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Abstract. Mitosis detection in hematoxylin and eosin (H&E) images is
prone to error due to the unspecificity of the stain for this purpose. Al-
ternatively, the inmunohistochemistry phospho-histone H3 (PHH3) stain
has improved the task with a significant reduction of the false negatives.
These facts point out on the interest in combining features from both
stains to improve mitosis detection. Here we propose an algorithm that,
taking as input a pair of whole-slides images(WSI) scanned from the same
slide and stained with H&E and PHH3 respectively, find the matching
between the stains of the same object. This allows to use both stains
in the detection stage. Linear filtering in combination with local search
based on a kd-tree structure is used to find potential matches between
objects. A Siamese convolutional neural network (SCNN) is trained to
detect the correct matches and a CNN model is trained for mitosis de-
tection from matches. At the best of our knowledge, this is the first time
that mitosis detection in WSI is assessed combining two stains. The ex-
periments show a strong improvement of the detection Fl-score when
H&E and PHH3 are used jointly compared to the single stain F1-scores.
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1 Introduction

The quantification of mitosis in histopathological tissues and specifically its ratio
per square millimeter is one of the most relevant factors in the prognosis of
cancer. Unfortunately, the process of mitosis detection on images stained with
standard hematoxylin and eosin (H&E) is difficult and prone to errors due to
multiple factors consequence of its unspecificity [16]. H&E staining only helps
indirectly to mitosis identification, being the hyperchromaticity induced on the
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mitotic cell nucleus one of the its most salient features. Unfortunately, many
others tissue parts are stained with a similar color too.

Phospho-histone H3 (PHH3) is a well-known immunomarker, specific for cells
undergoing mitoses [14]. This fact causes PHH3 to improve the inter-observer
variability of the mitosis count by a decrease in false negatives, but at the same
time is prone to false positives as for instance in inter-phase tumor cells with
phosphorylated core protein H3. The staining with PHH3 has meant an impor-
tant improvement in mitosis detection for many type of cancers [12,4].

The technology for the whole scanning of tissue slides (WSI) is able of digi-
tizing a slide at resolutions of 0.25 — 0.16 microns per pixel, which means image
sizes of 10'° pixels. In this setting, the task of mitosis detection can only be
addressed using accurate and efficient algorithms. The convolutional neuronal
network (CNN) models have demonstrated, in recent years, a clear superiority
over traditional approaches in this task. [10,6]. Here we focus on these kind of
models.

An issue that remains to be explored in some detail is the relevance of the
combination of stains in the mitosis detection process. Recently, in [15] an in-
teresting approach taking advantage of the properties of both stains, H&E and
PHHS3, to build a mitosis detector on H&E has been proposed. This approach
uses the PHH3 information to locate ground-truth mitosis on WSI but the goal
is a classifier on H&E. Although the approach means an important step in the
detection of mitosis in WSI, several issues still remain open. First, to design a
simple training model taking advantage of both stains simultaneously. Second,
the labeling process should take into account both stains. Fig.1 shows some cases
of mitosis where the labeling from a single stain is misleading. Finally, assess-
ing the contribution of trained detectors with both stains is a relevant issue to
improve routine in daily practice.

In contrast to the above discussed approach, here we propose the simultane-
ous use of both stains in the labeling and detection stages. To do that we stain
twice each slide taking advantage of the property of the antigenic recovering of
the immunochemistry for destaining the H&E. This strategy reports important
benefits: (i) better labeling, (ii) training dataset with both stains, (iii) improve-
ment in detection score. The two most important challenges in our approach are
a fast search for potential correct matches and an assessment model for matches.

Our main contributions in this paper are: (i) a fast and efficient technique
to generate matching between both stains of the same object, (ii) the proposal
of a SCNN model to validate the matches; (iii) we show that training from both
stains means a clear improvement in detection score compared to use of only
one. Finally, we emphasize that our searching algorithm makes very easy the
labeling of pairs.

The rest of the paper is as follows. Section.2 defines the problem. Section.3
discuss the proposed approach. Section.4 shows the experimental results, and in
Section.b the discussion and conclusions are presented.
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Fig. 1: This figure shows by rows examples of two difficult scenarios regarding
mitosis detection in H&E or PHH3. The first row shows examples where the
mitoses are very difficult to detect in H&E but can be easily detected on PHH3.
The second row shows examples where the PHH3 stain indicates positive mitosis
but the H&E stain shows that it is not.

2 Problem definition

To begin with we focus on the automatic object matching between stains of
the same histological tissue. The relevance of this task is due to the lack of
consensus between pathologists when they are asked to label a set of cells as
mitosis or no-mitosis in H&E images. In the MYTHOS-ATYPIA challenge[5], for
instance, multi-labels had to be considered. Daily practice has shown that many
ambiguities can be solve when both stains are observed together. Fig.1 shows
some examples. This has motivated the interest to know how much a detector can
improve when training with both stains. The automatic identification of correct
matches between stains it is not a straightforward task. The manipulation of the
slide in the double staining process, that is, staining with H&E and scanning,
destaining, and restaining again with PHH3 and new scanning, introduce small
local deformations on the tissue that makes impossible automatic matching of
the images using geometrical registering. In addition, the different response of
the tissue to each one of the stains also introduce strong differences in the shape
and color of the surfaces of the cells as shows Fig.1. To overcome all these
deformations, we propose a search strategy to extract possible matches and
a similarity distance to find correct matches. For this latter task, we propose
a Siamese CNN (SCNN) [3,8] since the CNN models have shown to be very
efficient in extracting similar features from images, that being visually different,
are similar in a some semantic context. At one last step, the correct matches are
assessed, for mitosis presence, by a CNN classifier.

3 Methodology

3.1 Matches extraction

Let’s denote by p-WSI=(Ipuns, Ing) the two WSI images of the same slide with
different stain. We extract the objects present in each image applying standard
cell detection functions, [1], and eliminating all those objects with a size greater
than a preset threshold. For this, we use the hematoxiline and DAB bands of the
H&E and PHH3 images respectively. The center of mass of the remaining con-
nected components (CC) is computed. A kd-tree data structure (KdT) [2] is fed
with the coordinates of the centers of the H&E image. The centers of the PHH3
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Fig.2: Images (a) and (b) show, inside circles, objects detected on PHH3 and
H&E respectively. Images (¢) and (d) show, in circles of color, SURF points
detected in PHH3 and H&E respectively. (Best see it at higher magnification)

image are saved as a list of points, Lpap. In order to reduce the number of pair
to analyze we take advantage of the specificity of the PHH3 stain to identify the
potential mitosis presents in the image. To this end, each vector of coordinates
in the DAB list is used as query to the KdT to retrieve matching candidates
from the H&E image. Fig.2(a,b)) shows an example of how unbalanced is the
number of detections in both stains. In order to make easier the searching pro-
cess we register the bounding boxes of the tissue area in both images through an
affine transformation, A : Ipgns — Iug, estimate from SURF points [2] detected
from grey levels after sub-sampling the image by a factor of ten. For each point
x € Lpap, its coordinates are projected onto the axes of H&E by the affine
transformation, y = Az, and all points z € KdT such that distance(y, z) < thr
are extracted, where thr is a prefixed threshold. Let’s denote by p-center the pair
formed by the coordinates of the query-point, x, and the coordinates of anyone
of its matches. For each p-center, image-patches of size 80x80 pixels centered
on them are extracted from the images. Let’s denote them as p-patch. These
p-patch are assessed by the SCNN that output a similarity distance in terms of
a probability. For each x the p-patch with maximun probability is considered
the true match. Let’s denote a correct p-patch as p-match. In summary, our
matching algorithms is as follows:

ALGORITHM: MS(H&E,PHH3,T, Pug, Ppuus)

Input:

- (H&E,PHH3): WSI of the same slide

- T': distance-threshold for searching

- Pug: list of coordinates of the object centers detected in H&E

- Ppuns: list of coordinates of the object centers detected in in PHH3
Preprocessing:

- Build a KdT from Pgg.

- Compute SURF points: SURFug, SURFpuus

- Compute Global affine transformation: A : SURFpyp3 — SURFgyE. .
Correspondences:

For each item p € Ppuns

1.- Compute p = Ap

2.- Compute Pxar(p) = {q|q € KdT, distance(p, q) < T}



Block PHH3 Block HE

CV 3x38 CV3x38 CNN Detection
Max-pool 2x2 || Max-pool 2x2
CV 3x3 16 CV 3x3 16 CV 5x5 32
Max-pool 2x2 || Max-pool 2x2 Max-pool 2x2
CV 3x3 32 CV 3x3 32 CV 5x5 64
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Block Final CV 3x3 128
CV 3x3 16 Max-pool 2x2
Global-AVG- CV 3x3 256
pool Global-AVG-po
FC 64 ol

Dropout x% FC 1024
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Fig. 3: Siamese architecture: (a) shows the global network design composed of two
parallel branches to process each one of the images. After the feature extraction
a function of the feature vectors compute the similarity between the images. In
(b) we show the three main blocks that compose the model. CV correspond to
Convolution and ReLU activation and FC to full connected layer followed by
ReLU. We use batch normalization before each ReLU. In (¢) the architecture of
the CNN model used for mitosis detection is shown.

3.- Extract patches {o,} centered in g € Pkar(p)

4.- Compute § = argmar,ep, . (p)Similarityscon (0p, 0q)

5.- Output (o4, 0p)

where Similarityscon denote the probability computed by the Siamese net-
work.

3.2 Dataset and Labeling

Two datasets of p-match have been created. The first dataset, DS1, is defined
by 57k (1k=1000) p-match extracted after staining and scanning 48 slides, 30
of skin cancer (melanoma) and 18 of breast cancer. The second dataset, DS2, is
defined by 11k p-match of mitosis and 75k p-patch no mitosis extracted from 17
slides of melanoma. The slides were scanned with a Philips Ultra-Fast Scanner
at a spatial resolution of 0.25 microns per pixel. All p-patch were labeled by a
senior pathologist of the Saint Cecilio Universitary Hospital in Granada, who
annotated a percentage of the correct matches on each p-WSI. An interactive
software which iterates showing p-patches and their surrounding areas was used
for this task. A p-patch is tagged with a maximum of two clicks: one click to
decide correspondence vs. no correspondence and another click to decide mitosis
vs. non-mitosis. This is a very simple routine that allows to label many pairs in
a short period of time.

3.3 Training

Our specific SCNN model is shown in Fig.3(a-b). It can be observed that Block-
PHH3 y Block-H&E share the same architecture based on a standard Lenet
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Fig. 4: This Fig. show some examples of the errors of the algorithm-MS. The first
row shows examples of false negative p-match. The second row shows examples
of false positives p-match. See the pair as (PHH3,HE)

model of CNN [9]. Block-Final processes the features from the input blocks to
learn the similarities. The network is trained during 100 epochs using a batch
size of 128 with Adam|7] optimizer and initial learning rate of 0.0002. We reduce
the learning rate by a factor of 10 each 10 epochs if the training loss has not been
reduced. The training stops if the loss keeps without reducing after another 20
epochs. The networks outputs the probability of a p-patch, {he, phh3}, of being a
p-match. We train the network to minimize the binary cross entropy loss L(-, ),
defined for each sample as,
L(he, phh3) = —y(log(fs(he, phh3) + (1 — y) log(1 — fg(he, phh3))

where y € {+1, —1} represents the image-pair’s label and fy represents the func-
tion computed by our SCNN. To regularize the model, we use L2-weight decay of
strength 1.0 on the parameters of the network and Dropout[13] with probability
of 0.3 before the last full connected layer. The CNN used for mitosis detection
from p-match is shown in Fig. 3(c). We minimize the binary cross-entropy loss
function using the Adam[7] optimizer with learning rate set to 0.001 during the
first 50 epochs, then reduced to 0.0001 for 25 epochs and finally set to 0.00001
for another 25 epochs. We set the weight decay parameter to 0.0001 and use
Dropout of 0.5 before each non-linearity except before the Softmax layer. Also,
we use data augmentation on the p-match by rotating the input patches by 90°,
180° and 270° and performing horizontal and vertical flips. We also add Gaussian
noise with ¢ = 0.0001 to the input.

4 Experimental results

We assess the performance of our algorithm-MS by cross-validation. To do this,
we define five folds from the set of 48 p-WSI. On each fold 43 p-WSI are used
for training and 5 for testing. In total we use 25 different p-WSI in testing. On
each fold the set of p-match, extracted from each image, is used according to
the role of the image in that fold. Table.1 shows the number of p-match used in
training and testing for each fold. The items for the negative class are generated
by random combinations of the p-match items. We generate as many negative
item as there are p-match. The test with each fold begins by detecting and
extracting the coordinates of the centers of the objects in the p-WSI test. We
use cell detection routines of the QuPath[1] free software to extract the center
of the object on each p-WSI. The kd-tree structure is build using [2]. From
them the set of p-patch is estimated. Eventually, the p-patch are assessed by
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Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Train matches 56.6k 52.5k 47k 54k 45.6k

Valid. matches 721 4.8k 10.4k 3.4k 11.7k

Valid.Accuracy (80x80) 98.6% 99.9% 100% 99.9% 99.6%
Patches H&E PHH3 H&E+PHH3

Detection Fl-score 73.3+0.5% T7.6+0.2% 80.7+0.4%
Table 1: Top: results of the correspondence experiment. 1k=1000. The second
row shows the number of corresponding pairs used, in each fold, in training
and validation respectively. The third row shows the validation accuracy in each
fold for patches of 80x80 pixels. Bottom: detection F1-score using the different
stains.

the SCNN. In this experiment what we measure is the accuracy of the p-match
test elements (see Table.1(top)). In order to evaluate the effect of the number
of p-match in the testing matching error, we design the folds to cover a broad
range of values in testing. A value of thr==60 is used as searching distance in the
KdT. The average query time per image is about 3s. Third row in Table.1 shows
the accuracy achieved on each fold. The estimated accuracy of the algorithm-
MS for matches is 99.6%=+0.58. Fig..4 shows some examples of p-match errors
from SCNN. We assess the H&E+PHH3 improvement versus the single stains,
on dataset labeled from both stains, using the detector architecture shown in
Fig. 3(c). We select this architecture for two reasons. First, it represents an
adaptation of Lenet model which is the most popular CNN used for mitosis
detection. Second, our dataset is filtered by the matching algorithm that removes
much of the false positives. This makes unnecessary a complex architecture for
this task. In a first experiment we train and test our detector using each one
of the components, H&FE and PHH3, of the p-WSI. In the second experiment
we use full p-WSI. In all cases the color of the images was normalized using
the algorithm given in [11]. From the dataset, DS2, we constructed 5 partitions
of WSIs and used them for cross-validation. Table.1 in the bottom shows the
detection Fl-score achieved by our detector using patches from H&E, PHH3
and H&E+PHHS respectively. The result shows that using together both stains
greatly improve the F1 score with respect to only using one. To evaluate the
impact of the p-match errors in detection we test our CNN with the same image
dataset but computing the p-match using the algorithm-MS. In this case an F1
score of 80.1 £ 0.4% is achieved, which means a drop of only 0.6 points.

5 Discussion and conclusions

The proposed approach shows that both stains H&E and PHH3 when used
together make a significant contribution to the detection of mitosis. In addition,
our approach contributes with a new technique for the labeling of mitosis using
both stains simultaneously. The size of the datasets makes our results preliminary
but also reliable. It remains to be done a full evaluation of the matching errors
and the influence of the detector. The help of our algorithm-MS in the complete
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labeling of p-WSI opens the door to create larger and more challenging training
data sets to evaluate new algorithms. This will be one goal for future work.
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