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Abstract

Over the last few years an enormous amount of research has been devoted to
restore astronomical images, but not much work has been reported on the use of
multichannel techniques to restore such images.

In this work, we first briefly summarize the research carried out on image restora-
tion within the Converging Computing Methodologies network and then concentrate
on the multichannel image restoration problem, a field we believe of interest to the
astronomical community.

The Bayesian paradigm to restore multichannel astronomical images is described
and multichannel image restoration methods are adapted to the Poisson noise degra-

dation model. The methods are compared on real multichannel astronomical images.

1 Introduction

According to [1] the field of image restoration began primarily with the efforts of scientists
involved in the space programs of both the United States and the former Soviet Union in
the 1950s and early 1960s. Also, the discovery of the spherical aberration problem in the
Hubble Space Telescope in 1990 led to a very substantial amount of work in image restora-
tion and reconstruction directed toward optical Astronomy. These two reasons probably
explain the enormous interest on image restoration techniques within the astronomical

community.



Very recently, we have seen the publication of two excellent works on image restoration
and reconstruction [1, 14] which constitute invaluable references for those researchers
involved in image restoration and in particular in image restoration in Astronomy.

Within the European Science Foundation network Converging Computing Methodolo-
gies in Astronomy quite a lot of effort has been devoted to work on the image restoration
problem. A proof of that are the papers presented at the first workshop of the network
held in Nice in 1995 [2], where works on edge preserving restoration methods [3], the ap-
plication of Compound Gauss-Markov Random Fields to astronomical image restoration
[11], spatially adaptive reconstruction methods [15], multiresolution techniques based in
wavelets [16] and finally multiscale maximum entropy methods [20] were presented.

The third workshop of the CCMA network took place last April in Granada and was
devoted to Information Fusion and Data Mining [13], and works on simultaneous image
fusion and reconstruction using wavelets [17] and multichannel image restoration [12] were
presented.

In spite of the interest in image restoration, to our knowledge no much work has been
devoted within the astronomical community to the multichannel restoration problem.
However, the use of image data from multiple frequency bands, multiple time frames,
or multiple sensors can be of tremendous value in a number of applications, such as
multispectral satellite remote sensing, multisensor robot guidance, multimedium medical
diagnosis and obviously astronomical image restoration.

Multichannel image processing differs from single channel image processing because
of the redundancy and the complementary feature of information within channels. The
processing is much more complicated due to the increased dimension and the need for
extracting and exchanging information from and among all channels.

Single channel restoration has been researched extensively during the past couple of
decades [10, 14]. Multispectral and multichannel restoration are relatively new areas
of image processing research. Decorrelation of the image channels using the Karhunen-
Loeve transform [9] has been used prior to restoring the channels individually. Extending
linear methods such as Wiener filtering [5] and least squares restoration [6] has been ac-
complished successfully, although the accurate estimation of nonstationary cross-channel
correlations remains elusive.

Recently multispectral image model for use in Bayesian maximum a posteriori esti-
mation have been proposed (see [19] and [4]). In these works the Gibbs priors contain

spatial and spectral cliques functions to impose constrains on the desired restoration or



segmentation.

In our previous work [12] we presented some work on multichannel techniques for the
Gaussian independent noise model. In this work we extend our results to the Poisson
noise model and show how the method work on real astronomical images.

In this paper we present the application of the Bayesian paradigm to the restoration of
multichannel images. In section 2 we introduce the paradigm we follow. The degradation
model we use in the paper is described in section 3. In section 4 we examine existing image
models to restore multichannel images. In section 5 we describe an iterative method that
can be used to find the multichannel restoration. Finally, a comparative study of the

methods used is performed in section 6.

2 Bayesian Paradigm

We will distinguish between f, the ‘true’ image which would be observed under ideal
conditions (i.e. no noise and no distortions produced by blurring and instrumental effects),
and g, the observed image. The aim is then to reconstruct f from g. Bayesian methods
start with a prior distribution, a probability distribution over images f. It is here where
we incorporate information on the expected structure within an image. It is also necessary
to specify p(g|f), the probability distribution of observed images g if f were the ‘true’
image. The Bayesian paradigm dictates that inference about the true f should be based
on p(f|g) given by

p(flg) = p(glf)p(f)/p(g) ox p(g]f)p(f). (1)

To show just one restoration it is common (but not obligatory) to choose the mode of

p(flg), that is, to display the image f which satisfies

f maximizes p(g| f)p(f)- (2)

This is known as the MAP (maximum a posteriori) estimate of f.

Let us now examine the degradation and image models.



3 Degradation Model

Let us assume for simplicity we have three channels, each of them with p = M x N pixels,

then we have

g1 fi
g= 92 ) f = f2 J (3)
g3 I3

where each of the M x N vectors g;, f; results from the lexicographic ordering of the
two-dimensional signals in each channel. We will denote by f;(u) the intensity of the
true channel 7 image at the location of the pixel u on the lattice. The convention applies
equally to the observed image g.

For the degradation model we assume Poisson noise with no cross channel degradation,
that is

plglf) = H H exp [~ (Hifi) (w)][(Hifi) (w)]*™ /gi(u)!, (4)

i=1u=1
where H;, i = 1,2, 3, represents the blurring matrix within each channel.

4 Image Models

In this section we describe some image models that can be used in the multichannel
restoration problem. Not all of them will be compared in the test section, but we intend
to provide a summary of some image models that could be used for multichannel image

restoration in Astronomy.

4.1 CAR model without cross channel information. Model 1

Let us first describe the prior model without cross-channel information. Our prior knowl-
edge about the smoothness of the object within each channel makes it possible to model
the distribution of f;, for i = 1,2, 3, by a Conditional Autoregressive Model (CAR) (see
Ripley [18]). Thus,

p(fi) o< exp {—vfl(I - C) i}, (5)
where C,, = 0.25 if cells u and v are spatial neighbors (pixels at distance one), zero
otherwise. The term fI'(I — C)f; represents in matrix notation the sum of squares of the
values f;(u) minus 0.25 times the sum of f;(u)f;(v) for neighboring pixels v and v. The

parameter 7; measures the smoothness of the ‘true’ channel ¢ image.
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Figure 1: Image sites at each channel.

From Eq. 5 we have
p(fi) exp[—% Y oIfilw) = filu = +1))* + (fiw) = fi(u: +2))7]), (6)

where v : +1, u : +2, u : +3, u : +4 denote the four pixels around pixel u as described in
figure 1, o; = 0.57; and we assume a ‘toroidal edge correction’.

Before describing the models used in the paper, it is very important to note that
although in [6] and [7] the methods used are based on Laplacians and so they can be
considered as setting constrains on second derivatives we are going to formulate them as

methods based on CAR models and so as methods that set constrains on first derivatives.

4.2 Model proposed by Guo, Lee and Teo. Model II.

Although the method proposed in [7] is based on the 3D Laplacian and so it could
be considered as a Simultaneous Autoregressive Model (SAR), we can easily find its

Conditional Autoregressive version. This is given by

LI e Rl e PR

1:[1 eXP[_% D I(filw) = filu s +1))* + (filu) = filu: +2))7), (7)

Q13

T3 | fi— 5]

where || f; — f; [I?= Xu(fi(u) — f;(w))? It is very important to note that this model does
not normalize each channel and so the square differences involved in the prior may not

have much sense. A similar model is used in [8] for medical images.

4.3 Model proposed by Galatsanos, Katsaggelos, Chin and
Hillery. Model III.

This method was proposed before the one described in [7] and it takes into account the
norm of each channel. The CAR model is given by Eq. (7) but f; is replaced by f;/ || fi ||-

3



4.4 Model proposed by Molina and Mateos. Model IV.

One of the problems with models IT and III is that they do not keep the flux within each
channel. For the degradation model described by Eq. (4) it makes perfect sense to try
to keep the flux within each channel. To achieve so we simply replace f; in Eq. (7) by

fil (o fi(u)), see [12].

4.5 Model proposed by Schultz and Stevenson. Model V.

The model proposed in [19] uses 8-neighbors within each channel and instead of using
the quadratic edge penalty p(r) = z? uses a Huber-Markov Random Field to model each
channel spatially.

Spatial activity measures, the difference between neighbor pixels in each channel, will
be used as edge detectors within each channel. Weighted differences of these spatial
activity measures are used as the spectral clique functions, with weights estimated to

account for edges in one channel that are not present in another (see [19] for details).

4.6 Other Models

It is important to note that the penalty function p(z) = 22 can be substituted by other

functions. In particular, we can use

p(z) =2°/(6" +2°) and p(z) =log(l + (z/n)?).

It is also possible to use models based on estimating the cross-channel correlation from
the data [5]. It is important to note that [5] contains interesting results on the use of

Fourier transform to solve the multichannel problem.

5 Iterative Procedure

In this section we describe a simple iterative method that can be used to restore multi-
channel astronomical images. It will be described for model II, but it can also be applied
to models III and 1V if either || f; || or X, fi(u), i = 1,2, 3, are assumed constant.

Assuming image model II, we have

p(flg) o expl—auz | fi = fo ) — sl fo— f3 ) —eus || f1 = f3])?]



XHeXp[ OzZZ[ filu) = filu: +1))* + (fi(u) — fi(u : +2))°]

s 1 1T exp [ CH ) ) [ o) ) i)

i=1u=1

Differentiating — log p(f|g) with respect to fi, the same can be done for f, and f3, we
have
ar(I=C)fi +awa(fi — fo) +aus(fi — f3) + 1 — Hf(gl/Hlfl) =0, (8)

where 1 denotes the p X 1 vector with each component equal to 1.

From Eq. (8) we have
(o + a9 +ai3)fi + 1 =a,Cf1 + apfo + cusfs + Hi(g1/Hy f1), 9)

multiplying both sides of Eq. (9) by f; we obtain the following iterative scheme,

7 () = () [C AN w) + pa(u) £ () [H (9/ Hyf)] () + pa(u) £3 (u) + pa () f3 (), (10)

where, 7 denotes iteration and

arf] (w) /(o + arz + ons) fl (u) + 1),
= 1/((1 + ana + au3) fi(u) + 1),

= anf{(u)/((on + s + on3) f (w) + 1),
= ansf](u)/((on + ona + ous) fi (u) + 1),
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6 Test Examples

The models I to IV were tested on the multichannel astronomical images shown in fig-
ure 2(a)-(c). They correspond to images of the same object taken at different wavelength.
The range for each image is [0, 10] for figure 2a, [0, 24] for figure 2b and [0, 62] for figure 2c.

The blurring function, h; can be approximated by h;(r) o< (1 +72/R?)™° i=1,2,3.
We found 6§ ~ 3 and R ~ 3.4 pixels in all the channels.

For model I we used a; = a9 = a3 = 0.0035. For model II we used oy = a9 = a3 =
0.0035 and a2 = a3 = g3 = 0.0035. For model III we used oy = a3 = a3 = 1 and
(12 = a3 = a3 = 1. For model IV we used oy = o = a3 = 0.013 and oo = 3 =
o3 = 0.013.



(a) (d)
(b) (e)
(c) (f)

Figure 2: Observed image at three different wavelength corresponds to (a), (b) and (c).

(d) Restoration of (c) using model II. (e) Restoration of (¢) using model IIT and (f)

Restoration of (c) using model IV.



image original | Model I | Model II | Model III | Model IV
Figure 2a 10 13 16 13 13
Figure 2b 24 31 23 30 32
Figure 2¢ 62 79 23 76 87

Figure 3: Maximum values of the observed and restored images.

These values for the parameters were choosen based on the scale factor used by each
method on each band.

Figure 3 shows the maximum values of each observed image and the corresponding
restorations.

From the experiments we have run we have found that model II moves a lot of flux
between channels, In our examples increases enormously the flux of image in figure 2a
and reduces the other ones. Models I, ITI and IV produce similar results but model IV
seems to produce better restorations maximum values. Models I and IV are the only ones

that keep the flux within each channel.
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