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Abstract. Multiple Instance Learning (MIL) has been widely applied
to medical imaging diagnosis, where bag labels are known and instance
labels inside bags are unknown. Traditional MIL assumes that instances
in each bag are independent samples from a given distribution. However,
instances are often spatially or sequentially ordered, and one would ex-
pect similar diagnostic importance for neighboring instances. To address
this, in this study, we propose a smooth attention deep MIL (SA-DMIL)
model. Smoothness is achieved by the introduction of first and second or-
der constraints on the latent function encoding the attention paid to each
instance in a bag. The method is applied to the detection of intracranial
hemorrhage (ICH) on head CT scans. The results show that this novel
SA-DMIL: (a) achieves better performance than the non-smooth atten-
tion MIL at both scan (bag) and slice (instance) levels; (b) learns spatial
dependencies between slices; and (c) outperforms current state-of-the-art
MIL methods on the same ICH test set.

Keywords: Smooth attention, Multiple instance learning, CT hemor-
rhage diagnosis

1 Introduction

Multiple Instance Learning (MIL) [21,6] is a type of weakly supervised learning
that has become very popular in biomedical imaging diagnostics due to the re-
duced annotation effort it requires [8,13]. In the case of MIL binary classification,
the training set is partitioned into bags of instances. Both bags and instances
have labels, but only bag labels are observed while instance labels remain un-
known. It is assumed that a bag label is positive if and only if the bag contains
at least one positive instance [10]. The goal is to produce a method that, trained
on bag labels only, is capable of predicting both bag and instance labels.
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Among the proposed approaches for learning in the MIL scenario [21], deep
learning (DL) methods stand out when dealing with highly structured data (such
as medical images and videos) [17]. The most successful deep MIL approaches
combine an instance-level processing mechanism (i.e., a feature extractor) with
a pooling mechanism to aggregate information from instances in a bag [8,13].
Among the pooling operators, the attention-based weight pooling proposed in
[15] is frequently used as a way to discover key instances, i.e., those responsible
for the label of a bag. However, this pooling operator was formulated under
strong assumptions of independence between the instances in a bag. This is a
drawback in biomedical imaging problems, where instances in a bag are often
spatially or sequentially ordered and their diagnostic importance is expected to
be similar for neighboring instances [24,18].

In this work, we are particularly interested in the detection of intracranial
hemorrhage (ICH), a serious life-threatening emergency caused by blood leak-
age inside the brain [5,22]. Radiologists confirm the presence of ICH by using
computed tomography (CT) scans [9], which consist of a significant number of
slices, each representing a section of the head at a given height. Unfortunately,
the shortage of specialized radiologists and their increasing workload sometimes
lead to delayed and erroneous diagnoses [3,12,25,20], which may result in poten-
tially preventable cerebral injury or morbidity [11,9]. For this reason, there is a
growing interest in the development of automated systems to assist radiologists
in making rapid and reliable diagnoses.

State-of-the-art ICH detection methods rely on DL models, specifically con-
volutional neural networks (CNNs), to extract meaningful ICH features [31].
However, 2D CNNs need to be coupled with other mechanisms such as recurrent
neural networks (RNNs) [30,14] or 3D CNNs [7,16,27,2] to account for inter-
slice dependencies. Although these approaches are quite successful in terms of
performance, their use is limited by the large amount of labeled data they re-
quire [31]. To address this issue, the ICH detection task has been formulated as
an MIL problem, achieving comparable performance to fully supervised models
while reducing the workload of radiologists [29,26]. Note that the MIL frame-
work is naturally suited for the ICH detection problem since a CT scan (i.e., a
bag) is considered positive if it contains at least one slice (i.e., an instance) with
evidence of hemorrhage (i.e., positive instance).

In this work, we improve upon the state-of-the-art deep MIL methods by
introducing dependencies between instances in a sound probabilistic manner.
These dependencies are formulated over a neighborhood graph to impose smooth-
ness on the latent function that encodes the attention given to each instance.
Smoothness is achieved by introducing specific first- and second-order constraints
on the latent function. Our model, called SA-DMIL, is applied to the ICH detec-
tion problem, obtaining (a) significant improvements upon the performance of
non-smooth models at both scan and slice levels, (b) smoother attention weights
across slices by benefiting from the inter-slice dependencies, and (c) a superior
performance against other popular MIL methods on the same test set.
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2 Methods

2.1 Problem formulation

We start by formulating ICH detection as a Multiple Instance Learning (MIL)
problem. To do so, we map slices to instances and CT scans to bags. The slices
(instances) will be denoted by xb

i ∈ R3HW , where H and W are the height and
width of the image, 3 is the number of color channels, b is the index of the scan
to which the slice belongs to and i is the index of the slice inside the bag. We
will denote the label of a slice by ybi ∈ {0, 1}. If the slice contains hemorrhage,
then ybi = 1, otherwise ybi = 0. Note that the slice labels remain unknown since
only scan labels are given. As we know, slices are grouped to form the CT scans.

Each scan (bag) will be denoted by Xb =
[
xb
1, . . . ,x

b
Nb

]⊤ ∈ RNb×3HW . Here,
Nb is the number of slices in bag b. We will assume that B CT scans are given,
so b ∈ {1, . . . , B}. Given a CT scan b, we will denote its label by T b ∈ {0, 1}.
Notice that T b = 1 if and only if some of yi

b = 1, i.e., the following relationship
between scan and slice labels holds,

T b = max
{
yb1, . . . , y

b
Nb

}
. (1)

2.2 Attention-based Multiple Instance Learning pooling

The attention-based MIL pooling was proposed in [15] as a way to discover
key instances, i.e., those responsible for the diagnosis of a scan. It consists of a
weighted average of instances (low-dimensional embeddings) where the weights
are parameterized by a neural network. Formally, given a bag of Nb embeddings

Zb =
[
zb1, . . . , z

b
Nb

]⊤
, where zbi ∈ RD, the attention-based MIL pooling computes

ΦAtt

(
Zb

)
=

∑Nb

i=1 s(z
b
i )z

b
i , (2)

where

s
(
zbi
)
=

exp
(
f
(
zbi
))∑Nb

j exp
(
f
(
zbj
)) , f

(
zbi
)
= w⊤ tanh

(
Vzbi

)
. (3)

Notice that w ∈ RL and V ∈ RL×D are trainable parameters, where D denotes
the size of feature vectors. We refer to s

(
zbi
)
as attention weights and to f

(
zbi
)

as attention values.

This operator was proposed under the assumption that the instances in a
bag show neither dependency nor order among each other. Although this may
be the case in simple problems, it does not occur in problems such as ICH
detection. Note that the attention weights of slices in a bag are correlated: given
a slice containing ICH, we expect that the adjacent slices will also contain ICH
with high probabilities. This is essential in finding slices with ICH. In the next
subsection, we show how to introduce this correlation between attention weights.
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Fig. 1: SA-DMIL architecture. It consists of CNNs that extract slice level features
and an attention block to aggregate slice features. The loss function is a weighted
average of the binary cross entropy and a novel smooth attention loss.

2.3 Modeling correlation through the attention mechanism

Ideally, in the case of a positive scan (T b = 1), high attention weights should
be assigned to slices that are likely to have a positive label (ybi = 1). Given
the dependency between slices, contiguous slices should have similar attention
values. In other words, the differences between the attention values of contiguous
slices should be small. Thus, for each bag b, these quantities should be small

Lb
S1 = 2−1 ∑

i,j∈Bag(b) A
b
ij

(
f
(
zbi
)
− f

(
zbj
))2

, (4)

Lb
S2 = 4−1 ∑

i∈Bag(b)

(∑
j∈Bag(b) A

b
ij

(
f
(
zbi
)
− f

(
zbj
)))2

, (5)

where Ab
ij = 1 if the slices i, j are related in bag b, and 0 otherwise. We smooth

f
(
zbi
)
instead of s

(
zbi
)
because a non-constrained parameter f ensures consistent

smoothing while s requires a normalization across instances in a bag.
Equations (4) and (5) correspond, respectively, to the energies of the, so

called, conditional and simultaneous autoregressive models in the statistics lit-
erature [23,4]. For our problem, they model the value of f at a given location
(instance) given the values at neighboring instances. From the regularization
viewpoint, these terms constrain the first and second derivatives of the function
f , respectively, which favors smoother functions (examine the zero of the deriva-
tive of f). That is, a priori all attention weights are expected to be the same
because f is expected to be constant. As observations arrive, they change to
reflect the importance of each instance. Note that (4) and (5) impose smooth-
ness but they can be modified to model, for example, competition between the
attention weights by simply replacing the minus sign with a plus sign.

To compute Lb
S1 and Lb

S2 efficiently we consider the simple graph defined by
the dependency between slices. For a bag b, its adjacency matrix is Ab =

[
Ab

ij

]
.

The degree matrix Db =
[
Db

ij

]
is a diagonal matrix that contains the degree of
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each slice (the degree of the slice i is the number of slices j such that Ab
ij = 1).

This is, Db
ii = degree(i) and Db

ij = 0 if i ̸= j. Using these, one can compute the

graph Laplacian matrix of a bag as Lb = Db −Ab. It is easy to show that

Lb
S1 = f b

⊤
Lbf b, Lb

S2 = f b
⊤
LbLbf b, (6)

where f b =
[
f(zb1), . . . , f(z

b
Nb

)
]⊤

. The sum of Lb
Sk over bags, where k ∈ {1, 2},

can be added to the loss function of a network to be minimized along the task-
specific loss. Note that these two terms provide two different approaches to
exploiting the correlations between instances through the loss function. We will
refer to this approach as smooth attention (SA) loss. In the following subsection,
we propose a model that can use either LS1 or LS2. The effect of each term will
be discussed in section 4.

2.4 SA-DMIL model description

We propose to couple the attention-based MIL pooling with the SA loss terms
introduced in subsection 2.3. The proposed model, named Smooth Attention
Deep Multiple Instance Learning (SA-DMIL), is depicted in Fig. 1. We use a
Convolutional Neural Network (CNN), denoted by ΦCNN, as a feature extractor
to obtain a vector of low dimensional embeddings for each instance. That is,
given a bag Xb =

[
xb
1, . . . ,x

b
Nb

]
, where xb

n ∈ R3×HW , we compute

zbn = ΦCNN

(
xb
n

)
∈ RD, Zb =

[
zb1, . . . , z

b
Nb

]
. (7)

The CNN module in Fig. 1 is implemented with six convolutional blocks, followed
by a flatten layer. Zb is then fed into the attention layer ΦAtt described in
subsection 2.3 to obtain a scan representation. After that, the scan representation
passes through a classifier Φc (i.e., one fully connected layer with a sigmoid
activation) to predict the scan labels,

p
(
T b | Xb

)
≈ Φ

(
Xb

)
= Φc

(
ΦAtt

(
ΦCNN

(
Xb

)))
, (8)

where we have written ΦCNN

(
Xb

)
=

[
ΦCNN

(
xb
1

)
, . . . , ΦCNN

(
xb
Nb

)]
. Our model,

that corresponds to the composition Φ = Φc ◦ ΦAtt ◦ ΦCNN, is trained using the
following loss function until convergence,

L = (1− α)LCE + αLSk, (9)

where α ∈ [0, 1] is an hyperparameter and LCE the common cross-entropy loss,

LCE =
∑

b

[
T b log

(
Φ
(
Xb

))
+

(
1− T b

)
log

(
1− Φ

(
Xb

))]
, (10)

where k ∈ {1, 2}, and LSk =
∑

b Lb
Sk (see equations (4) and (5)). Depending on

the value of k, we obtain two variations of SA-DMIL, which will be referred to
as SA-DMIL-S1 and SA-DMIL-S2. The baseline model, Att-MIL (non-smooth
attention), is recovered when α = 0.0 [15]. Following the approach of previous
studies [29,19], attention weights will be used to obtain predictions at the slice
level (although they are not specifically designed for it). If a scan is predicted to
be negative, all slices are also predicted to be negative, while if a scan is predicted
to correspond to an ICH, slices whose attention weight is above a threshold (i.e.,
1/Nb, with Nb being the number of slices in that scan) are predicted as ICH.



6 Y.Wu et al.

3 Experimental design

3.1 Data and data preprocessing

The dataset used in this work was obtained from the 2019 Radiological Society of
North America (RSNA) challenge [1], which included 39650 CT slices from 1150
subjects. The data were split among subjects, with 1000 scans (ICH: Normal
scans = 411: 589; ICH: Normal slices = 4976: 29520) used for training and
validation, and the remaining 150 scans (ICH: Normal scans = 72: 78; ICH:
Normal slices = 806: 4448) used for held-out testing. The number of slices in
the scans varied from 24 to 57. All CT slices underwent the same preprocessing
procedure as described in [29]. Each CT slice had three windows applied to
its original Hounsfield Units by changing the window Width (W) and Center
(C) to manipulate the display of specific tissues, as radiologists typically do
when diagnosing brain CTs. Here, we selected the brain (W: 80, C:40), subdural
(W:200, C:80) and soft tissue (W:380, C: 40) windows. All images were then
resized to the same size of 512 × 512 and normalized to the range [0, 1]. CTs
were annotated at both the scan and slice levels, but slice labels were used for
evaluation only, while scan labels were used for training and evaluation.

3.2 Experimental settings

We fix D = 128 and L = 50 in equation (3). We use the Adam optimizer with
the learning rate starting at 10−4. The batch size is set to 4, the maximum
number of epochs is set to 200 and the patience for early stopping is set to 8. We
test different values of the α hyperparameter, between 0 and 1 with a jump of
0.1. All experiments were run 5 independent times and the mean and standard
deviation were reported in the held-old testing set at both scan and slice levels.
The average training time is 10.3 hours for SA-DMIL-S1 and 10.5 hours for
SA-DMIL-S2. The prediction time is approximately 15.8 seconds for each scan.
All experiments were conducted using Tensorflow 2.11 in Python 3.8 on a single
GPU (NVIDIA Quadro RTX 8000). The code will be available via GitHub.

4 Results and discussion

4.1 Hyperparameters tuning

In this subsection, we study the effect of SA loss in terms of performance. Table
1 compares the performance of models for different values of α. The standard
deviation and other values of α can be found in the appendix, Tables S1 and
S2. The results show that at both scan and slice levels, adding a smoothness
term to the loss function (α > 0.0) achieves better performance than Att-MIL
(α = 0.0). These improvements are significant, with increases in accuracy, F1
and AUC scores of approximately 7%, 9% and 5% respectively, at scan level,
and increases in accuracy and F1 score of 8% and 11% respectively, at slice
level. The recall is the only metric in which our model does not excel, where the
baseline Att-MIL obtains the best value. However, this is associated with very
low precision values. Note that, as α increases, the performance of the model first

https://github.com/YunanWu2168/SA-MIL
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improves and then drops, which is consistent with the role played by the SA loss
as a regularization term. The difference between LS1 and LS2 is not significant
although LS1 performs slightly better. In fact, when using LS1, α = 0.5 gives
the best diagnostic performance with an AUC of 0.879 (± 0.003) at scan level
and an accuracy of 0.834 (± 0.010) at slice level.

Table 1: Performance of SA-DMIL and other MIL methods at slice and scan
levels on the RSNA dataset. The average of 5 independent runs is reported. For
space constraints, the standard deviation is reported in the appendix.

Scan level Slice level
Model Acc Pre Rec F1 AUC Acc Pre Rec F1

SA-DMIL-S1

α = 0.9 0.753 0.803 0.681 0.735 0.839 0.789 0.670 0.541 0.598
α = 0.7 0.806 0.763 0.784 0.775 0.860 0.828 0.679 0.576 0.639
α = 0.5 0.813 0.805 0.806 0.806 0.879 0.834 0.732 0.608 0.686
α = 0.3 0.767 0.734 0.806 0.768 0.859 0.775 0.702 0.551 0.624
α = 0.1 0.747 0.783 0.652 0.712 0.841 0.766 0.649 0.540 0.584

SA-DMIL-S2

α = 0.9 0.753 0.817 0.613 0.714 0.816 0.768 0.733 0.551 0.598
α = 0.7 0.767 0.776 0.722 0.748 0.843 0.807 0.734 0.591 0.638
α = 0.5 0.800 0.828 0.736 0.780 0.867 0.823 0.748 0.596 0.659
α = 0.3 0.763 0.797 0.686 0.721 0.853 0.790 0.738 0.561 0.622
α = 0.1 0.747 0.736 0.740 0.736 0.833 0.767 0.683 0.547 0.593

Att-MIL (α = 0.0) [15] 0.740 0.674 0.832 0.719 0.829 0.751 0.623 0.543 0.579
MIL + Max agg. [28] 0.617 0.856 0.447 0.575 0.743 0.732 0.441 0.373 0.406
MIL + Mean agg. [28] 0.677 0.670 0.734 0.693 0.801 0.741 0.502 0.386 0.447

Att-CNN + VGPMIL [29] 0.765 0.724 0.851 0.773 0.868 0.807 0.714 0.538 0.597

4.2 Smooth Attention MIL vs. other MIL methods
The performance of other popular MIL methods is also included in Table 1.
All method share the same CNN architecture to extract slice features, but they
differ in the pooling operator they use: Max [28], Mean [28], Attention [15] or
Gaussian Process (GP) [29]. These results show that the performance of SA-
DMIL is consistently better than other methods across different metrics and at
both scan and slice levels. Only the precision of MIL+Max agg. and the recall of
AttCNN+VGPMIL at scan level are higher than those obtained by SA-DMIL.
However, considering the trade-off between precision and recall given by F1,
our method achieves a superior performance. In tasks like ICH detection, where
neighbouring instances are expected to have similar diagnostic importance. Un-
like other MIL methods that assume each instance to be independently dis-
tributed, SA-DMIL stands out by considering the spatial correlation between
instances, which compels it to learn more meaningful features for making ac-
curate bag predictions. Notably, this is achieved by simply adding a smoothing
term to the loss function without increasing the number of model parameters.
This can potentially be applied to existing architectures to further improve per-
formance without adding complexity.

4.3 Visualizing smooth regularizing effects at slice level

So far we have observed enhanced performance through the SA term. In this
subsection, we visually illustrate how this novel term imposes smoothness be-
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tween attention scores of consecutive slices, leading to more accurate predictions.
Figure 2 shows plots of the attention scores assigned by SA-DMIL-S1 and Att-
MIL to the slices of three different scans (Fig. S1 in the appendix contains an
analogous plot for SA-DMIL-S2). As expected, introducing the SA loss results in
smoother attention weights. Note that the smoothness constraint of SA-DMIL
effectively penalizes the appearance of isolated non-smooth attention weights
that incorrectly jump over or below the threshold.

(a) Scan 1. (b) Scan 2. (c) Scan 3.

Fig. 2: Attention weights of SA-DMIL-S1 (blue lines, α = 0.5) and Att-MIL
[15] (orange lines, α = 0.0). Slices with values above the threshold (1/Nb) are
predicted as ICH, while those below are predicted as Normal. The green area
highlights those slices whose ground truth label is ICH.

We also include visual examples of consecutive CT slices in Fig. 3. In Scan 1,
the baseline Att-MIL produces a wrong prediction at scan level. When using SA,
the prediction is correct since dependencies between adjacent slices have been
learned. In Scan 2, both models produce correct predictions at scan level, but
SA-DMIL is more accurate at slice level. This occurs thanks to the SA loss, that
turns the attention scores into smoother values and, therefore, avoids random
jumps up and down the decision threshold.

5 Conclusion

In this study we have proposed SA-DMIL, a new model that obtains significant
improvements in ICH classification compared to state-of-the-art MIL methods.
This is done by adding a smoothing regularizing term to the loss function. This
term imposes a smoothness constraint on the latent function that encodes the
attention weights, which forces our model to learn dependencies between in-
stances rather than training each instance independently in a bag. This flexible
approach does not introduce any additional complexity, so similar ideas can be
applied to other methods to model dependencies between neighboring instances.

Data use declaration

The dataset used in this study is from the 2019 RSNA Intracranial Hemorrhage
Detection Challenge and is publicly available in this link.

https://www.kaggle.com/competitions/rsna-intracranial-hemorrhage-detection/data
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Scan 1
Scan
label

Ground truth Normal Normal Normal Normal Normal Normal
Att-MIL (α = 0.0) [15] ICH ICH Normal ICH Normal ICH
SA-DMIL-S1 (α = 0.5) Normal Normal Normal Normal Normal Normal

Scan 2
Scan
label

Ground truth ICH ICH Normal Normal Normal ICH
Att-MIL (α = 0.0) [15] Normal ICH ICH ICH Normal ICH
SA-DMIL-S1 (α = 0.5) ICH ICH Normal Normal Normal ICH

Fig. 3: Predictions of Att-MIL [15] and SA-DMIL-S1 at CT slice level in two
different scans. SA improves predictions at both scan and slice level. Red color:
incorrect prediction, green color: correct prediction.
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Supplementary Materials

Table S1: Performance of SA-DMIL and other MIL methods at scan level on the
RSNA dataset. The average of 5 independent runs is reported.

Scan level
Model Acc Pre Rec F1 AUC

SA-DMIL-S1

α = 0.9 0.753 ± 0.014 0.803 ±0.006 0.681 ± 0.017 0.735 ± 0.011 0.839 ± 0.007
α = 0.8 0.754 ± 0.010 0.801 ± 0.004 0.713 ± 0.014 0.740 ± 0.009 0.851 ± 0.006
α = 0.7 0.806 ± 0.007 0.763 ± 0.008 0.784 ± 0.010 0.775 ± 0.008 0.860 ± 0.010
α = 0.6 0.801 ± 0.009 0.791 ± 0.004 0.806 ± 0.009 0.799 ± 0.006 0.869 ± 0.007
α = 0.5 0.813 ± 0.010 0.805 ± 0.003 0.806 ± 0.011 0.806 ± 0.006 0.879 ± 0.003
α = 0.4 0.773 ± 0.015 0.806 ± 0.007 0.694 ± 0.018 0.746 ± 0.012 0.863 ± 0.004
α = 0.3 0.767 ± 0.012 0.734 ± 0.011 0.806 ± 0.007 0.768 ± 0.008 0.859 ± 0.010
α = 0.2 0.747 ± 0.021 0.681 ± 0.010 0.889 ± 0.004 0.771 ± 0.006 0.857 ± 0.011
α = 0.1 0.747 ± 0.017 0.783 ± 0.010 0.652 ± 0.018 0.712 ± 0.014 0.841 ± 0.014

SA-DMIL-S2

α = 0.9 0.753 ± 0.012 0.817 ± 0.010 0.613 ± 0.019 0.714 ± 0.013 0.816 ± 0.010
α = 0.8 0.733 ± 0.021 0.813 ± 0.008 0.656 ± 0.017 0.747 ± 0.009 0.825 ± 0.008
α = 0.7 0.767 ± 0.014 0.776 ± 0.012 0.722 ± 0.013 0.748 ± 0.010 0.843 ± 0.008
α = 0.6 0.760 ± 0.009 0.846 ± 0.007 0.711 ± 0.014 0.778 ± 0.008 0.852 ± 0.007
α = 0.5 0.800 ± 0.008 0.828 ± 0.010 0.736 ± 0.017 0.780 ± 0.011 0.867 ± 0.008
α = 0.4 0.773 ± 0.010 0.896 ± 0.005 0.697 ± 0.013 0.737 ± 0.007 0.880 ± 0.004
α = 0.3 0.763 ± 0.012 0.797 ± 0.007 0.686 ± 0.016 0.721 ± 0.010 0.853 ± 0.011
α = 0.2 0.753 ± 0.010 0.818 ± 0.006 0.625 ± 0.021 0.709 ± 0.017 0.838 ± 0.012
α = 0.1 0.747 ± 0.019 0.736 ± 0.011 0.740 ± 0.012 0.736 ± 0.013 0.833 ± 0.016

Att-MIL (α = 0.0) [15] 0.740 ± 0.015 0.674 ± 0.024 0.832 ± 0.011 0.719 ± 0.014 0.829 ± 0.009
MIL + Max agg. [28] 0.617 ± 0.031 0.856 ± 0.030 0.447 ± 0.109 0.575 ± 0.068 0.743 ± 0.015
MIL + Mean agg.[28] 0.677 ± 0.028 0.670 ± 0.032 0.734 ± 0.041 0.693 ± 0.040 0.801 ± 0.016

Att-CNN + VGPMIL [29] 0.765 ± 0.017 0.724 ± 0.012 0.851 ± 0.008 0.773 ± 0.010 0.868 ± 0.007
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Table S2: Performance of SA-DMIL and other MIL methods at slice level on the
RSNA dataset. The average of 5 independent runs is reported.

Slice level
Model Acc Pre Rec F1

SA-DMIL-S1

α = 0.9 0.789 ± 0.025 0.670 ± 0.031 0.541 ± 0.051 0.598 ± 0.048
α = 0.8 0.794 ± 0.017 0.683 ± 0.027 0.548 ± 0.047 0.622 ± 0.040
α = 0.7 0.828 ± 0.011 0.679 ± 0.028 0.576 ± 0.038 0.639 ± 0.037
α = 0.6 0.821 ± 0.014 0.687 ± 0.025 0.579 ± 0.037 0.643 ± 0.029
α = 0.5 0.834 ± 0.010 0.732 ± 0.021 0.608 ± 0.027 0.686 ± 0.018
α = 0.4 0.788 ± 0.017 0.718 ± 0.023 0.563 ± 0.031 0.647 ± 0.024
α = 0.3 0.775 ± 0.018 0.702 ± 0.028 0.551 ± 0.036 0.624 ± 0.032
α = 0.2 0.768 ± 0.023 0.661 ± 0.034 0.551 ± 0.032 0.611 ± 0.035
α = 0.1 0.766 ± 0.022 0.649 ± 0.032 0.540 ± 0.041 0.584 ± 0.039

SA-DMIL-S2

α = 0.9 0.768 ± 0.030 0.733 ± 0.024 0.551 ± 0.048 0.598 ± 0.046
α = 0.8 0.766 ± 0.022 0.736 ± 0.022 0.573 ± 0.046 0.625 ± 0.042
α = 0.7 0.807 ± 0.018 0.734 ± 0.028 0.591 ± 0.049 0.638 ± 0.039
α = 0.6 0.801 ± 0.020 0.746 ± 0.026 0.594 ± 0.037 0.655 ± 0.029
α = 0.5 0.823 ± 0.012 0.748 ± 0.022 0.596 ± 0.029 0.659 ± 0.024
α = 0.4 0.812 ± 0.017 0.751 ± 0.020 0.583 ± 0.027 0.637 ± 0.019
α = 0.3 0.790 ± 0.021 0.738 ± 0.028 0.561 ± 0.034 0.622 ± 0.031
α = 0.2 0.784 ± 0.024 0.742 ± 0.024 0.551 ± 0.037 0.617 ± 0.028
α = 0.1 0.767 ± 0.031 0.683 ± 0.029 0.547 ± 0.040 0.593 ± 0.037

Att-MIL (α = 0.0) [15] 0.751 ± 0.024 0.623 ± 0.037 0.543 ± 0.047 0.579 ± 0.041
MIL + Max agg. [28] 0.732 ± 0.041 0.441 ± 0.108 0.373 ± 0.152 0.406 ± 0.128
MIL + Mean agg. [28] 0.741 ± 0.038 0.502 ± 0.110 0.386 ± 0.117 0.447 ± 0.107

Att-CNN + VGPMIL [29] 0.807 ± 0.022 0.714 ± 0.028 0.538 ± 0.039 0.597 ± 0.036

(a) Bag 1. (b) Bag 2. (c) Bag 3.

Fig. S1: Attention weights of SA-DMIL-S2 (blue lines, α = 0.5) and Att-MIL
[15] (orange lines, α = 0.0). Slices with values above the threshold (1/Nb) are
predicted as ICH, while those below are predicted as Normal. The green area
highlights those slices whose ground truth label is ICH.
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