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ABSTRACT
In this paper, a new methodology for optical flow estimation that
is able to represent multiple motions is presented. To separate mo-
tions at the same location, a new frequency-domain approach is
used. This model, based on a band-pass filtering with a set of log-
Gabor spatio-temporal filters, groups together filter responses with
continuity in its motion (each group will define a motion pattern).
Given a motion pattern, the gradient constraints is applied to the
output of each filter in order to obtain multiple estimates of the
velocity at the same location. Then, the velocities at each point of
the motion pattern are combined using probabilistic rules. The use
of “motion patterns” allows to represent multiple motions, while
the combination of estimates from different filters helps to reduce
the initial aperture problem. This technique is illustrated on real
and simulated data sets, including sequences with occlusion and
transparencies.

Keywords: Optical flow, multiple motions, spatio-temporal
models, motion pattern.

1. INTRODUCTION

The estimation of the optical flow, an approximation to image mo-
tion, is an important problem in processing sequences of images.
Many techniques have been proposed in the literature; for exam-
ple, differential methods, which rely on the assumption that the
intensity levels in the image remain constant over the time [1],
matching techniques, which operate by matching small regions
of intensity, and frequency-based methods, which are based on
spatio-temporally oriented filters [2, 3].

An important point to take into account in the optical flow es-
timation is the presence of multiple motions at the same location.
Occlusions and transparencies are two common examples of this
phenomena, where traditional methods fail. These problems are
currently being addressed by the research community; see, for ex-
ample, the strategies based on the use of mixed velocity distri-
butions (usually two) at each point [4], the line processes based
models [5] or the parametric models [6]. Another important group
of techniques are based on spatio-temporal filters [2]. These ap-
proaches are derived by considering the motion problem in the
Fourier domain: the spectrum of a spatio-temporal translation lies
in a plane whose orientation depends on the direction and velocity
of the motion. Although the filters are a powerful tool to separate
the motions presented in a sequence [7], the main problem of these
schemes is that orientation selectivity tends to increase the aperture
problem. Moreover, components of the same motion with different
spatial characteristics are separated in different filters responses.

In this paper, we develop a methodology for optical flow esti-
mation that is able to represent multiple motions. To separate mo-

tions at the same location, the model introduced in [7] is used. This
model is a frequency-based approach that groups filter responses
with continuity in its motion (each group will define a motion pat-
tern). This grouping allows to eliminate the problems describe
above relating to the spatial dependency. Given a motion pattern
(a group of filters), we first apply the gradient constraints to the
output of each filter in order to obtain multiple estimates of the
velocity at the same location. Then we combine the velocities at
each point of the motion patterns using probability rules. The use
of “motion patterns” allows to represent multiple motions, while
the combination of estimates from different filters helps to reduce
the initial aperture problem.

2. MOTION PATTERNS

To separate motions at the same location, the frequency-domain
approach introduced in [7] is used. The figure 1 shows a general
diagram describing how the data flows through the model. This di-
agram illustrates the analysis on a given sequence showing a clap
of hands. The endpoint of analyzing this sequence is to separate
the two hand motions. In a first stage, a three-dimensional rep-
resentation is performed from the original sequence and then its
Fourier transform is calculated. Given a bank of spatio-temporal
logGabor filters, a subset of them is selected in order to extract
significant spectral information. These selected filters are applied
over the original spatio-temporal image in order to obtain a set of
active responses (note that we only use a subset of filters).

In the second stage, for each pair of active filters, their responses
are compared based on the distance between their statistical struc-
ture, computed over those points which form relevant points of the
filters (we calculate these points as local energy peaks on the filter
response) As a result, a set of distances between active filters is
obtained [8].

In a third stage, a clustering on the basis of the distance between
the active filter responses is performed to highlight invariance of
responses. Each of the cluster obtained in this stage defines a mo-
tion pattern. In figure 1, two collections of filters have been ob-
tained for the input sequence.

3. OPTICAL FLOW ESTIMATION

In this section, the frequency-based model introduced in section
2 will be used to obtain an optical flow estimation able to rep-
resent multiple motions. In section 3.1 a technique based on the
classic gradient constraint is proposed to obtain the optical flow
estimation corresponding to each filter response. In section 3.2,
a methodology to integrate the estimations corresponding to the
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Fig. 1. A general diagram of the frequency-based model.

grouped filters in each motion pattern is described. Finally, in sec-
tion 3.3 the proposed multiple motion representation is defined.

3.1. Estimation of a spatio-temporal filter response

To estimate the velocity vi at a given point (x, y, t) of the i-th
filter φi, an analysis similar to the probabilistic approach proposed
in [9] is used. Thus, and using the odd response of the filter, the
velocity vi at a given point (x, y, t) is defined on the basis of a
Gaussian random variable vi with mean µvi and covariance ∆vi :

vi ∼ N(µvi , ∆vi) i = 1, . . . N (1)

where µvi and ∆vi are calculated as

µvi = −∆vi ·
R∑
r

wrdr

γ1 ‖fr
e ‖2 + γ2

(2)

∆vi =

[
R∑
r

wrMr

γ1 ‖fr
e ‖2 + γ2

+ ∆−1
p

]−1

(3)

with R being the number of points in the neighborhood of (x, y, t),
wn being a weight vector that gives more influence to elements at
the center of the neighborhood than to those at the periphery, ∆p

the covariance of the prior distribution of vi [9], and Mr and dr

defined as

Mr =

[
f2

x fxfy

fyfx f2
y

]
dr =

[
fxft

fyft

]
(4)

with fe = (fx, fy) and ft being the spatial and temporal partial
derivatives [9] (for the sake of simplicity, we have removed the
spatio-temporal parameters (x, y, t) in the notation). Thus, given
a point (x, y, t), we will have an estimation for each active filter.

3.1.1. Confidence measure

The covariance matrix ∆vi can be used to define a confidence
measure of the estimation vi [9]. In this paper, we will use the
smallest eigenvalue of ∆−1

vi
as confidence measure of vi [10] and

it will be noted as λvi :

λvi = min
{

λi
1, λ

i
2

}
(5)

where λi
1 and λi

2 are the two eigenvalues of ∆−1
vi

(for the sake
of simplicity, we have left out the spatio-temporal parameters
(x, y, t) in the notation λvi(x, y, t)).

Therefore, an estimation vi at a given point (x, y, t) of the i-th
filter φi will be accepted if λvi ≥ Tφi , where Tφi is a confidence
threshold associated to the filter φi. Under the assumption that
every relevant point of the filter will generate a reliable estimation,
the following approximation is proposed to calculate Tφi :

Tφi = min {λvi(x, y, t) / (x, y, t) ∈ P (φi)} (6)

where P (φi) represents the set of relevant points of the filter φi

[7].
Note the importance of having an adequate confidence measure

when working with filters which are selective to spatio-temporal
orientations.

3.2. Estimation of a motion pattern

In this section, the methodology to integrate the estimations cor-
responding to the set of filters which compose a motion pattern
is described. Let Pk be the k-th motion pattern detected in the

sequence, and let
{
φk

i

}i=1,...Lk be the set of Lk grouped filters
in Pk. Let Ωk be the set of estimations vi ∼ N(µvi , ∆vi) ob-

tained from
{
φk

i

}i=1,...Lk which are above the confidence thresh-
old. The integration will be performed on the basis of a linear
combination

v̂k =
∑

vi∈Ωk

αivi (7)

with v̂k representing the velocity at the point (x, y, t) of the mo-
tion pattern Pk, and αi given by the equation

αi =
‖µvi‖ /λvi∑

vj∈Ωk

∥∥µvj

∥∥ /
λvj

(8)
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In this equation, the norm ‖µvi‖ measures the “amount of motion”
detected at this point by the filter φi, while λvi measures the reli-
ability of the estimation vi (equation (5)). The denominator in (8)
guarantees that

∑
Ωk

αi = 1.
If we assume that vi are independent variables, v̂k will be a

random variable with a Gaussian distribution with mean µv̂k
=∑

Ωk
αiµvi and covariance ∆v̂k

=
∑

Ωk
α2

i ∆vi .

3.3. Multiple velocities representation.

The motion patterns allow to separate the relevant motions pre-
sented in a given sequence; therefore, they become an adequate
tool to represent multiple velocities at the same location. Thus, our
scheme will obtain the set of velocities v at a given point (x, y, t)
directly from the set of estimations calculated for each motion pat-
tern:

v = {v̂k}k=1...K (9)

where K is the number of motion patterns detected in the se-
quence, and v̂k is the optical flow estimation at the point (x, y, t)
of the k-th motion pattern Pk. Note that due to the use of confi-
dence measures, we will not always have K estimations at each
given point.

4. RESULTS

In this section, the results obtained with real and synthetic se-
quences are showed to prove the performance of our model.

4.1. Synthetic sequences

The figure 2 shows two synthetic sequences which have been gen-
erated with Gaussian noise of mean 1 and variance 0. In this
case, we have used the values γ1 = 0, γ2 = 1 y γp = 1e − 5
(with ∆−1

p = λpI [9]) in equations (2) and (3). The spatial and
temporal partial derivatives have been calculated using the kernel
1
12

(−1, 8, 0,−8, 1), the gradient constraints have been applied in
a local neighborhood of size 5× 5, and the weight vector has been
fixed to (0.0625, 0.25, 0.375, 0.25, 0.0625) [10]. The first exam-
ple (figure 2(A)) shows a sequence where a background pattern
with velocity (-1,0) frames/image is occluded by a foreground pat-
tern with velocity (1,0). The second example (figure 2(B)) shows

A (occlusion) B (transparency)
Proposed technique 0.84◦ 0.44◦

Nestares 3.93◦ 7.76◦

Lucas&Kanade 4.79◦ 50.89◦

Horn&Schunk 2.66◦ 52.77◦

Nagel 8.59◦ 45.81◦

Anandan 10.47◦ 47.78◦

Singh 2.97◦ 45.27◦

Uras 3.96◦ 57.86◦

Table 1. Mean error comparison (techniques applied to the se-
quences in figure 2)

two motions with transparency: an opaque background pattern
with velocity (1,0), and a transparent foreground patterns with ve-
locity (-1,0). In both cases, the figure shows the central frame of
the sequence, the motion patterns detected by the model (two in
each case), and the optical flow estimated with our technique us-
ing multiple motions representation. Note that in the first example
our technique obtains two velocities at the occlusion points; in a
similar way, in the second example our methodology is able to
estimate two velocities for each point of the frame.

Since we have access to the true motion filed of the syn-
thetic sequences, we can measure the performance of the proposed
methodology. For this purpose, the following angular measure of
error [10] between the correct velocity vc and an estimate ve will
be used:

e(vc,ve) = arccos(v
′
c,v

′
e) (10)

where, given a velocity v = (vx, vy), we calculate v
′

as v
′

=
(vx, vy, 1)

/√
v2

x + v2
y + 1 . Since our examples have points with

two velocities, the error will be measured in relation to the nearest
correct velocity at this point. Thus, if Ψ represents the set of cor-
rect velocities at the point (x, y, z), the measure of error will be
given by the equation:

E(ve) = min {e(ve,vr) , vr ∈ Ψ} (11)

Table 1 shows a comparison between our methodology and the
seven techniques discussed in [10] (the mean error for the two ex-
amples in figure 2 is reported in each case) . As table 1 shows, the
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proposed method outperforms the other methods in all the cases
(see in particular the example with transparency).

4.2. Real sequences

Figure 3 shows three examples with real sequences. In this case,
we have used the values λ1 = 0, λ2 = 1 and λp = 0.5 with
the same partial derivatives and weight parameters used in the syn-
thetic case. For each example, the figure shows the central frame of
the sequence and the optical flow estimated with our technique (for
real images sequences, we do not have the true motion filed, so we
can only show the computed flow field). The first example (figure
3(A)) corresponds to a double motion without occlusions where
two hands are clapping. The second one (figure 3(B)) shows an ex-
ample of occlusion where a hand is crossing over another one. In
this case, where the occlusion is almost complete in some frames,
the motion combines translation and rotation without a constant
velocity. The third case shows an example of transparency where
a bar is occluded by a transparent object (figure 3(C)). In all the
cases, our methodology separates the two motions presented in the
sequence and it estimates two velocities in the occlusion points.

5. CONCLUSIONS

In this paper, a new methodology for optical flow estimation has
been presented. The proposed technique is able to represent mul-
tiple motions on the basis of a new frequency-domain approach
capable to detect “motion patterns” (that is, a clustering of spatio-
temporal filter responses with continuity in its motion). A method-
ology to obtain the optical flow corresponding to a spatio-temporal
filter response has been proposed, using confidence measures to
ensure only reliable estimations. A probabilistic combination of
velocities corresponding to the set of filters clustering in a given
motion pattern has been proposed. The use of “motion patterns”
has allowed to represent multiple motions, while the combination
of estimations from different filters and the confidence measures
have reduced the initial aperture problem.

The technique has been illustrated on several data sets. Real
and synthetic sequences combining occlusions and transparency
have been tested. In all the cases, the final results enlightens the
consistency of the proposed algorithm.
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