly
contain the interval of interest).

Initialization of the regression likelihood noise. In the regression problems, we use a Gaussian
likelihood p(y|f) = N (y|f, σ2). The standard deviation of the noise is initialized to σ = 0.1.

Mean function. We always use a zero mean function. Since data is normalized to have zero mean
(and standard deviation equal to one), a zero mean function allows for reverting to the empirical mean
for OOD data, as explained in the main text.

Optimizer and learning rate. Throughout the work, we use the Adam Optimizer (Kingma & Ba,
2014) with default parameters and learning rate of 0.001.

B EXPERIMENTAL DETAILS FOR THE EXPERIMENTS

All the experiments were run on a NVIDIA Tesla P100. In order to predict, all the methods utilize
100 test samples in all the experiments. Details for each section are provided below.

An illustrative example (Section 3.1 in the main text). All the methods use two layers (i.e. one
hidden layer). The hidden layer has D = 25 units in all cases. BNN and fBNN use ReLu activations.
The auNN methods use M = 10 inducing points in each unit (the rest of methods do not have
such inducing points). The methods are trained during 5000 epochs with the whole dataset (no
mini-batches). The dataset is synthetically generated to have two clusters of points around x = ±1.
More specifically, 30 points are sampled uniformly in each interval (x− 0.3, x+ 0.3) for x = ±1,
and the output is given by the sin function plus a Gaussian noise of standard deviation 0.1. We have
also trained DGP and GP on this dataset, see Figure 14. Both methods use M = 10 inducing points,
and are trained during 5000 epochs with the whole dataset (no mini-batches). DGP has one one
hidden layer with D = 25 units.
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Figure 7: Performance of the compared methods in the gap splits for six UCI datasets. Mean and one
standard error of NLL (upper row) and RMSE (lower row) are shown, the lower the better.

UCI regression datasets with gap (and standard) splits (Section 3.2 in the main text). The
methods use L = 2, 3 layers. In all cases, the hidden layers have D = 50 units. BNN and fBNN
use ReLu activations. The methods are trained during 10000 epochs, with a mini-batch size that
depends on the size of the dataset. For those with fewer than 5000 instances (i.e. Boston, Concrete,
Energy, Wine and Yacht), the mini-batch size is 500. For those with more than 5000 (i.e. Naval),
the mini-batch size is 5000. Recall from the main text that each dataset has as many gap splits as
dimensionality, with 2/3 for train and 1/3 for test. In the case of standard splits, each dataset uses
10 random 90%-10% train-test splits. Regarding the segment used in Figure 5, each extreme of the
segment is a point from a different connected component of the training set. These are chosen so
that the function is well-known in the extremes (but not along the segment, which crosses the gap).
Namely, the extremes are chosen as the training points who have minimum average distance to the
closest five points in its connected component.

Comparison with DGPs (Section 3.3 in the main text). Here, different values of depth L, number
of inducing points M and number of hidden layers D are studied (see the main text). auNN is trained
during 5000 epochs, with a mini-batch size of 5000 (20000 epochs are used for DGP, as proposed by
the authors (Salimbeni & Deisenroth, 2017)). Each experiment is repeated on five random 90%-10%
train-test splits. DGP uses a RBF kernel. The experimental details for DGP-add are the same as for
DGP, with the only difference of the kernel. Namely, an additive kernel using RBF components is
used for DGP-add.

Large scale experiments (Section 3.4 in the main text). Since we are dealing with classification
datasets, a Robust-Max likelihood is used in all cases (Hernández-Lobato et al., 2011). The values of
D and M are chosen following the conclusions from Section 3.3. That is, DGP needs large M (the
largest M = 100 is used), but is less influenced by D (this is chosen as recommended by the authors
(Salimbeni & Deisenroth, 2017): D = min(30, D0), with D0 the dimensionality of the input data).
auNN needs large D (the largest D = 50 is used), but is less influenced by M (the intermediate value
M = 25 is chosen). All the methods are trained during 100 epochs, with a mini-batch size of 5000.
Three random train-test splits are used. In both datasets, 500000 instances are used for test (which
leaves 10.5M and 4.5M training instances for HIGGS and SUSY, respectively).

C ADDITIONAL FIGURES AND TABLES

Finally, additional material is provided here. Every figure and table is referred from the main text.
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Table 4: Test NLL for the gap splits of the six UCI datasets (mean and one standard error, the lower
the better). Last column is the per-group (weight-space stochasticity vs activation-level stochasticity)
average rank.

Boston Concrete Energy Naval Wine Yacht Rank Rank (group)

BNN-2 3.29±0.10 3.58±0.09 114.84±70.69 2186.30±464.32 0.96±0.01 1.54±0.09 3.92±0.79

4.83±0.32BNN-3 3.54±0.03 4.23±0.04 30.91±19.97 618.44±147.99 0.98±0.02 4.10±0.03 4.98±0.70
fBNN-2 3.67±0.25 4.60±0.39 111.65±69.68 1050.65±192.61 2.80±0.31 1.77±0.12 5.04±0.36
fBNN-3 3.69±0.24 4.49±0.34 93.92±56.45 1060.54±247.21 198.76±30.24 1.47±0.15 5.36±0.50

auNN-RBF-2 5.19±0.47 4.27±0.26 39.93±20.89 379.55±67.74 1.44±0.05 1.68±0.35 4.69±0.61

4.17±0.40auNN-RBF-3 5.68±0.75 5.54±0.40 50.48±28.26 352.94±72.13 16.05±1.13 1.28±0.23 5.29±0.89
auNN-TRI-2 2.77±0.06 3.45±0.06 3.99±1.14 30.47±5.54 1.06±0.03 2.34±0.03 3.25±0.57
auNN-TRI-3 2.70±0.04 3.39±0.06 5.50±2.45 2.38±3.23 1.23±0.04 2.68±0.30 3.47±0.80

Table 5: Test RMSE for the gap splits of the six UCI datasets (mean and one standard error, the lower
the better). Last column is the per-group (weight-space stochasticity vs activation-level stochasticity)
average rank.

Boston Concrete Energy Naval Wine Yacht Rank Rank (group)

BNN-2 6.54±0.56 7.62±0.35 4.23±1.91 0.03±0.00 0.63±0.01 1.18±0.11 4.09±0.67

4.91±0.37BNN-3 7.77±0.40 16.33±0.67 5.27±1.41 0.02±0.00 0.64±0.01 14.31±0.76 6.15±0.91
fBNN-2 3.75±0.21 7.58±0.41 3.95±1.82 0.03±0.00 0.78±0.02 1.25±0.08 4.70±0.54
fBNN-3 3.81±0.20 7.52±0.36 4.48±1.79 0.03±0.00 0.87±0.04 1.13±0.12 4.71±0.53

auNN-RBF-2 4.90±0.47 7.81±0.47 3.41±1.46 0.03±0.00 0.72±0.01 0.99±0.18 4.32±0.47

4.09±0.23auNN-RBF-3 4.27±0.29 7.74±0.21 2.72±1.03 0.03±0.00 0.82±0.01 1.03±0.14 4.27±0.55
auNN-TRI-2 4.01±0.30 7.44±0.38 2.72±0.79 0.02±0.00 0.67±0.01 1.51±0.20 3.90±0.33
auNN-TRI-3 3.78±0.19 7.03±0.23 3.36±1.23 0.02±0.00 0.68±0.01 3.80±2.41 3.85±0.46

Table 6: Test NLL for the standard splits of the six UCI datasets (mean and one standard error,
the lower the better). Last column is the per-group (weight-space stochasticity vs activation-level
stochasticity) average rank.

test NLL Boston Concrete Energy Naval Wine Yacht Rank Rank (group)

BNN-2 2.71±0.07 3.12±0.02 0.65±0.04 -5.38±0.59 0.99±0.02 1.01±0.07 3.78±0.41

4.5±0.39BNN-3 3.62±0.05 4.24±0.01 0.80±0.03 -5.02±0.33 1.01±0.02 4.06±0.05 6.25±0.70
fBNN-2 2.83±0.20 3.20±0.04 0.67±0.04 -6.17±0.02 1.55±0.08 0.77±0.02 4.13±0.57
fBNN-3 2.75±0.14 3.13±0.05 0.65±0.03 -6.26±0.00 207.43±9.12 0.79±0.02 3.83±0.85

auNN-RBF-2 3.38±0.30 3.14±0.05 0.63±0.03 -5.40±0.08 1.16±0.06 0.52±0.04 3.97±0.60

4.5±0.43auNN-RBF-3 3.89±0.47 3.25±0.13 0.53±0.07 -5.69±0.03 8.98±1.51 0.54±0.03 4.42±0.85
auNN-TRI-2 2.56±0.05 3.08±0.02 1.47±0.04 -4.81±0.07 0.96±0.03 2.25±0.02 4.78±0.92
auNN-TRI-3 2.50±0.02 2.98±0.02 1.42±0.02 -3.43±0.32 1.10±0.07 2.26±0.01 4.83±1.01

Table 7: Test RMSE for the standard splits of the six UCI datasets (mean and one standard error,
the lower the better). Last column is the per-group (weight-space stochasticity vs activation-level
stochasticity) average rank.

test RMSE Boston Concrete Energy Naval Wine Yacht Rank Rank (group)

BNN-2 3.47±0.34 5.49±0.13 0.45±0.02 0.00±0.00 0.65±0.01 0.68±0.08 4.70±0.48

4.59±0.41BNN-3 8.89±0.45 16.71±0.20 0.51±0.02 0.00±0.00 0.67±0.02 13.49±0.94 6.50±0.64
fBNN-2 2.80±0.21 5.34±0.13 0.47±0.02 0.00±0.00 0.70±0.02 0.33±0.04 3.70±0.61
fBNN-3 2.74±0.16 5.07±0.12 0.46±0.02 0.00±0.00 0.83±0.02 0.36±0.04 3.45±0.88

auNN-RBF-2 3.16±0.23 5.13±0.16 0.45±0.02 0.00±0.00 0.67±0.02 0.41±0.04 4.25±0.35

4.41±0.41auNN-RBF-3 3.01±0.25 4.51±0.18 0.41±0.03 0.00±0.00 0.76±0.02 0.38±0.03 3.35±0.77
auNN-TRI-2 3.00±0.26 5.21±0.10 0.72±0.02 0.00±0.00 0.62±0.02 1.15±0.14 5.40±0.80
auNN-TRI-3 2.81±0.17 4.67±0.15 0.65±0.03 0.01±0.00 0.62±0.02 1.16±0.15 4.65±1.00

Table 8: Standard error obtained by auNN and DGP in three splits of the large scale classification
datasets HIGGS and SUSY.

auNN DGP

N D RBF-2 RBF-3 RBF-4 TRI-2 TRI-3 TRI-4 DGP-2 DGP-3 DGP-4

HIGGS 11M 28 0.0001 0.0006 0.0007 0.0003 0.0004 0.0008 0.0005 0.0009 0.0010
SUSY 5M 18 0.0004 0.0005 0.0005 0.0005 0.0005 0.0004 0.0005 0.0027 0.0035
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Figure 8: A complete example of the activation functions learned by auNN with RBF and TRI kernels.
These were obtained for the Energy dataset with the first gap split, using three layers, 10 hidden
units per (hidden) layer, and 5 inducing points in each unit. Whereas auNN-RBF learns smoother
activations, auNN-TRI ones are piece-wise linear, inspired by the ReLu. Notice that auNN allows
units to switch off if they are not required. Black dots represent the five inducing points in each unit.
Green points are the locations of the input data when propagated to the corresponding unit.
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Figure 9: Test RMSE of auNN and DGP for different values of M (number of inducing points) and
D (number of hidden units). Results are the average over 5 independent runs on the UCI Kin8 dataset.
The lower the better. Whereas DGP improves “by columns” (i.e. with M ), auNN does it “by rows”
(i.e. with D). This is as theoretically expected, and it is convenient from a scalability viewpoint.
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Figure 10: Test RMSE with increasing depth (L = 2, 3, 4). This supports that auNN might benefit
more than DGP from deeper networks. Moreover, the aforementioned different influence of M and
D on DGP and auNN is confirmed here.
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Table 9: Test NLL of auNN and DGP for different values of M (number of inducing points) and D (number of hidden units). Mean and one standard error over 5
independent runs on the UCI Kin8 dataset are shown. The lower the better.

auNN-RBF auNN-TRI DGP

D M 5 10 25 50 75 100 5 10 25 50 75 100 5 10 25 50 75 100

5 -0.85±0.01 -0.89±0.01 -0.89±0.01 -0.89±0.01 -0.89±0.01 -0.90±0.01 -0.78±0.00 -0.79±0.03 -0.78±0.05 -0.77±0.04 -0.67±0.06 -0.71±0.04 -0.67±0.01 -0.98±0.00 -1.19±0.01 -1.30±0.01 -1.33±0.01 -1.34±0.01
10 -1.06±0.01 -1.09±0.01 -1.09±0.01 -1.09±0.01 -1.10±0.02 -1.10±0.01 -0.96±0.01 -1.02±0.01 -1.03±0.01 -0.98±0.03 -0.94±0.03 -0.89±0.03 -0.69±0.01 -0.98±0.00 -1.19±0.00 -1.30±0.01 -1.33±0.01 -1.35±0.01
25 -1.27±0.02 -1.30±0.02 -1.30±0.02 -1.30±0.02 -1.31±0.01 -1.31±0.02 -1.09±0.01 -1.19±0.01 -1.22±0.01 -1.15±0.02 -1.11±0.01 -1.06±0.03 -0.68±0.01 -0.98±0.00 -1.17±0.01 -1.26±0.01 -1.29±0.01 -1.30±0.01
50 -1.33±0.01 -1.34±0.01 -1.34±0.02 -1.33±0.01 -1.34±0.02 -1.32±0.03 -1.15±0.01 -1.24±0.01 -1.29±0.01 -1.26±0.01 -1.24±0.02 -1.19±0.02 -0.69±0.01 -0.96±0.01 -1.16±0.01 -1.21±0.01 -1.22±0.01 -1.24±0.01

Table 10: Test RMSE of auNN and DGP for different values of M (number of inducing points) and D (number of hidden units). Mean and one standard error over 5
independent runs on the UCI Kin8 dataset are shown. The lower the better.

auNN-RBF auNN-TRI DGP

D M 5 10 25 50 75 100 5 10 25 50 75 100 5 10 25 50 75 100

5 0.10±0.00 0.10±0.00 0.10±0.00 0.10±0.00 0.10±0.00 0.10±0.00 0.11±0.00 0.11±0.00 0.11±0.01 0.11±0.00 0.12±0.01 0.12±0.00 0.12±0.00 0.09±0.00 0.07±0.00 0.07±0.00 0.06±0.00 0.06±0.00
10 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.09±0.00 0.08±0.00 0.08±0.00 0.09±0.00 0.09±0.00 0.10±0.00 0.12±0.00 0.09±0.00 0.07±0.00 0.06±0.00 0.06±0.00 0.06±0.00
25 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.12±0.00 0.09±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.06±0.00
50 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.12±0.00 0.09±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00

Table 11: Test NLL of auNN and DGP for different values of M (number of inducing points) and D (number of hidden units) as the depth increases from L = 2 to
L = 4. Mean and one standard error over 5 independent runs on the UCI Power dataset are shown. The lower the better.

auNN-RBF auNN-TRI DGP

L D M 5 10 25 50 75 100 5 10 25 50 75 100 5 10 25 50 75 100

2

5 2.86±0.02 2.84±0.02 2.84±0.02 2.84±0.02 2.84±0.02 2.84±0.02 2.85±0.02 2.83±0.02 2.82±0.02 2.84±0.02 2.89±0.03 2.84±0.02 2.87±0.02 2.85±0.02 2.83±0.02 2.82±0.02 2.81±0.02 2.81±0.02
10 2.84±0.02 2.83±0.02 2.82±0.02 2.81±0.02 2.81±0.02 2.81±0.02 2.84±0.02 2.82±0.02 2.80±0.02 2.81±0.02 2.81±0.02 2.81±0.02 2.87±0.02 2.86±0.02 2.83±0.02 2.83±0.02 2.82±0.02 2.81±0.02
25 2.83±0.02 2.81±0.02 2.81±0.02 2.81±0.02 2.81±0.02 2.81±0.02 2.83±0.02 2.80±0.02 2.78±0.02 2.78±0.02 2.78±0.02 2.79±0.02 2.87±0.02 2.85±0.02 2.83±0.02 2.82±0.02 2.81±0.02 2.81±0.02
50 2.82±0.02 2.81±0.02 2.81±0.02 2.80±0.02 2.81±0.02 2.81±0.02 2.82±0.02 2.80±0.02 2.77±0.02 2.76±0.02 2.76±0.02 2.76±0.03 2.86±0.02 2.87±0.02 2.85±0.02 2.83±0.02 2.82±0.02 2.81±0.02

3

5 2.84±0.02 2.83±0.02 2.83±0.02 2.83±0.03 2.83±0.02 2.83±0.02 2.84±0.02 2.83±0.02 2.82±0.02 2.82±0.02 2.85±0.02 2.82±0.02 2.86±0.02 2.83±0.02 2.82±0.02 2.79±0.02 2.78±0.02 2.77±0.01
10 2.81±0.02 2.81±0.02 2.81±0.02 2.81±0.02 2.81±0.02 2.80±0.02 2.82±0.02 2.80±0.02 2.79±0.02 2.79±0.02 2.78±0.02 2.78±0.02 2.86±0.02 2.83±0.02 2.80±0.02 2.81±0.02 2.82±0.02 2.81±0.02
25 2.80±0.02 2.79±0.02 2.77±0.02 2.77±0.02 2.77±0.02 2.77±0.02 2.79±0.02 2.77±0.02 2.74±0.02 2.72±0.02 2.74±0.03 2.74±0.03 2.86±0.02 2.85±0.02 2.83±0.02 2.82±0.02 2.81±0.02 2.81±0.02
50 2.78±0.02 2.78±0.02 2.77±0.02 2.76±0.02 2.76±0.02 2.76±0.03 2.78±0.02 2.75±0.02 2.71±0.02 2.71±0.03 2.70±0.03 2.70±0.02 2.87±0.02 2.87±0.02 2.84±0.02 2.82±0.02 2.82±0.02 2.81±0.02

4

5 2.84±0.02 2.83±0.02 2.82±0.02 2.83±0.02 2.82±0.01 2.83±0.02 3.69±0.35 2.83±0.01 2.83±0.02 2.83±0.02 2.83±0.02 2.82±0.02 2.86±0.02 2.83±0.02 2.80±0.02 2.79±0.02 2.78±0.02 2.77±0.02
10 2.81±0.02 2.80±0.02 2.80±0.02 2.80±0.02 2.82±0.02 2.81±0.02 2.83±0.02 2.81±0.01 2.79±0.01 2.79±0.02 2.79±0.02 2.79±0.02 2.86±0.02 2.84±0.02 2.83±0.02 2.79±0.02 2.82±0.02 2.81±0.02
25 2.79±0.02 2.78±0.02 2.77±0.02 2.75±0.02 2.77±0.02 2.76±0.02 2.80±0.01 2.78±0.02 2.75±0.02 2.74±0.02 2.75±0.03 2.75±0.02 2.86±0.02 2.85±0.02 2.83±0.02 2.82±0.02 2.82±0.02 2.81±0.02
50 2.79±0.02 2.80±0.02 2.75±0.03 2.77±0.03 2.75±0.03 2.74±0.03 2.79±0.01 2.77±0.01 2.73±0.02 2.74±0.02 2.74±0.02 2.75±0.02 2.87±0.02 2.85±0.02 2.84±0.02 2.82±0.02 2.82±0.02 2.81±0.02
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Table 12: Test RMSE of auNN and DGP for different values of M (number of inducing points) and D (number of hidden units) as the depth increases from L = 2 to
L = 4. Mean and one standard error over 5 independent runs on the UCI Power dataset are shown. The lower the better.

auNN-RBF auNN-TRI DGP

L D M 5 10 25 50 75 100 5 10 25 50 75 100 5 10 25 50 75 100

2

5 4.20±0.09 4.14±0.08 4.12±0.08 4.13±0.08 4.13±0.07 4.14±0.09 4.16±0.08 4.09±0.08 4.06±0.09 4.12±0.09 4.32±0.13 4.12±0.09 4.24±0.10 4.19±0.09 4.08±0.09 4.05±0.08 4.03±0.07 4.01±0.07
10 4.15±0.09 4.08±0.08 4.03±0.08 4.03±0.07 4.03±0.09 4.03±0.09 4.10±0.10 4.03±0.08 3.99±0.08 4.01±0.08 4.03±0.09 4.03±0.07 4.24±0.10 4.21±0.09 4.10±0.08 4.08±0.08 4.03±0.08 4.02±0.07
25 4.09±0.08 4.01±0.08 4.01±0.08 4.01±0.08 4.00±0.09 4.02±0.08 4.04±0.08 3.96±0.07 3.90±0.08 3.91±0.08 3.89±0.08 3.92±0.07 4.24±0.09 4.18±0.09 4.10±0.09 4.06±0.08 4.03±0.08 4.01±0.08
50 4.06±0.08 4.00±0.07 4.00±0.07 3.98±0.07 4.01±0.09 3.99±0.08 4.04±0.08 3.93±0.07 3.86±0.09 3.83±0.08 3.81±0.08 3.81±0.10 4.24±0.10 4.24±0.10 4.18±0.09 4.11±0.09 4.06±0.09 4.03±0.08

3

5 4.14±0.09 4.08±0.08 4.11±0.06 4.09±0.11 4.11±0.09 4.09±0.09 4.10±0.09 4.10±0.07 4.02±0.08 4.04±0.08 4.15±0.08 4.04±0.09 4.22±0.09 4.10±0.08 4.07±0.09 3.92±0.07 3.90±0.06 3.86±0.05
10 4.02±0.08 4.02±0.08 4.00±0.07 4.02±0.07 4.02±0.07 3.99±0.07 4.01±0.08 3.95±0.07 3.92±0.07 3.92±0.08 3.90±0.07 3.90±0.08 4.20±0.09 4.10±0.08 3.98±0.08 3.99±0.07 4.05±0.08 4.03±0.08
25 3.96±0.08 3.93±0.07 3.87±0.07 3.87±0.07 3.87±0.07 3.83±0.07 3.88±0.08 3.84±0.08 3.76±0.07 3.67±0.06 3.75±0.10 3.71±0.09 4.23±0.10 4.19±0.08 4.11±0.09 4.06±0.08 4.03±0.08 4.02±0.08
50 3.89±0.08 3.88±0.07 3.85±0.06 3.80±0.09 3.82±0.07 3.80±0.08 3.86±0.08 3.77±0.09 3.62±0.06 3.61±0.08 3.59±0.09 3.60±0.07 4.24±0.10 4.24±0.10 4.12±0.09 4.07±0.08 4.04±0.08 4.03±0.08

4

5 4.14±0.10 4.10±0.08 4.08±0.08 4.11±0.09 4.07±0.05 4.09±0.09 12.00±3.26 4.04±0.07 4.06±0.09 4.07±0.07 4.09±0.08 4.07±0.08 4.22±0.09 4.10±0.08 3.97±0.07 3.93±0.07 3.88±0.07 3.85±0.07
10 4.01±0.08 3.98±0.07 3.99±0.07 3.99±0.07 4.05±0.07 4.01±0.06 4.03±0.09 3.99±0.06 3.94±0.06 3.94±0.07 3.92±0.07 3.93±0.08 4.20±0.09 4.12±0.08 4.08±0.10 3.94±0.07 4.06±0.08 4.01±0.08
25 3.93±0.09 3.91±0.08 3.87±0.07 3.78±0.06 3.84±0.07 3.82±0.07 3.94±0.07 3.85±0.08 3.76±0.08 3.75±0.08 3.77±0.10 3.78±0.09 4.24±0.09 4.18±0.09 4.11±0.09 4.06±0.08 4.04±0.08 4.03±0.08
50 3.92±0.08 3.96±0.07 3.78±0.11 3.82±0.07 3.74±0.10 3.70±0.07 3.90±0.08 3.82±0.06 3.71±0.09 3.73±0.09 3.75±0.08 3.77±0.08 4.24±0.09 4.20±0.10 4.12±0.09 4.06±0.08 4.04±0.08 4.03±0.08

19



Published as a conference paper at ICLR 2021

(a) auNN

(b) DGP

(c) DGP-add

Figure 11: Representation of two hidden layers (with two units per layer) for auNN (a), DGP (b), and
DGP-add (c).

D COMPUTATIONAL COST SUMMARY

Table 15 shows the training computational complexity for the methods compared in this paper.
Moreover, in order to evaluate the computational cost in practice, the table also shows the actual
running time for the experiment of Section 3.1. BNN is the fastest algorithm, since it utilizes
a factorized Gaussian for the approximate posterior. Although fBNN has the same theoretical
complexity, the Spectral Stein Gradient Estimator (Shi et al., 2018) is used to compute the KL
divergence gradients. Moreover, a GP prior is specified at function space, for which a GP must be
trained as a previous step. DGP and auNN have the same theoretical complexity. In practice, auNN is
typically faster because it requires fewer inducing points, recall Section 3.3 and Table 3. The running
time in Table 15 is very similar for both because the same amount of inducing points (M = 10) is
used in this simple experiment.

5 10 25 50 75100
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25
50
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3

Figure 12: Test NLL on Power dataset for different values of D and M (the lower the better).
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Figure 13: Test RMSE on Power dataset for different values of D and M (the lower the better).

Table 13: Standard error for the results in Table 2. Three random train-test splits are considered.

auNN DGP

N D RBF-2 RBF-3 RBF-4 TRI-2 TRI-3 TRI-4 DGP-2 DGP-3 DGP-4

Brier HIGGS 11M 28 0.0001 0.0007 0.0008 0.0003 0.0005 0.0009 0.0018 0.0016 0.0006
SUSY 5M 18 0.0005 0.0005 0.0006 0.0005 0.0005 0.0005 0.0011 0.0014 0.0021

ECE HIGGS 11M 28 0.0015 0.0020 0.0022 0.0010 0.0035 0.0019 0.0006 0.0004 0.0008
SUSY 5M 18 0.0012 0.0011 0.0014 0.0018 0.0012 0.0014 0.0005 0.0006 0.0008

Table 14: Standard error for the results in Table 3. Fifty independent runs are considered.

auNN DGP

RBF-2 RBF-3 RBF-4 TRI-2 TRI-3 TRI-4 DGP-2 DGP-3 DGP-4

HIGGS 0.0258 0.0325 0.0371 0.0188 0.0318 0.0378 0.0248 0.0266 0.0269
SUSY 0.0215 0.0274 0.0369 0.0202 0.0258 0.0350 0.0108 0.0126 0.0144
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Figure 14: DGP and GP trained on the dataset of Section 3.1. The experimental details are analogous
to those in Section 3.1, see Appendix B. Whereas DGP underestimates the uncertainty for in-between
data, a simpler GP does provide increased uncertainty in the gap.

Table 15: Training computational cost for the models compared in this paper. The running time (in
seconds) corresponds to the mean and one standard error over 10 independent runs of the experiment
in Section 3.1. More details in Appendix D.

BNN fBNN DGP auNN

Running time (s) 15.21± 0.78 51.92± 1.07 22.37± 0.97 21.16± 0.89

Complexity O(N
∑

i D
iDi+1) O(N

∑
i D

iDi+1) O(NM2 ∑
i D

i) O(NM2 ∑
i D

i)
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