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ABSTRACT

High compression ratios for both still images and sequences of images are usually achieved by discarding
information represented by block discrete cosine transform (BDCT) coefficients which is considered unimportant.
This compression procedure yields images that exhibit annoying blocking artifacts. In this paper we examine the
reconstruction of BDCT compressed images which results in the removal of the blocking artifact.

The method we propose for the reconstruction of such images, is based on a hierarchical Bayesian approach.
With such an approach image and degradation models are required. In addition, unknown hyperparameters,
usually the noise and image variances, have to be estimated in advanced or simultaneously with the reconstructed
image. We show how to introduce knowledge about these parameters into the reconstruction procedure. The
proposed algorithm is tested expreimentally.

1 INTRODUCTION

Block-transform coding is by far the most popular approach for image compression. Evidence of this fact
is that both the Joint Photograph Experts Group (JPEG) and the Motion Pictures Experts Group (MPEG)
recommend the use of the block discrete cosine transform (BDCT) for compressing still and sequences of motion
images, respectively!12% | However, some researchers on image compression using wavelets believe that JPEG does
not represent the “state of art” standard. For instance, Hilton, et al.!? claim that “The reconstruction quality
of wavelet compressed images has already moved well beyond the capabilities of JPEG, which is the current



international standard for image compression”. Further evidence for this is supplied by the FBI wavelet image
compression standard, which provides good quality images for compression rates around 20:12. Such claims are
usually based on the existence of the blocking artifact in JPEG or any block-transform based compressed image
at high compression ratios.

This artifact manifests itself as an artificial discontinuity between adjacent blocks. It i1s a direct result of
the independent processing of the blocks which does not take into account the between-block pixel correlations.
It constitutes a serious bottleneck for many important visual communication applications that require visually
pleasing images at very high compression ratios. The recent progress in VLSI technology makes us believe that
the incorporation of recovery algorithms at the decoders is a very promising approach to bridging the conflicting
requirements of high-quality images and high compression ratios.

In the past various algorithms have been proposed to improve quality of block-transform compressed images
in the decoder without increasing the bit-rate. In the JPEG standard!!:?° a technique for predicting the AC
coefficients 1s recommended in Annex-K.8.2, as an option at the decoder in order to suppress the between block
discontinuities of the decoded images. However, in areas with sharp intensity transitions such a prediction scheme
fails. Stevenson?? assumes a probabilistic model and the compressed image is reconstructed using a maximum a
posteriori (MAP) approach. However the prior distribution used for the original image is not spatially-varying.
Yang, et al.? proposed a set theoretic approach based on the theory of POCS and a constrained least-squares
approach based on regularization both using spatially-invariant prior knowledge to reconstruct the compressed
image along with the transmitted data. Another MAP approach based on a compound Gauss Markov image model
and mean field annealing was proposed by Ozcelik et al.'®. Tn another paper, Yang, et al.?* proposed a POCS
based recovery algorithm that uses a spatially-adaptive constraint that enforces between-block smoothness.

1.24 requires the estimation of the regularization parameter. In this paper

The method proposed by Yang et a
we formulate their algorithm within the Bayesian paradigm and perform the estimation of the regularization para-
meters, representing the image and noise variances, following the hierarchical Bayesian approach!'®'7. We show
how, following this approach, it is possible to incorporate knowledge about the unknown hyperparameters ranging

from vague to very precise, into the algoritm. The resulting methods are very suitable for VLSI implementation.

The rest of the paper is organized as follows. In section 2 the mathematical background for this paper is
established. Section 3 describes the prior and noise models for the reconstruction problem. In section 4 we
describe the use of the hierarchical approach to the hyperparameter estimation and the recovery algorithm is
presented. Experimental results are presented in section 5 and, finally, in section 6 we present our conclusions.

2 MATHEMATICAL DEFINITION OF THE RECOVERY
PROBLEM

Throughout this paper a digital N x N image is treated as a N2 x 1 vector in the RN’ space by lexicographic
ordering either the rows or the columns. The /s norm is used as the distance measure. The BDCT is viewed as a
. . 2 2 . .
linear transformation from RN to RV". Then, for an image f we can write

F = Bf, (1)

where F is the BDCT of f and B is the BDCT matrix. To achieve a bit-rate reduction for transmission, each
element of F is quantized. This quantization operator can be described mathematically by a mapping or an
operator from RN™ to RV, Let Q denote this operator; the input-output relation of the coder can be modeled by

G = OBf. (2)

Due to the unitary property of the DCT matrices, the BDCT matrix is also unitary and the inverse transform



can be simply expressed by B! where ¢t denotes the transpose of a matrix. In the receiver only the quantized
BDCT coefficients G are available and the output of a conventional decoder is

g =B'G. (3)

The reconstruction problem calls for finding an estimate of f given g, @ and, possibly, knowledge about f. In
this work we propose to reconstruct the artificial block boundaries, where the blocking artifact is more visible,
keeping the rest of the image unchanged. Following the Bayesian paradigm a degradation model is needed which
describes how the blocky image is obtained from the real one. In addition, a model describing our knowledge
about the original image, the image before coding is also required. Let us study these models in detail.

3 IMAGE AND NOISE MODELS

We can represent an N x N image f as

£={f0) £(2) .. £(N)), (4)

where f; (i) represent the ith column of the image. The same convention can be applied to g. If we assume that
8 x 8 blocks are used and N = 512, we can define the columns at the block boundaries as

f.(8) £.(9) 8c(8) 8(9)
f.(16) £.(17) g.(16) g:(17)
U = : y Ve = : y Xe = : y Ye = : (5)
£,(504) £,(505) g.(504) g.(505)

In a similar way we can represent f as

f={£(1)f.(2) ... f.(N)}, (6)

where f,.(¢) represent the ith row of the image, in column form, and define the rows at the block boundaries as
column vectors form as

£.(8) £:(9) g (8) g (9)
£,(16) £,(17) g (16) & (17)
u, = : 3 Vy = : s Xy — : 3 Yr = . (7)
£,(504) £, (505) g, (504) g (505)

In order to capture the vertical local properties of the image we define a (512 % 63) x (512 % 63) diagonal matrix,
W, of the form?2*

[ we(l) 0 0o - 0 i
0 we(2) 0
We=1 o 0 .0 E : (8)
: : 0o . 0
L0 coo e 0 we(512%63) |
where the w.(7)’s, i = 1,2, ..., (512 % 63) will weight each block boundary pixel. Analogously, we can define W,

to capture the horizontal local properties of the image.

In order to obtain the weights w. (i) and w, (i) the pixel at location (i) is treated as a random variable with
mean p(i) and variance o(i). The mean serves as a measure of the local brightness and the variance as a measure



of the local detail at the pixel location (i). Several forms of weighting functions has been previously suggested?* .

An example of such a function is
. p(3)
(1) =1 14+ 1, 9
0w .
a compressed range function which decrease as a function of (i) and captures the intensity changes, since the

blocking artifacts seems to be more visible in bright rather than in dark areas of the image (see section 5 for
details).

With the above definitions, the prior knowledge about the smoothness in the block boundaries of the image
has the form
p(flae, ar) x afal exp {—ozC [| We(ue — ve) ||2 —a, || Wr(u, — v;) ||2} , (10)

with p = 512 x 63 and a. and «, measures of the roughness between two block boundary columns and rows.

Fidelity to the data at these block boundaries is expressed by

1 1 1 1
plalt, 80 o A0 exp {5 llwe = [P =g 1 ve = ye P =50 e =x. [P =56 [ v =, [P} (1)

where (. and 3, are defined as 87! = o2 ;... (the noise variance in the vertical direction) and 87! = o2 ;.. (the

noise variance in the horizontal direction), respectively.

If ac, B, ar and B, are known, then following the Bayesian paradigm it is customary to select, as the
reconstruction of f, the image f(,_ 5. a,,s,) defined by

. 1
flacpeinnsy = s {min {oc || Wl = o) 24 [ Wit =) [P 450 e = xc [+

1 1 1
e R e T P e R A 13 (12)

Two important points are worth noting. We are using different hyperparameters for the rows and columns,since
the local characteristics may not be the same for rows and columns. Tt is important to note that u. and v, have
pixels in common with u, and v, (where rows and columns intersect).

4 PROPOSED ALGORITHM

Tt is obvious that in order to estimate the original image, that is, in order to solve eq. (12) we need to know
or estimate the unknown hyperparameters. Yang et al.?32?* proposed empirical procedures to estimate these
parameters within the POCS and CLS approaches to the reconstruction problem. In this paper we follow the so
called hierarchical Bayesian paradigm. A paradigm where prior knowledge about the unknown hyperparameters
can be incorporated into the algorithm if available or they can be estimated without any prior knowledge.

The hierarchical Bayesian paradigm is being currently applied to many areas of research related to image
analysis. Buntine® applies this theory to the construction of classification trees. Spiegelhalter and Lauritzen?! have
applied the hierarchical Bayesian framework to the problem of refining probabilistic networks. Buntine* and Cooper
and Herkovsits® have used the same framework to address the problem of constructing such networks. MacKay!?
and Buntine and Weigund® use the full Bayesian framework in backpropagation networks and MacKay!? , following
Gull?, applies this framework to interpolation problems.

This hierarchical paradigm applied to our problem uses the global probability defined as
p(am Be, ar, Br, 1, g) = p(ac)p(ﬂc)p(ar)p(ﬂr)p(flac, ar)p(g|f, Be, ﬂr) (13)



Let us examine all the term involved in this equation. Having defined in the previous section the image and degrad-
ation models, that is, p(f|a., a,) and p(g|f, 8., 3.), we have to specify the probabilities on the hyperparameters.

In situations without prior information what is needed is a non informative prior on the hyperparameters,
Qc, Be, o and B, (the term non informative is meant to imply that no information about the hyperparameters is
contained in the priors). For the problem at hand we can use improper non informative priors p(w) x const over
[0, 00) where w denotes a hyperparameter.

However, it is also possible, to incorporate precise prior knowledge about the value of the noise and prior
variances. To do so we use as hyperprior the gamma distribution defined by

p(w) x Wi2=1 exp[—a(l — 2)w],

where a is a constant whose meaning will be made precise later, and [ is a non negative quantity. This distribution
has the following properties

l l
Eluw] = ————= d Vv = —.
vl = Sai=9) o arle] = Sy
So, the mean of w, the inverse of the prior or noise variance is, for [ large, approximately equal to 1/2a, and its
variance decreases when [ is increased; [ can then be understood as a measure of the certainty on the knowledge

about the prior or noise variances!®18

After having defined p(ae, fe, @, Br,f,g), the Bayesian analysis is performed. The evidence framework integ-

rates over the parameters f to give the evidence p(ac, 3., ar, fr|g) and then this likelihood is maximized over the
hyperparameters.

This approach works as follows. First, select a., Bc, &, and BT as

Qc, B, r, B = arg  max p(acaﬂmar;ﬁrm);

e, fe,0r,Br

and then select f(&c Bedin fr) defined in eq. (12), as the reconstructed image.

For the sake of simplicity, in order to estimate ., 3. ,&, and 3, we suppose that column block boundary pixels
are not related to row block boundary pixels although, as we have said, u. and v, have pixels in common with u,
and v,. This assumption implies that we can estimate prior and noise variances for the column block boundaries
independently of the row block boundary values. The same assumption i1s adopted with respect to the row block
boundaries.

Having taken into account the previous assumptions, the hierarchical approach works by selecting @, and 3.
as

e, Bc = arg maxp(()zc, /30|g)a

ac,fe

and, &, and J3, as .
G, fir = arg max p(ay, fr]g),

rmr

then selecting f(dc,ﬁc) as

. R 1. 1.
f(ézc,ﬁc) = arg{mln {ac | We(u, —ve) || —{—556 | ue — % || —{—5/30 [| ve — ye ||2}} . (14)

Uc,Ve

. . 1. 1.
f(érr,ﬁr) = arg { min {a, [| W, (u, —v,) ||2 —{—5/3, [| ur —x, ||2 —{—5/3,« [| ve —yr ||2}} . (15)



The final reconstruction consists of u.(ée., Bc), Ve (@, [;’c), u, (de, Bc) and v, (de, [;’c) and, where the rows and
columns cross, the reconstruction is obtained as the mean of the values obtained from the row and column
reconstruction. It is important to note that the method can also be implemented taking into account the correlation
between rows and columns and, these correlations amount to deal with 4 x 4 matrices that can be easily inverted'* .

In the hierarchical model we have to define the hyperprior. In this paper we shall use improper priors,
although more complex models can be used. See Ref.'” for a general study and Ref.'* for its application to image
reconstruction.

With the improper hyperpriors, the method proposed amounts to selecting a., B. as the maximum likelihood
estimates, mle, of ., f. from p(g|ae, B:). Let us proceed to examine the estimation process in detail. Let us fix
a. and B, and expand M (f, g|ae, B:) = e || We(ue —ve) ||2 +%ﬁc [| ue — xe ||2 —{—%ﬁc [| Ve — ye ||2 around f(,, 5.
We then have™13 |

plac, Belg) o< p(glec, Be) (16)
exp{—M(fo, 5.), 8lac, B 1 ‘ -
o D2 Qeer 800 P [y {26~ B ) Qo E ~ Frass) | (1)
exp{—M (fin. 5.y, glac, Bc)}det Q(ag, B. -1/2
_ oxp{=M(fa. s glam/;’ Jdet Qlac, fe) 77 (18)

where Q(a, 3:) is a (512 % 63 % 2) x (512 % 63 * 2) matrix which can be represented as a (512 % 63) x (512 % 63)

diagonal matrix with elements, q; ;(a., 3;), defined as

wteet = [ 500 | ()
Then,
512463 512463
det Q(a, f) 2 = T detlaii(oe, )] = [ (dow?(i)Be +52) 7" (20)
i=1 i=1
Differentiating — log p(a., Bc|g) with respect to a. and 3. we have
| Weltteine ) = Veoe ) I +Z% = vl (21)
e = ety I7 45 176 = Vegans +Z e DD~ (22)
Following the same steps as above, we obtain for a, and g,
I W (W (e, 5,) = Vr(er ) [I” +5§3% = plor (23)
S = a0 7 45 1130 = Vi I +Z% = p/h. (24)

Furthermore, given ac, B¢, ar and 0, f(a, 5.) and f(,, s,) are estimated by differentiating eq. (14) with respect
to u., v, and eq. (15) with respect to u, and v,, that is,

20, WIW (1. — ve) + B (1, —x.) = 0



20.WEW (ve —ue) + Be(Ve —ye) =
2&,«W£W7« (ur - Vr) + ﬁr(ur - xr)

20, WEW, (v, — ) + B (ve —yr) = 0. (25)
Taking into account that

U+ Ve =X+ e, [40e W W, + BeI] (e — ve) = Be(xe — ye),

WAV, =% 4y, [Aa,WEW, 4+ A1) - v,) = B (x, —y,),
(26)

from eq. (25), results in

weli) = 501 Belfe + A (0) Txeli) + 511 = Aol + dares?() Iy ) 1)
Veli) = 5l = Bele + ()7 TR (i) 501+ Bl + A1) Tyl (28)
W) = Sl B (e AaeZ(0) T 0) + 511 B (e das() Ty ) (29)
veli) = gl = B (B A (0)7 T (i) g1+ B (B + A () Ty (). (30)

In summary, the following iterative algorithm can be used to recover f, an image with reduced blocking artifact
(this method can also be considered as an EM procedure'?).

1. Set fy = g.

2. Choose of, 3% o2 and 2.

c)

3. Fork=1,2,...

(a) Estimate af, 8% af and gF by substituting af=1, g5=1 k=1 and ¥~ in the left hand side of equations
(21), (22), (23) and (24), respectively.

(b) For i = 1,2,...,512 % 63, compute uf (i), v¥(i), uf(i) and v#(i) from equations (27), (28), (29) and
(30), respectively

4. Goto 3 until || £¥ — £*=1 || is less than a prescribed bound.

Before testing our method in the next section it is important to note that we can also use iterative schemes
for the estimation of the hyperparameters as proposed by Kang and Katsaggelos® . This method can also be cast
within the Bayesian paradigm'”.

5 TEST EXAMPLES

In this section, experiments are presented in order to test the proposed recovery algorithm. The 512 x 512
“Lena” image is used. The image was compressed using a JPEG based coder-decoder with the quantization table
shown in Fig. 1, which yields a bit-rate of 0.24 bpp. Each entry in the quantization table denotes the quantizer
step-size for the corresponding DCT coefficient!20 . For presentation purposes the center 256 x 256 section of
this image is shown in Fig. 2.



50 60 70 70 90 120 255 255
60 60 70 96 130 255 255 255
70 70 80 120 200 255 255 255
70 96 120 145 255 255 255 255
90 130 200 255 255 255 255 255
120 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

Figure 1: Quantification table used for JPEG based compression.

Figure 2: 256 x 256 center section of blocky “Lena” from JPEG based compression at .24 bpp

We use the peak-signal-to noise-ratio (PSN R) as an objective measure of distance between the reconstructed
image f and the original image f. For N x N images with [0, 255] gray-level range, the PSN R is defined in dB by

(31)

N? x 2557
PSNR = 10log,, l X 255 ] .

£
The PSN R of the blocky image in Fig 2 is 29.58 dB.

The weights in eq. (8) are computed based on eq. (9) using the transmitted transform data. Since we have two
weight matrices, one for the columns, W, and another for the rows, W, both means . and p,, corresponding
to W, and W, respectively, and both variances ¢ and ¢ must be estimated. The weights w, (i) and w, (i) used
were constant within a 8 x 8 region surrounding a vertical or horizontal block boundary, respectively.

Since the DC coefficient in each block is the average (to a constant) of the pixel intensity within this block,
the mean p. was estimated as follow: Let us consider the vertical boundary /. and let DCL, DCr denote the DC
coefficient of its left and right block, respectively. Then, the estimate of the mean p.(l.) used for the computation



Figure 3: Weights of the blocky “Lena” image: (a) vertical, (b) horizontal.

of the weights in W is given by
. _ DCy + DCpg
pelle) = — g (32)

A similar equation is used to estimate the mean p, (I, ), used in the computation of the weights W, taking into
account, in this case, the DC coefficients of the blocks above and below this horizontal boundary.

The variance o2(l.) at the vertical block boundary . is estimated by

R VACL +V ACRr
al(le) = T , (33)

where V ACt, and V ACR are the sums of the squared AC coefficients in the first column of the blocks to the
left and to the right of the boundary I., respectively. In a similar fashion o2(.) is estimated using the sums of
the squared AC coefficients in the first row of the blocks above and below this horizontal boundary. After proper
scaling, the weight maps for the “Lena” image corresponding to W, and W, are shown in Figs. 3(a) and (b),
respectively. In the bright areas blocking artifacts are more visible than in the dark areas.

Reconstruction of Fig. 2 using the proposed algorithm, with the weights shown in Fig. 3(a) and (b), is shown in
Fig. 4. The corresponding PSN R is equal to 30.45dB. For comparison purposes, we show results with previous
proposed algorithms. Using the nonadaptive POCS approach?® the PSN R is equal to 30.32dB and using the
spatially-adaptive POCS approach?* the PSN R is equal to 30.43dB . The reconstructed image using JPEG AC
prediction recommendation in Annex-K.8.2'! has a PSN R of 29.52dB.

The proposed approach outperformed the non POCS approach? and JPEG AC prediction recommendation'!
both in PSNR and visual quality of the image and results are comparable to the spatially-adaptive POCS ap-
proach?*. In table 1 we furnish the PSNR results using the quantization table in fig. 1.



Figure 4: Reconstructed image using the proposed algorithm.

Algorithm PSNR
JPEG Blocky 29.58dB
AC Prediction 29.52dB
POCS Nonadaptive | 30.32dB
POCS Adaptive 30.43dB
Proposed Algorithm | 30.45dB

Table 1: PSN R of the reconstructed images with different algorithms.

6 CONCLUSIONS

A new spatially-adaptive image recovery algorithm has been proposed to decode BDCT based compressed
image. This algorithm is based on the Bayesian hierarchical approach to image reconstruction. Using this
approach it is possible to estimate the unknown hyperparameters using well grounded estimation procedures that
allow to incorporate from vague to precise knowledge about the unknown parameters into the recovery process.

This method is very fast. The performed tests show very good improvement in term of the PSN R metric
and the visual quality of the image. It is mentioned here that the PSN R metric may not be appropiate for this
application, since the removal of the blocking artifact is the primary objective. There may be therefore cases where
the visual quality of the processed image improves considerably, whree as the PSN R value remains the same or
even decreases. Objective measures which specifically measure the removal of blocking artifacts need to be used.
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