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ABSTRACT

In this paper we examine the use of compound Gauss
Markov random fields (CGMRF) to restore severely blurred
high range images. For this deblurring problem, the conver-
gence of the Simulated Annealing (SA) and Iterative Con-
ditional Mode (ICM) algorithms has not been established.
We propose two new iterative restoration algorithms which
extend the classical SA and ICM approaches. Their con-
vergence is established and they are tested on real and syn-
thetic images.

1. INTRODUCTION

The CGMRF theory provides a foundation for the char-
acterization of spatial, contextual constrains on the image
model using a hidden random field. The use of CGMRF
was first presented in [2] using an Ising model to repre-
sent the upper level and a line process to model the abrupt
transitions. Extensions to continuous range models using
CGMRFs were presented in [3, 1].

In this paper we present the application of CGMRFs
to the restoration of severely blurred high range images, a
problem for which convergence of the SA algorithm has not
been established. In section 2 we introduce the notation we
use and the proposed image and noise models. Stochastic
and deterministic relaxation approaches to obtain the max-
imum a posteriori (MAP) estimate are presented in sec-
tion 3. In section 4 we examine the problems introduced
by the blurring when SA and ICM are applied and propose
two new methods to estimate the real underlying image.
Examples are shown in section 5 and section 6 concludes
the paper.

2. NOTATION AND MODELS

We will distinguish between f, the ‘true’ image which would
be observed under ideal conditions and g, the observed im-
age. The aim is to reconstruct f from g. For simplicity,
we will denote by f(i) the intensity of the true image at
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the pixel location ¢ on the lattice. We regard f as a p x 1
column vector, with entries f(7). This convention applies
equally to the observed image g.

Let us now introduce the CGMRF model from a simpler
model, the Conditional Auto-Regression (CAR). The idea
is to build a prior model consisting of two processes, one
accounting for the intensity values and the other for the
location of edges in the image.

Let us first describe the prior model without any edges.
Our prior knowledge about the smoothness of the object
luminosity distribution makes it possible to model the dis-
tribution of f by a CAR (see [5]). Thus,
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where N;; = 1if cells ¢ and j are spatial neighbors (pixels
at distance one), zero otherwise and ¢ just less than 0.25.
The term fT(I—(;SN)f represents in matrix-vector notation
the sum of squares of the values f(i) minus ¢ times the sum
of f(i)f(j) for neighboring pixels i and j. The parameters
can be interpreted by the following expressions describing

the conditional distribution
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where ‘3 nhbr 1’ denotes the four neighbor pixels at distance
one from pixel i (see Figure 1). The parameter o2, measures
the smoothness of the ‘true’ image.

From Eq. (1) we have
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Figure 1: Image and line sites.

where ¢ : +1, 1 : +2, ¢ : +3, 1 : +4 denote the four image

pixels around pixel ¢ as described in figure 1, Z is a normal-

ization constant and we assume a ‘toroidal edge correction’.
This expression can be rewritten as
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where {([i, j]) = 0 for all 7 and j, and # is a scalar weight.

We now introduce a line process by simply redefining the
function {([z, j]) as taking the value zero if neighbor pixels i
and j are not separated by an active line and one otherwise.
We then penalize the introduction of the line element [3, 5]
(see figure 1) by the term BI([1, j]) since otherwise the ex-
pression in (2) would obtain its minimum value by setting
all line elements equal to one. The intuitive interpretation
of this line process is simple; it acts as an inhibitor or acti-
vator of the relation between two neighbor pixels depending
on whether or not the pixels are separated by an edge.

In this paper we shall use this simple image model. The
theory can be easily extended to more complex image model
including a larger neighborhood, interactions in the line pro-
cess or # being direction dependent.

A simplified but realistic noise model for many applica-
tions is the Gaussian model with zero mean and variance o2,
N0, crn) This means that the observed image corresponds
to the model g(i) = (D f)(s =, d(i = 5)f(5)+n(d),
where D is the p x p matrlx deﬁmng the systematic blur,
assumed to be known and approximated by a block circu-
lant matrix, n(i) is the additive Gaussian noise with zero
mean and variance o2 and d(7) are the coefficients defining
the blurring function.

Then, the probability of the observed image g if f were
the ‘true’ image is

pol e -5 la-DAF.

Let us now proceed to find f, i, the MAP estimates of
f and I, that is

fil= argn}fllxp(f,l | 9). (4)

3. STOCHASTIC AND DETERMINISTIC
RELAXATION FOR MAP ESTIMATION

Since p(f,l | g) is nonlinear it is extremely difficult to find
f and | by any conventional method. Simulated annealing
is a relaxation technique to search for MAP estimates from
degraded observations (see [3] for details).

It uses the distribution
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where T is the temperature, Zr is a normalization constant
and
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It then needs to simulate the conditional a posteriori
density function for !([¢, j]), given the rest of I, f and ¢
and the conditional a posteriori density function for f(i)
given the rest of f,  and g, and also to decrease, after each
sweep of the full image, the temperature 7' according to an
annealing scheme (see [3]).

Let us now examine these conditional distributions. For
this purpose we will use
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where u and v denote sites in the line process. To simulate
the line process conditional a posteriori density function,
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Furthermore, for our Gaussian noise model,
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nnttd(i) = 370 6(1 = 1([5,4]) + (1 — 4¢) and I[i] is
the four dimensional vector representing the line process
configuration around image pixel (7).

Instead of using a stochastic approach, a deterministic
method can be used to search for a local maximum. Such
a method instead of simulating the distributions mentioned
above, it chooses the mode. An advantage of the determin-
istic method (ICM) is that its convergence is much faster
than that of the stochastic approach. The disadvantage is
the local nature of the solution obtained. This method can
be seen as a particular case of simulated annealing where
the temperature is always set to zero.
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4. PROPOSED RESTORATION ALGORITHMS

Unfortunately, due to the presence of blurring the conver-
gence of SA has not been established for this problem. The
main problem of the methods is that, if ¢ is small, as is
the case for severely blurred images, the term [(D7g)(i) —
(DTDf)(i)]/c in Eq. (8) is highly unstable. For the ICM
method the problem gets worse because sudden changes in
the first stages, due to the line process, become permanent.

Let us examine intuitively and formally why we may
have convergence problems with the SA and ICM proce-
dures when severe blurring is present. Let us assume for
simplicity that there is no line process and examine the it-
erative procedure where we update the whole image at the
same time. It is important to note that this is not the
parallel version of SA but an iterative procedure. We have,

ft = Afi—1 + const, (11)

where t is the iteration number, understood as sweep of the
whole image, A = 02 /(02 + c o),

A= I—A(I—quN)—(l—A)DZD L (1)

and const = (1 — X\)[DT D/cg.

For the method to converge A must be a contraction
mapping. However this may not be the case. For instance, if
the image suffers from severe blurring then c is close to zero
and the matrix [D7D/c] has eigenvalues greater than one.
Furthermore, if the image has a high dynamic range, like
astronomical images where ranges [0, 7000] are common, it
is natural to assume that o2, is big and thus, (1—X)[D” D/c]
has eigenvalues greater than one. Therefore, this iterative
method may not converge. It is important to note that,
when there is no blurring, ¢ = 1 and A is a contraction
mapping.

Let us modify A in order to have a contraction. Adding

[(1 = X)(1 —¢)/c]f to both sides of Eq. (11) we have
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or
fe=wfim1 + (1 — w)[Afe—1 + const],

with w = (1 —¢)o% /(62 + 02). We then have for this new

iterative procedure

fo=Afio1 + (1 — w)const,

where
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with p = o2 /(02 + 02,), is now a contraction mapping.

Let us now examine how to modify the SA procedure.
Denote by tx the number of iteration for k sweeps of the
whole image, where one iteration is understood as modify-
ing just one pixel. We use the value of f(i) obtained in the
previous iteration, f;, _,(Z), and, instead of simulating from
the normal distribution defined in (8), (9) to obtain the new
value of f(i), we simulate from the normal distribution with
mean

where wi'k[i](z') =(1- c)cri,/(nni'k[i](i)a% + 02,), and vari-
ance "
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This guarantees that lemma 1 of [3] is satisfied (see [4]
for details). Intuitively, the idea to use this variance, stems
from the fact that we have to reduce the variance since we
are not simulating from the mean value.

5. EXPERIMENTAL RESULTS

Let us examine how the modified ICM algorithm works on
a synthetic star image, blurred with an atmospherical point
spread function (PSF), D, given by

d(i) « (1+ (u* +*)/R*) ™" (15)

with § = 3, R = 3.5, i = (u,v), and Gaussian noise with
02 = 64. If we use o2, = 24415, which is realistic for this
image, and taking into account that, for the PSF defined
in (15), ¢ = 0.02, A defined in (12) is not a contraction.
Figure 2a depicts the corrupted image. Restorations from
the original and modified ICM methods with g = 2 for 100
iterations are depicted on figures 2(b, c), respectively.

The modified SA algorithm was tried on the cameraman
image. The original image was blurred with an atmospheri-
cal PSF with § = 3, R = 3 and Gaussian noise with o2 = 49
(see figure 3a). The restored image and the line process for
2000 iterations, with o2 = 400 and 8 = 3, are depicted on
figures 3(b, c), respectively. We also ran the SA algorithm
on this image. It did not converge even without the line
process.

6. CONCLUSIONS

In this paper we have presented two new methods that can
be used to restore high dynamic range images in the pres-
ence of severe blurring. These methods extend the classical
ICM and SA procedures, so that convergence of the algo-
rithms is now guaranteed. The experimental results verify
the derived theoretical results. Further extensions of the
algorithms are under consideration.



Figure 2: a, ‘
Restoration with the proposed ICM method.
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a) Observed image. b) ICM restoration. c¢)
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