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ABSTRACT
Photographs acquired under low-lighting conditions require

long exposure times and therefore exhibit significant blurring due
to the shaking of the camera. Using shorter exposure times results
in sharper images but with a very high level of noise. By taking
a pair of blurred/noisy images it is possible to reconstruct a sharp
image without noise. This paper is devoted to the combination of
observation models in the blurred/noisy image pair reconstruction
problem. By examining the difference between the blurred image
and the blurred version of the noisy image a third observation model
is obtained. Based on the minimization of a linear convex combi-
nation of Kullback-Leibler divergences between posterior distribu-
tions, a procedure to combine the three observation models is pro-
posed in the paper. The estimated images are compared with images
provided by other reconstruction methods.

1. INTRODUCTION

Taking high-quality photographs under low-light conditions is a
challenging problem. A long exposure time can be set to capture
as many photons from the scene as possible; but unfortunately the
image becomes blurry without the use of a tripod. A short exposure
shot produces a sharp very dark image, but if the ISO sensitivity is
increased, the image becomes noisier. A computational photogra-
phy approach to this problem consists of applying bracketing tech-
niques and acquiring two almost simultaneous images of the above
kind which are then combined using post-processing techniques.

To tackle the blurred/noisy restoration problem it was observed
in [2], following the approach in [7] for multichannel image restora-
tion, that it was possible to obtain an additional observation by ex-
amining the difference between the blurred image and the blurred
version of the noisy image. In [2] inference was carried out assum-
ing that the three observation models were independent.

The combination of observations models, like the combina-
tion of prior models, is a very challenging and interesting problem.
However, while the combination of image prior has received some
interest in the recent literature, see for instance [3] and references
therein, no work has been reported on observation model combina-
tion.

In this paper we develop a method to combine the three above
described observations based on the use of the Kullback-Leibler di-
vergence between distributions. Taking into account that each com-
bination of a given prior model and two of the above observation
models produces a different posterior distribution of the underlying
image, the use of variational posterior distribution approximation on
each posterior produces as many posterior approximations as pairs
of observation models can be formed. A unique approximation is
obtained here by finding the distribution on the original image given
the observations that minimizes a linear convex combination of the
Kullback- Leibler divergences associated to each posterior distribu-
tion. We find this distribution in closed form.

The rest of this paper is organized as follows. In Sec. 2 we
formulate the blurred/noisy image pair problem and mathemati-
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cally introduce the third observation model. In sec. 3 the unknown
variables are modeled using the hierarchical Bayesian framework
and the posterior distribution associated to each pair of observa-
tion models is presented. Variational inference is used in Sec. 4
to find a unique posterior distribution approximation that takes into
account the information provided by the three observation models.
Finally, experimental results are presented in Sec. 5 and conclusions
are drawn in Sec. 6.

2. PROBLEM FORMULATION

Assuming that the blur is mainly caused by the shake of the cam-
era during the long exposure time (a process which is modeled as
a linear and space invariant operator), and that the two images are
calibrated photometrically and geometrically in advance, the obser-
vation process can be written as

y1 = Hx+n1, (1)
y2 = x+n2, (2)

where y1 and y2 are, respectively, the observed blurred and noisy
images in the pair, x the unknown original image and n1 and n2
the shot noise assumed to be zero mean white Gaussian noise with
variances β

−1
1 and β

−1
2 , respectively. Note that β1 >> β2 since

the image y1 is mainly degraded by blur while y2 is degraded by
a high amount of noise. We use matrix-vector notation throughout
the paper, so that y1, y2, x, n1 and n2 are N×1 vectors, where N
is the number of pixels in each image. The N×N matrix H models
the point spread function (PSF) h with support M, M ≤ N.

Since both y1 and y2 are from the same scene, they are highly
correlated. In [2] an additional degradation model that exploits the
dependency between the observations y1 and y2, with a single un-
known H, is proposed. Combining (1) and (2) we obtain that given
H,

y1−Hy2 = n12, (3)

where n12 ∼ N (000,β1I+ β2HHt). We approximate here |β1I+

β2HHt |−1/2 by β
−N/2
12 where β12 > 0.

The objective of the blurred/noisy restoration problem is to ob-
tain estimates of x and h utilizing y1, y2, and n12 and prior knowl-
edge about x, h, n1, n2 .

3. HIERARCHICAL BAYESIAN MODEL

In this work, we adopt the hierarchical Bayesian framework which
consists of two stages. In the first stage, we define prior distributions
on the unknown image, x, and blur, h, and we propose two different
probability distributions from the degradation models described in
the previous sections. These distributions defined in the first stage
depend on certain parameters, called hyperparameters, which are
modeled by hyperprior distributions in the second stage. Let us
now describe those probability distributions.

Since the blur is mainly caused by the shaking of the camera
during the long exposure time, it exhibits the characteristics of the
nonuniform motion blur. Hence, it is expected to be very sparse,
i.e., most of the PSF coefficients being zero or very small. In order
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to exploit this information, we use a mixture prior of D exponential
distributions on each coefficient of the PSF, that is,

p(h|{τd},{σd}) =
M

∏
j=1

(
D

∑
d=1

τd Expon
(
h j | σd

))

=
M

∏
j=1

(
D

∑
d=1

τd σde−σd h j

)
(4)

with τd the mixture coefficient for class d and σd the parameter
of each exponential distribution. In addition to imposing sparsity,
this prior also imposes positivity on the blur coefficients h j. This
mixture-of-exponentials prior has also been utilized before for mod-
eling PSFs resulting from camera shake [4, 6] and in independent
component analysis [6].

The total variation function is used as the prior model for
the image because it preserves the edges in the image, not over-
penalizing them, while imposing smoothness [1]. So, we can write
the prior distribution of the image x as

p(x|α) = cα
N/2 exp

[
−1

2
α

N

∑
i=1

√
(∆h

i (x))
2 +(∆v

i (x))
2

]
, (5)

where c is a constant and the operators ∆h
i (x) and ∆v

i (x) correspond
to horizontal and vertical first order differences, at pixel i, respec-
tively.

Based in the degradation models in (1), (2) and (3), we can
define the following two observation models, one obtained from (1)
and (2) as

p1(y1,y2|x,h,β1,β2) ∝

β
N/2
1 β

N/2
2 exp

[
−β1

2
‖ y1−Hx ‖2 −β2

2
‖ y2−x ‖2

]
, (6)

and another one obtained from (2) and (3) as

p2(y1,y2|x,h,β2,β12) ∝

β
N/2
2 β

N/2
12 exp

[
−β12

2
‖ y1−Hy2 ‖2 −β2

2
‖ y2−x ‖2

]
. (7)

Although other observation models can also be defined, we will
concentrate here on the two above models, the extension of the the-
ory to be developed to alternative observation models is straightfor-
ward.

Note that in principle, we could have considered a single obser-
vation model combining the three quadratic forms, β1 ‖y1−Hx ‖2,
β2 ‖ y2−x ‖2, and β12 ‖ y1−Hy2 ‖2, this would require the cal-
culation of the partition function. However, proposing two differ-
ent models will allow us to theoretically study how to perform the
combination and, also, determine the best combination of both ob-
servation models, as we will make clear in the following sections.

The proposed prior and observation models depends on a set
of parameters whose value is crucial in determining the perfor-
mance of the algorithm. For their modeling we are going to em-
ploy Gamma distributions for the parameters α , β1, β2, β12 and σd ,
d = 1, . . . ,D, that is,

p(ω) = Gamma(ω|ao
ω ,b

o
ω ) (8)

where ω denotes a hyperparameter and ao
ω and bo

ω are the shape and
inverse scale parameters of the Gamma distribution. For the mixture
parameters τd we use the Dirichlet distribution with parameters co

τd
,

d = 1, . . . ,D

p({τd}D
d=1) = Dirichlet

(
{τd}D

d=1|{c
o
τd
}D

d=1

)
. (9)

Finally, combining (5), (8) and (9) with the two observation
models in (6) and (7) we obtain the joint distributions p1(·) and
p2(·) given by

pi(y1,y2,Ω,βββ i) = p(x|α)p(α)

× p(h|{τd},{σd})
D

∏
d=1

p(τd)p(σd)

× pi(y1,y2|x,h,βββ i)p(βββ i), (10)

for i = 1,2, where Ω = {x,h,α,{τd},{σd}}, βββ 1 = {β1,β2} and
βββ 2 = {β2,β12}.

4. VARIATIONAL BAYESIAN INFERENCE

In Bayesian formulations, the inference is based on the posterior
distribution, which in our case is intractable. Therefore, in this work
we use the variational approach to approximate it. Let us denote by
Θ the set of unknowns, i.e., Θ = {Ω,βββ} with βββ = {β1,β2,β12}.
The goal is to calculate the posterior distribution, in our case is in-
tractable so we approximate the posterior p(Θ|y1,y2) by another
distribution q(Θ) which allows a tractable analysis. Here we pro-
pose to approximate this distribution by the distribution minimizing
the following linear convex combination of Kullback-Leibler (KL)
divergence measures

q̂(Θ) = argmin
q(Θ)

2

∑
i=1

λi CKL(q(Ω)q(βββ i) ‖ pi(Ω,βββ i|y1,y2)), (11)

with λi ≥ 0, λ1 +λ2 = 1,

q(Ω) = q(x)q(h)q(α)q({τd}D
d=1)

D

∏
d=1

q(σd),

q(βββ 1) = q(β1)q(β2)

q(βββ 2) = q(β2)q(β12)

q(h) =
M

∏
j=1

q(h j),

q(Θ) = q(Ω)q(β1)q(β2)q(β12),

and the KL divergence given by

CKL(q(Ω)q(βββ i) ‖ pi(Ω,βββ i|y1,y2)) =∫
q(Ω)q(βββ i) log

(
q(Ω)q(βββ i)

pi(y1,y2,Ω,βββ i)

)
dΩdβββ i + const. (12)

The estimation of λ1 and λ2 will not be addressed in this paper but
we will show experimentally that a non-degenerate combination of
divergences, that is, λ1,λ2 > 0, provides better results than a degen-
erate one. We want to note also that the model in [2] correspond to
choose λ1 = λ2 = 1.

Unfortunately the general results from variational Bayesian
analysis cannot be directly utilized in this work, since the TV and
mixture priors in our model render the calculation of the KL diver-
gence in (12) not possible. The problems caused by the TV prior
can be avoided by utilizing a majorization-minimization approach,
whose details are given in [1], which finds a bound for the distribu-
tion in (5) which makes the analytical derivation of the Bayesian
inference tractable. Let us consider the functional M(α,x,w),
where w ∈ (R+)N is an N−dimensional vector with components
wi, i = 1, . . . ,N,

M(α,x,w) = cα
N/2 exp

[
−α

2

N

∑
i=1

(∆h
i (x))

2 +(∆v
i (x))

2 +wi√
wi

]
,

(13)

324



where c is the same constant as in (5). It can be shown (see [1] for
the details) that the functional M(α,x,w) is a lower bound of the
image prior p(x|α), that is,

p(x|α)≥M(α,x,w). (14)

Using this lower bound a lower bound of the joint probability dis-
tributions in (10) can be found, that is,

pi(y1,y2,Ω,βββ i) ≥ M(α,x,w)p(α)

× p(h|{τd},{σd})
D

∏
d=1

p(τd)p(σd)

× pi(y1,y2|x,h,βββ i)p(βββ i)

= Fi(Ω,βββ i,w,y1,y2), (15)

for i = 1,2, which leads to the following upper bound for the KL
divergence in (12)

CKL(q(Ω)q(βββ i) ‖ pi(Ω,βββ i|y1,y2))

≤CKL(q(Ω)q(βββ i) ‖Fi(Ω,βββ i,w,y1,y2))+ const. (16)

An additional approximation of equation (4) is needed when
using mixture priors. Specifically, we utilize Jensen’s inequality as
follows [6]

log(p(h|{τd},{σd})) = log

[
M

∏
j=1

(
D

∑
d=1

τd Expon
(
h j | σd

))]

≥
M

∑
j=1

D

∑
d=1

µ jd log
(

τd

µ jd
Expon

(
h j | σd

))
, (17)

with µ jd ≥ 0, ∑
D
d=1 µ jd = 1, j = 1, . . . ,M. An analysis of the

closeness of this bound can be found in [6]. The auxiliary vari-
ables µ jd need to be computed along with the unknowns Θ, as will
be shown later.

Using (17), we obtain a lower bound of logFi(Ω,βββ i,w,y1,y2)
as follows,

logFi(Ω,βββ i,w,y1,y2) = logM(α,x,w)+ logp(α)

+
D

∑
d=1

logp(τd)p(σd)+ logp(h|{τd},{σd})

+ logpi(y1,y2|x,h,βββ i)p(βββ i)

≥ logM(α,x,w)+ logp(α)

+
M

∑
j=1

D

∑
d=1

µ jd log
(

τd

µ jd
Expon

(
h j | σd

))

+
D

∑
d=1

log [p(τd)p(σd)]+ logpi(y1,y2|x,h,βββ i)p(βββ i)

= Bi(Ω,βββ i,w,µµµ,y1,y2), (18)

with µµµ = {µ jd | j = 1, . . . ,M,d = 1, . . .D}.
Utilizing this lower bound, we obtain the solutions

q(β1) = const× exp(〈B1(Ω,βββ 1,w,µµµ,y1,y2)〉Ω) (19)

q(β12) = const× exp(〈B2(Ω,βββ 2,w,µµµ,y1,y2)〉Ω) (20)

where 〈·〉
Ω
= Eq(Ω)[·], and Eq(Ω) denotes the expectation with re-

spect to the distribution q(Ω). Furthermore, to calculate the rest of
the distributions, q(γ), γ ∈ {Ω,β2}, we have to take into account
both divergences, obtaining

q(γ) = const× exp

〈 2

∑
i=1

λiBi(Ω,βββ i,w,µµµ,y1,y2)

〉
Θγ

 (21)

where Θγ denotes the set of unknown with γ removed.
Calculating the above distributions for each unknown, results in

an iterative procedure, which converges to the best approximation
of the true posterior distribution p(Θ|y1,y2) by distributions of the
form in (11). In this work, we utilize the means of these distribu-
tions as the point estimates of the unknowns. Let us now to make
explicit the form of each of these distributions.

The distribution q(x) is calculated from (21) as a multivari-
ate Gaussian distribution, that is, q(x) = N (x| 〈x〉 ,Σx) where its
mean and covariance are given by

〈x〉= Σx

(
λ1 〈β1〉〈H〉T y1 + 〈β2〉y2

)
(22)

Σ
−1
x = 〈α〉(∆h)

T
W(∆h)+ 〈α〉(∆v)TW(∆v)

+λ1 〈β1〉
〈
HTH

〉
+ 〈β2〉I (23)

with

w j = (∆h
j(〈x〉))2 +(∆v

j(〈x〉))2 , j = 1, . . . ,N, (24)

W = diag

(
1
√w j

)
, j = 1, . . . ,N. (25)

The mean 〈x〉 of the distribution q(x) is used as the image estimate,
which is calculated by applying a conjugate gradient method in (22).
It can be seen that the matrix W in (25) is an spatial adaptivity ma-
trix which controls the amount of smoothing at each pixel location
depending on the intensity variation at that pixel, as expressed by
the vector w representing the total variation of the estimated image.

Next we find the distribution approximations q(h j) of the blur
PSF coefficients. From (21), q(h j) are rectified Gaussian distribu-
tions, given by q(h j) = N R (h j|ĥ j, h̃ j

)
with parameters

ĥ j =
(
h̃ j
)−1

[
−

D

∑
d=1
〈σd〉µ jd

+λ1 〈β1〉
N

∑
n=1

〈
Xn j

(y1)n−
M

∑
m=1
m6= j

Xnmhm

〉

+(1−λ1)〈β12〉
N

∑
n=1

(Y2)n j

(y1)n−
M

∑
m=1
m6= j

(Y2)nm 〈hm〉

], (26)

h̃ j = λ1 〈β1〉
N

∑
n=1

〈
X2

n j

〉
+(1−λ1)〈β12〉

N

∑
n=1

(Y2)
2
n j, (27)

where X and Y2 are convolution matrices constructed from x
and y2, respectively, (·)i j denotes the (i, j)th element of a matrix,
and we used the fact that λ2 = 1−λ1. The mean

〈
h j
〉

of the distri-
butions q(h j), that is, our point estimate for h j, is given by [6]

〈
h j
〉
= ĥ j +

√
2

π h̃ j

1

erfcx(−ĥ j

√
h̃ j
2 )

, (28)

where erfcx(·) is the scaled complementary error function.
We then calculate the distributions of the hyperparameters ω ∈

{α,β1,β2,β12,σd} from (19), (20), and (21) as

q(ω) = Gamma
(
ω|āω , b̄ω

)
, (29)
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(a) (b) (c) (d) (e)

Figure 1: (a) original image, (b) observed noisy image simulating a short-exposure acquisition, (c) blurred image simulating long-exposure
photographs. The blur used to generate this image is shown below the image. (d) using the method in [2], and (e) Estimated image and its
corresponding blur using the proposed method with λ1 = 0.5.

which produces

E(αim) =
ā(αim)

b̄(αim)
=

a(αim)+ N
2

b(αim)+∑ j
√w j

(30)

E(β1) =
ā(β1)

b̄(β1)
=

a(β1)+ N
2

b(β1)+ 1
2
〈
‖ y1−Hx ‖2

〉 (31)

E(β2) =
ā(β2)

b̄(β2)
=

a(β2)+ N
2

b(β2)+ 1
2
〈
‖ y2−x ‖2

〉 (32)

E(β12) =
ā(β12)

b̄(β12)
=

a(β12)+ N
2

b(β12)+ 1
2
〈
‖ y1−Y2h ‖2

〉 (33)

E(σd) =
ā(σd)

b̄(σd)
=

a(σd)+∑ j µ jd

b(σd)+∑ j µ jd
〈
h j
〉 (34)

Furthermore

q({τd}D
d=1) = Dirichlet

(
{τd}D

d=1|{c̄τd}D
d=1

)
, (35)

where c̄τd = co
τd
+∑ j µ jd and so

〈τd〉=
c̄τd

∑
D
d=1 c̄τd

, (36)

Finally, the auxiliary variables µ jd are computed again from (21) as

µ jd ∝ 〈τd〉 Expon
(〈

h j
〉
| 〈σd〉

)
, j = 1, . . . ,M (37)

with the condition

D

∑
d=1

µ jd = 1, j = 1, . . . ,M (38)

To summarize, the proposed algorithm is written as follows:

Algorithm 1 Estimation of the image x, the blur h and the needed
parameters

1. Set initial image estimate 〈x〉(0) = y1
2. Calculate initial estimates of

〈
h j
〉
, β1, β2, β12, α , {σ jd} and

{τd} using 〈x〉(0), y1, y2 and λ .
3. For k = 1,2, . . . until convergence:

(a) Find image distribution qk(x) using (22)-(23)

(b) Find blur PSF coefficient distributions qk(h j) using (26)-
(28)

(c) Find hyperparameter estimates from the distributions (29)
and (35)

(d) Find auxiliary variables {µ jd} using (37)

5. EXPERIMENTAL RESULTS

We have tested the proposed algorithm with synthetic and real im-
ages. In a first experiment, synthetic images are used to test the ac-
curacy of the estimation and numerically and visually demonstrate
that the combination of observation models proposed provides bet-
ter results than using only one model or assuming that the models
are independent [2]. Then the proposed algorithm is applied to real
degraded image pairs and its results compared to existing methods.

In all the experiment we set the initial values as follows: As
described in Alg. 1, the initial estimation of x, 〈x〉0, is set to ob-
served image y1. We chose D = 2 which means that the blur will
be comprised of elements of two classes, one for the elements close
to zero and the other for the elements with higher value. The shape
and inverse scale parameters of the Gamma distributions are set to
a small common value (0.001), co

τd
is set to 1 to obtain vague hy-

perpriors which make the estimation process rely more on the ob-
servations than on prior knowledge. The initial blur estimation is
obtained as argminh ‖Y2h−y1‖2 which can be efficiently com-
puted in the Fourier domain. The blur support M is chosen as the
smallest support that covers the most significant entries of the initial
PSF estimate. The initial value of the parameters β1, β2, β12 and
α are calculated from (29). Since we have two different classes,
initial value for τd is set as the proportion of pixels of the initial
blur estimator that are smaller or greater than half of the maximum
value of h, for d = 1 and d = 2, respectively, and σd to the in-
verse of the mean of the pixels in each class. Then {µ jd} is es-
timated using (37). In the experiments we varied λ1 from 0 to 1
with a step of 0.1 and run the algorithm until the convergence crite-

rion
∥∥∥〈x〉i−〈x〉i−1

∥∥∥2
/
∥∥∥〈x〉i−1

∥∥∥2
< 10−5 is met. We want to note

that we only restore the luminance of the color images. The result-
ing color images are composed by the restored luminance and the
chrominance of the observed blurred image.

For the synthetic experiment we generated the images in the
pair from the original image depicted in Fig. 1a. The image y2 was
obtained by adding a zero-mean Gaussian noise of variance 700.8
to the luminance of the original image to obtain the noisy image in
Fig. 1b with a SNR of 7dB. The blurred image, depicted in the top
row of Fig. 1c, was obtained by convolving the original image with
the blurring function in the bottom row of Fig. 1c and adding zero-
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(a) (b) (c) (d)

Figure 3: (a) Noisy and (b) blurred images in the pair. (c) Restored image and blur using the method in [2], and (d) restored image and blur
using the proposed method with λ1 = 0.8.

Figure 2: Obtained PSNR evolution as a function of λ1 for the syn-
thetic images pair.

mean Gaussian noise of variance 0.35 to obtain a SNR of 40dB.
The pair formed by the blurred and the noisy images are the inputs
of the algorithm.

To numerically evaluate the performance of the algorithm, the
peak signal-to-noise ratio (PSNR) was used. Figure 2 shows the
variation of the PSNR obtained with the proposed algorithm when
λ1 changes from 0.0 to 1.0, reaching its maximum value at λ1 = 0.5
with a PSNR value of 28.4dB. The estimated image and blur ob-
tained by the proposed algorithm with λ1 = 0.5 are depicted in
Figs. 1e. We want to note that the best result was obtained using
a non-degenerate combination of the divergences, making clear that
the combination of both models provides better results than using
a single model (also note that λ1 = λ2 = 0.5 is not equivalent to
the model in [2] which corresponds to setting λ1 = λ2 = 1). For
comparison purposes we run the same experiments with the algo-
rithm in [2] obtaining the image and blur shown in Fig. 1d with a
PSNR of 27.9dB. The proposed algorithm provides better visual re-
sult than the algorithm in [2], with a better estimation of the blur,
not as noisy, and sharper details in the image. Similar results were
obtained when we synthetically blurred the original image with dif-
ferent PSFs. Usually a value for λ1 between 0.4 and 0.7 resulted in
the best PSNR.

We also tested our algorithm on a real image pair taken with a
SLR camera with a fixed aperture of f/8. The noisy image was taken
using an exposition time of 1/200 seconds and ISO 400 while the
blurred one was taken using an exposition time of 1/3 seconds and
ISO 200. The images were photometrically calibrated using his-

togram equalization and then geometrical calibration was carried
out using SURF [5]+RANSAC to obtain the noisy and blurred im-
ages shown in Fig. 3a and 3b, respectively. Those images were the
input of the proposed algorithm. The image obtained by the pro-
posed algorithm using λ1 = 0.8 is shown in Fig. 3d and the image
obtained by the algorithm in [2] is shown in 3c. It is clear that, al-
though both methods successfully removes a great part of the blur,
the proposed method provides sharper details.

6. CONCLUSIONS

In this paper we have proposed a procedure based on varia-
tional Bayesian inference to combine observation models in the
blurred/noisy image pair restoration problem. The procedure is
based on finding the posterior distribution on the restored image
given the observations that minimizes a linear convex combina-
tion of the Kullback-Leibler divergences associated to the prior and
each pair of observation models. We have found this distribution in
closed form. The estimated images compare favorably with images
provided by other reconstruction methods. Future work will address
the estimation of the weights assigned to each Kullback-Leibler di-
vergence in the convex combination.
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