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In this paper we analyze global and locally adaptive super resolution
Bayesian methodology for pansharpening of multispectral images. The dis-
cussed methodologies incorporate prior knowledge on the expected character-
istics of the multispectral images, uses the sensor characteristics to model the
observation process of both panchromatic and multispectral images, and in-
cludes information on the unknown parameters in the model in the form of hy-
perprior distributions. Using real and synthetic data, the pansharpened multi-
spectral images are compared with the images obtained by other parsharpening
methods and their quality is assessed both qualitatively and quantitatively.
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1. Introduction

Nowadays most remote sensing systems include sensors able to simultane-
ously capture several low resolution images of the same area on different
wavelengths, thus forming a multispectral image, along with a high resolu-
tion panchromatic image. The main characteristics of such remote sensing
systems are the number of bands of the multispectral image and the reso-
lution of those bands and the panchromatic image. The main advantage of
the multispectral image is to allow for a better land type and use recogni-
tion but, due to its lower resolution, information on the objects’ shape and
texture may be lost. On the other hand, the panchromatic image allows
for a better recognition of the objects in the image and their textures but
provides no information about their spectral properties.

Throughout this paper the term multispectral image reconstruction will
refer to the joint processing of the multispectral and panchromatic images
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in order to obtain a new multispectral image that, ideally, will exhibit
the spectral characteristics of the observed multispectral image and the
resolution and quality of the panchromatic image.

A few approximations to multispectral image reconstruction have been
proposed in the literature (see, for instance, Ref. 1–4) including a few super-
resolution based methods.5,6

In this paper we follow the hierarchical Bayesian approach to obtain
a solution to the super resolution reconstruction of multispectral images
problem and discuss the utilization of global and spatially varying image
models. Then, applying variational methods to approximate probability
distributions, we estimate the unknown parameters, and the high resolution
multispectral image.

The paper is organized as follows. In section 2 the Bayesian modeling
and inference for super resolution reconstruction of multispectral images is
presented. The required probability distributions for the Bayesian modeling
of the super resolution problem are formulated in section 3. The Bayesian
analysis and posterior probability approximation to obtain the parameters
and the super resolution reconstructed image is performed in section 4.
Experimental results on a real Landsat 7 ETM+ image are described in
section 5 and, finally, section 6 concludes the paper.

2. Bayesian Problem Formulation

Let us assume that y, the multispectral image we would observe under ideal
conditions with a high resolution sensor, has B bands yb, b = 1, . . . , B, that
is, y = [yt

1,y
t
2, . . . ,y

t
B ]t, where each band is of size p = m × n pixels and

t denotes the transpose of a vector or matrix. Each band of this image is
expressed above as a column vector by lexicographically ordering its pixels.
In real applications, this high resolution image is not available. Instead,
we observe a low resolution multispectral image Y with B bands Yb, b =
1, . . . , B, that is, Y = [Yt

1,Y
t
2, . . . ,Y

t
B ]t, where each band is of size P =

M × N pixels with M < m and N < n. Each band of this image is also
expressed as a column vector by lexicographically ordering its pixels. The
sensor also provides us with a panchromatic image x of size p = m × n,
obtained by spectrally averaging the unknown high resolution images yb.

The objective of the high resolution multispectral image reconstruction
problem is to obtain an estimate of the unknown high resolution multispec-
tral image y given the panchromatic high resolution observation x and the
low resolution multispectral observation Y.

Using the hierarchical Bayesian paradigm (see, for example, Ref. 7) the
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following joint distribution for ΩM , y, Y, and x is defined p(ΩM ,y,Y,x) =
p(ΩM )p(y|ΩM )p(Y,x|y,ΩM ), where ΩM denotes the set of hyperparam-
eters needed to describe the required probability density functions (obvi-
oulsy, depending on the set of hyperparameters the probability models used
in the problem will differ).

The Bayesian paradigm dictates that inference on the unknowns
(ΩM ,y), should be based on p(ΩM ,y|Y,x) = p(ΩM ,y,Y,x)/p(Y,x).

3. Bayesian Modeling

We assume that Y and x, for a given y and a set of parame-
ters ΩM , are independent and consequently write p(Y,x|y,ΩM ) =
p(Y|y,ΩM )p(x|y,ΩM ).

Each band, Yb, is related to its corresponding high resolution image by

Yb = DHyb + nb, ∀b = 1, · · · , B, (1)

where H is a p × p blurring matrix and D is a P × p decimation operator
and nb is the capture noise, assumed to be Gaussian with zero mean and
variance 1/βb.

Given the degradation model for multispectral image super-resolution
described by Eq. (1) and assuming independence between the noise observed
in the low resolution images, the distribution of the observed Y given y and
a set of parameters ΩM is

p(Y|y,ΩM )=
B∏

b=1

p(Yb|yb, βb)∝
B∏

b=1

βb
P/2 exp

{
−1

2
βb ‖Yb −Hyb ‖2

}
. (2)

As already described, the panchromatic image x is obtained by spectrally
averaging the unknown high resolution images yb, modeled as

x =
B∑

b=1

λbyb + v, (3)

where λb ≥ 0, b = 1, 2, · · · , B, are known quantities that can be obtained,
as we will see later, from the sensor spectral characteristics, and v is the
capture noise that is assumed to be Gaussian with zero mean and variance
γ−1. Note that, usually, x does not depend on all the multispectral image
bands but on a subset of them, i. e., some of the λb’s are equal to zero.

Using the degradation model in Eq. (3), the distribution of the panchro-
matic image x given y, and a set of parameters Ω is given by

p(x|y,ΩM ) ∝ γp/2 exp

{
−1

2
γ ‖ x−

B∑
b=1

λbyb ‖2

}
. (4)
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Fig. 1. (a) Pixel and inverse variance notation. (b) Graphical model showing the rela-
tionships between the variables.

From the above definition the parameter vector (γ, β1, . . . , βB) is a sub-
set of ΩM . However, although the estimation of (γ, β1, . . . , βB) can be easily
incorporated into the estimation process, we will assume here that these pa-
rameters have been estimated in advance and concentrate on gaining insight
into the distribution of the prior image parameters, as described next.

3.1. Global and Local Image Modeling

In this paper we do not use the correlation among different high resolution
bands but concentrate instead on modeling the local variation at each band.

In our global image model we assume a Conditional Auto-Regressive
(CAR) model.8 Then we have for the global model M = G,

pG(y|ΩG) ∝
B∏

b=1

ᾱ
p
2
b exp

{
−1

2
ᾱb

[
yt

bCyb

]}
, (5)

where C is the laplacian operator. The set of hyperparameters then becomes
ΩG = (ᾱ1, . . . , ᾱB).

We now proceed to define a local model M = L, for the high resolution
multispectral image. In its definition we use the notation i1, i2, . . . , i8 to
denote the eight pixels around pixel i (see Fig. 1(a)). Then following the
approximation in Ref. 9 which extends Conditional Auto-Regressions to
take into account local variability we write (see Ref. 10)

p(y|ΩL)=
B∏

b=1

p(yb|αb)∝
B∏

b=1

p∏
i=1

4∏
l=1

αb(i,il)
1
8 exp

{
−1

2
αb(i,il)[yb(i)−yb(il)]

2

}
, (6)

where αb(i, il) controls, for the b-band, the smoothness of the restoration
between pixels i and il and αb = (αb(i, il) | i = 1, . . . , p, l = 1, . . . , 4).

The set of hyperparameters then becomes ΩL = (α1, . . . ,αB). Note
that if αb(i, il) = ᾱb, i = 1, . . . , p, l = 1, . . . , 4, the local image model
becomes the global model defined above.
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A large part of the Bayesian literature is devoted to finding hyperprior
distributions p(ΩM ), M ∈ {G, L}, for which p(ΩM ,y|x,Y) can be calcu-
lated in a straightforward way or can be approximated. These are the so
called conjugate priors that, as we will see later, have the intuitive feature
of allowing one to begin with a certain functional form for the prior and end
up with a posterior of the same functional form, but with the parameters
updated by the sample information.

Taking the above considerations about conjugate priors into account,
we will assume for the hyperparameters of the global model that

p(ΩG) =
B∏

b=1

p(ᾱb | āo
b , c̄

o
b), (7)

c̄o
b > 0 and āo

b > 0, while for the local model we will use the following
distribution on the hyperparameters

p(ΩL) =
B∏

b=1

p∏
i=1

4∏
l=1

p(αb(i, il) | ao
b , c

o
b), (8)

where co
b > 0 and ao

b > 0 (note that the same hyperprior is assumed for all
the α’s in the same band).

In both, the local and global models, gamma distributions are used to
define the hyperpriors of the precision parameters αs, that is, for ω ∈ ΩM

we have

p(ω | uω, vω) ∝ ωuω−1 exp[−vωω], (9)

where uω > 0 and vω > 0. This gamma distribution has the following mean
and variance

E[ω] = uω/vω, var[ω] = uω/v2
ω. (10)

Finally, combining the first and second stage of the problem modeling
we have the global distribution

p(ΩM ,y,Y,x) = p(ΩM )p(y|ΩM )p(Y|y)p(x|y), (11)

for M ∈{G, L}. The joint probability model is shown in Fig. 1(b).

4. Bayesian inference and variational approximation of the
posterior distribution for super resolution reconstruction
of multispectral images

For our selection of hyperparameters in the previous section, the set of all
unknowns is (ΩM ,y).



March 16, 2007 11:19 WSPC - Proceedings Trim Size: 9in x 6in Erice2007˙rms˙10pag

6

As already explained, the Bayesian paradigm dictates that inference on
(ΩM ,y) should be based on p(ΩM ,y|Y,x). Since p(ΩM ,y|Y,x) can not
be found in closed form, we will apply variational methods to approximate
this distribution by the distribution q(ΩM ,y).

The variational criterion used to find q(ΩM ,y) is the minimization of
the Kullback-Leibler divergence, given by11,12

CKL(q(ΩM ,y)||p(ΩM ,y|Y,x))=
∫

q(ΩM ,y) log
(

q(ΩM ,y)
p(ΩM ,y|Y,x)

)
dΩMdy

=
∫

q(ΩM ,y) log
(

q(ΩM ,y)
p(ΩM ,y,Y,x)

)
dΩMdy + const, (12)

which is always non negative and equal to zero only when q(ΩM ,y) =
p(ΩM ,y|Y,x).

We choose to approximate the posterior distribution p(ΩM ,y|Y,x) by
the distribution

q(ΩM ,y) = q(ΩM )qD(y), (13)

where q(ΩM ) denotes a distribution on ΩM and qD(y) denotes a degenerate
distribution on y.

Note that other distribution approximations are also possible. However,
as we will see later the one used here alleviates the problem of having
to estimate an enormous amount of hyperparameters. We now proceed to
find the best of these distributions in the divergence sense. Let us assume
that yk is the current estimate of the multispectral image where qD(y) is
degenerate.

Given qk
D(y), we can obtain an estimate of q(Ω) which reduces the

KL-divergence by solving

qk+1(ΩM ) = arg min
q(ΩM )

CKL(q(ΩM ), qk
D(y) ‖ p(ΩM ,y|Y,x)). (14)

Differentiating the integral in the right hand side of Eq. (14) with re-
spect to q(ΩM ) and setting it equal to zero we have that if M = G

then qk+1(ΩG) satisfies qk+1(ΩG) =
∏B

b=1 qk+1(ᾱb), where qk+1(ᾱb) =

p
(
ᾱb|āo

b + p
2 , c̄o

b + 1
2

[
yk

b

t
Cyk

b

])
. These distributions have the following

means

E[ᾱb]qk+1(ΩG) =
āo

b + p
2

c̄o
b + 1

2

[
yk

b

tCyk
b

] , b = 1, . . . , B, (15)

which can be rewritten as

1
E[ᾱb]qk+1(ΩG)

= µ̄b
c̄o
b

āo
b

+ (1− µ̄b)
yk

b

t
Cyk

b

p
, b = 1, . . . , B, (16)
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where µ̄b = āo
b

p/2+āo
b
, b = 1 . . . , B.

The above equations indicate that µ̄b, b = 1, . . . , B, can be understood
as normalized confidence parameters taking values in the interval [0, 1).
That is, when they are zero no confidence is placed on the given hyperpa-
rameters, while when the corresponding normalized confidence parameter
is asymptotically equal to one it fully enforces the prior knowledge of the
mean (no estimation of the hyperparameters is performed). Furthermore,
for each hyperparameter, the inverse of the mean of its posterior distri-
bution approximation is a weighted sum of the inverse of the mean of its
hyperprior distribution (see Eq. (10)) and its maximum likelihood estimate.

If we use the local image model, that is, M = L, we have

qk+1(ΩL) =
B∏

b=1

p∏
i=1

4∏
l=1

qk+1(αb(i, il)),

where qk+1(αb(i, il)) = p
(
αb(i, il) | ao

b + 1
8 , 1

2 [yk
b (i)− yk

b (il)]2 + co
b

)
. These

distributions have the following means

E[αb(i, il)]qk+1(ΩL) =
ao

b + 1
8

co
b + 1

2 [yk
b (i)− yk

b (il)]2
= αk+1

b (i, il). (17)

Note that Eq. (17) can be rewritten as
1

E[αb(i, il)]qk+1(ΩL)

= µb
co
b

ao
b

+ (1− µb)4[yk
b (i)− yk

b (il)]2, (18)

where µb = ao
b

ao
b+ 1

8
. These equations indicate, as for the global model, that

µb can be understood as a normalized confidence parameter taking values
in the interval [0, 1).

Given now qk+1(ΩM ) we can obtain an estimate of yk+1
M (the value

where qk+1
D (y) is degenerate, which obviously will depend on the image

model used) which reduces the KL-divergence by solving

yk+1
M = arg min

y

{
−E[log p(ΩM ,y,Y,x)]qk+1(ΩM )

}
.

The convergence of the parameters defining the distributions qk+1(ΩM )
and yk+1

M can be used as stopping criterion for the iterative procedure that
alternates between the estimation of both distributions.

5. Experimental Results

Let us now compare the use of the described local and global image models
in the reconstruction of synthetic color images and real Landsat ETM+
images.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Original HR color image; (b) Observed LR color image (the image has been
resized by zero-order hold to the size of the high resolution image for displaying purposes);
(c) Panchromatic HR image; (d) Bicubic interpolation of (b); (e) Reconstruction using
the global image model proposed in Ref. 8; (f) Reconstruction using the local image
model proposed in Ref. 10.

Following Eq. (2), the color image in Fig. 2(a) was convolved with the
mask 0.25×12×2 to simulate the sensor integration and then downsampled
by a factor of two in each direction. Zero mean Gaussian noise with vari-
ance 4 was then added to obtain the observed LR image in Fig. 2(b). The
panchromatic image, depicted in Fig. 2(c) was obtained from the original
HR color image using the model in Eq. (3) with λb = 1/3, for b = 1, 2, 3,
and Gaussian noise with variance 6.25.

The reconstruction provided by the global model proposed in Ref. 8
is shown in Fig. 2(e). The method in Ref. 8 was also used to estimate
the parameters, βb, b = 1, 2, 3, and γ. This method also provides values
for the parameters ᾱb, b = 1, 2, 3 of the global image model. Several local
model reconstructions were then obtained using the method in Ref. 10, they
correspond to using as uo

b/co
b values ranging from 10−2 to 102 times ᾱb and

in Eq. (18) values of µb ranging from 0 to 1 (note that knowing uo
b/co

b and
µb, the values of uo

b and co
b can be calculated easily).

The spatial improvement of the reconstructed image has been assessed
by means of the correlation of the high frequency components (COR) which
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Table 1. PSNR and COR values for the color image reconstructions.

PSNR COR

Band 1 2 3 1 2 3

Bicubic interpolation 12.7 12.7 12.7 0.50 0.50 0.51
Using the global image model 13.5 13.4 13.4 0.68 0.68 0.68
Using the local image model 18.9 19.0 18.9 0.99 0.99 0.99

measures the spatial similarity between each reconstructed multispectral
image band and the panchromatic image, and spectral fidelity by means
of the peak signal-to-noise ratio (PSNR) between the reconstructed and
original multispectral image bands. Bicubic interpolation of each band was
used as a reference method for comparison.

Table 1 depicts the resulting PSNR and COR values for all the re-
constructed images. The table clearly shows that the proposed methods
performs better than bicubic interpolation and that using a local image
model provides considerably better results than using a global image one.
Visual inspection of the results shows that with the use of a global image
model we obtain improved spatial resolution but the details in the image
are still oversmoothed. Using the local image model, however, we are able
to incorporate the high frequency information from the panchromatic im-
age into the reconstruction while preserving the spectral properties of the
multispectral image.

Global and local image models are also compared on a real Landsat
ETM+ image. Figure 3(a) depicts a 64 × 64 pixels false RGB color region
of interest composed of bands 4, 3, and 2 of the Landsat ETM+ multispec-
tral image, and Fig. 3(b) its corresponding 128× 128 panchromatic image.
The multispectral image was resized to the size of the panchromatic image
for displaying purposes. The contribution of each multispectral image band
to the panchromatic, that is, the values of λb, b = 1, 2, . . . , 4, were calcu-
lated from the spectral response of the ETM+ sensor. The obtained values
were equal to 0.0078, 0.2420, 0.2239, and 0.5263, respectively. Reconstruc-
tions using the global and local image models are shown in Fig. 3(c) and
3(d), respectively. From these results it is clear that the local image model
based method preserves the spectral properties of the multispectral image
while successfully incorporating the high frequencies from the panchromatic
image.

6. Conclusions

In this paper the reconstruction of multispectral images has been formu-
lated from a superresolution point of view. A hierarchical Bayesian frame-
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(a) (b) (c) (d)

Fig. 3. (a) Observed multispectral image; (b) Panchromatic image; (c) Reconstruction
using the global image model; (d) Reconstruction using the local image model.

work has been presented to incorporate global and local prior knowledge on
the expected characteristics of the multispectral images, model the observa-
tion process of both panchromatic and low resolution multispectral images,
and also include information on the unknown parameters in the model in
the form of hyperprior distributions. The methods have been tested exper-
imentally.
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