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ABSTRACT

Histological images are often tainted with two or more stains
to reveal their underlying structures and conditions. Blind Color
Deconvolution (BCD) techniques separate colors (stains) and struc-
tural information (concentrations), which is useful for the process-
ing, data augmentation, and classification of such images. Classi-
cal BCD methods rely on a complicated optimization procedure that
has to be carried out on each image independently, i.e., they are not
amortized methods. In contrast, once they have been trained, deep
neural networks can be used in a fast, amortized manner on unseen
inputs. Unfortunately, the lack of large databases of ground truth
color and concentrations has limited the development of deep mod-
els for BCD. In this work, we propose a deep variational Bayesian
BCD neural network (BCD-Net) for stain separation and concentra-
tion estimation. BCD-Net is trained by maximizing the evidence
lower bound of the observed images, which does not require the use
of ground truth examples of stains and concentrations. Results ob-
tained using two multicenter databases (Camelyon-17 and a stain
separation benchmark) demonstrate the effectiveness of BCD-Net in
the stain separation tasks, while drastically reducing the computation
time compared to classical non-amortized methods.

Index Terms— Blind Color Deconvolution, Deep Variational
Bayes, Stain Separation, Histological Images

1. INTRODUCTION

Histological images are stained to highlight the tissue structure.
Pathologists, then easily identify the elements in the tissue by their
distinctive staining. When using Hematoxylin and Eosin (H&E),
the former highlights nuclei and the latter highlights cytoplasm and
connective tissue. Blind Color Deconvolution (BCD) techniques
provide a framework for identifying the stains in the images and
using the separated information (color and structure) of each stain.
Stain separation has proven to be useful for the automated diagno-
sis [1], nuclei segmentation [2], color normalization [3], and data
augmentation of histological images [4, 5].

Unfortunately, differences in image acquisition protocol intro-
duce intra and inter-hospital chromatic variability, which compli-
cates the BCD stain separation. Therefore, BCD often requires com-
putationally expensive optimization methods where the parameters
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have to be estimated for each image [6, 2, 4]. Thus, the obtained
models are not amortized, which makes time-consuming and expen-
sive to separate the stains of large volumes of images. To solve this
problem, we propose the use of Deep Learning (DL) approaches to
train an amortized model capable of estimating the stain color and
structure. Unfortunately, the stain-separated ground truth (color and
concentrations) are rarely available, making it challenging to train
fully supervised data-driven approaches.

In this work, we propose to address this lack of ground truth by
combining analytical and DL approaches [7]. We are inspired by the
work in [8], which combines per-image analytical modeling and a
DL framework to solve the Blind Image Deblurring (BID) problem.
The proposed modeling uses blurred and clean ground truth images
to define data-driven priors. Unfortunately, in the case of histological
images, the stain-separated ground truth is neither available nor easy
to obtain, so we need to find an alternative way to introduce prior
information.

This paper is organized as follows. In section 1.1 we describe re-
lated work. In section 2 we detail the proposed deep variational BCD
model and the inference process. Section 3 contains the experimen-
tal results and analysis. Finally, section 4 reports the conclusions of
this work.

1.1. Related work

In 2001, Ruifrok et al. [9] proposed the use of the Beer-Lambert
law and a standard color-vector matrix, which have been widely
used since then. However, to deal with color variation a color-
vector matrix must be estimated for each image. Since then, several
optimization-based methods have been proposed (See [1] for a com-
plete review). They use different techniques for this task, such
as Singular Value Decomposition (SVD) [6], Non-Negative Ma-
trix Factorization (NMF) [2], Independent Component Analysis
(ICA) [10], or clustering techniques [11, 12]. As mentioned above,
these methods are not amortized, i.e., the optimization procedure
has to be repeated for each image.

Amortized DL approaches to BCD are scarce. Duggal et al. [13]
propose a color deconvolution layer to be appended to classification
CNNs. The parameters of the layer, which emulate the color-vector
matrix, are initialized using [6] and optimized during training. Sim-
ilarly, in [14], a capsule network is used to generate multiple stain
separation candidates that are assembled with a sparse constraint.
Both [13] and [14] fix their parameters after training and thus do
not take color variation into account. The work by Abousamra et
al. [15] uses an autoencoder for stain separation of immunohisto-
chemistry images, trained with manually placed dot labels as weak



Fig. 1: Overall architecture for BCD-Net including the subnetworks C-Net and M-Net, the overview of the Bayesian framework and loss.
For architecture design and details, see section 2. (*) Indicates that the sampling of q(M) is done using the reparametrization trick.

supervision. Unfortunately, this work cannot be extended to other
staining protocols without a labeled dataset.

Bayesian approaches to BCD have yielded impressive results. In
[16] the Beer-Lambert law is used to propose an observation model
in the Optical Density (OD) space, together with a reference matrix
based prior on the color-vectors, and a Simultaneous Autoregres-
sion (SAR) prior model on the stain concentrations. This work is
extended in [17] with a Total Variation (TV) prior on the concentra-
tions and in [3] with general Super-Gaussian (SG) priors. The work
in [4] uses a dictionary-learning approach and proposes the use of
Bayesian K-SVD (BKSVD). These methods have been adapted from
Probabilistic Blind Image Deblurring (BID) methods [18], which is
closely related to BCD. The goal of BID is to estimate the blur ker-
nel and the underlying clean image from a blurred observed image.
In BCD, the goal is to estimate the color-vector matrix and the un-
derlying stain concentrations from a multi-stained image.

DL BID methods usually rely on the easily obtainable ground
truth images and blur for training, which has prevented their adapta-
tion to BCD where stain color-vector matrices and concentrations are
hardly available. The recently proposed variational network in [19]
and its extension in [8] propose a combination of probabilistic an-
alytical (per image) techniques with a probabilistic amortized DL
formulation. The authors use a data-driven prior, and a Dirichlet dis-
tribution to define the priors on the real underlying image and blur,
respectively. They infer two networks that approximate the corre-
sponding posteriors.

With the lessons learned from the amortized BID method in [8],
and the analytical (per-image) BCD methods in [16, 17, 3], we pro-
pose BCD-Net, an amortized deep variational Bayesian model for
BCD, with two subnetworks, C-Net and M-Net, that infer the con-
centrations and stain-color vector. BCD-Net is trained using the Ev-
idence Lower Bound (ELBO) of the log-likelihood of the observa-
tions, which does not require the stain-color vectors and concentra-
tions ground truth.

2. DEEP VARIATIONAL BAYESIAN BLIND COLOR
DECONVOLUTION

Given an observed histological RGB image I =
[
ikc
]

with HW ×3
pixels, we transform it into the Optical Density (OD) space [3]. For
each RGB channel c ∈ {R,G,B} and pixel k ∈ {1, . . . , HW},
the corresponding OD value is defined as ykc = − log(ikc/255).
From these values, we define the corresponding OD image as Y =[
ykc
]
∈ RHW×3. According to the Beer-Lambert law,

Y⊤ = MC+N (1)

where M ∈ R3×Ns is the color-vector matrix, C ∈ RNs×HW is the
concentration matrix and N ∈ R3×HW is a noise matrix.

Here, we consider the joint probability p(C,M,Y) = p(C)p(M)p(Y |
M,C), where each factor is defined as follows. Ideally, a data-
driven prior could be used for the concentration matrix prior p(C)
and the color matrix prior p(M) [8]. However, there is not a large
enough dataset of stain-separated ground truth examples. To define
p(C), distributions that provide general information about the con-
centrations could be explored. Since this increases the complexity of
the model, we decide to keep it simple and use an improper flat prior
p(C) ∝ const. As it will be explained later, this model amounts to
using maximum likelihood to estimate the concentrations. To define
the color matrix prior we take into account that the staining protocol
(e.g. H&E) is known and it is generally accepted that the color vec-
tors are always close to those provided by Ruifrok’s reference matrix
[9, 20, 16]. We denote this matrix by MRui, with columns mRui

s ,
and use it to define the following prior on M = [m1, . . . ,mNs ]

⊤,

p(M) =

Ns∏
s=1

p(ms) =

Ns∏
s=1

N (ms | mRui
s , (σRui

s )2I). (2)

The square root of the variances σRui
1 , . . . , σRui

Ns
control the amount

of variation allowed in each stain. For this work, we fix these values
to σRui = 0.05, assuming a moderate variance from the reference
MRui. Finally, the observation model in equation (1) can be written
as

p(Y | M,C) ∝ exp

[
−λ2

∥∥∥Y⊤ −MC
∥∥∥2
F

]
, (3)

where ∥·∥F denotes the Frobenius norm and λ > 0 is the noise
variance of the observation model.

2.1. Inference

Our goal is to estimate C and M from each observation Y. To
do so, we need to compute the posterior p(C,M | Y). Since it
does not admit an analytic expression, we decide to use variational
inference and approximate it by q(C,M | Y) = q(C | Y)q(M |
Y). This approach was followed in [16, 17, 3] where different priors
were used for C (i.e., SAR, TV, and SG), obtaining non-amortized
methods. In this work, to build the inference model q(C,M | Y),
we use two DNNs, called C-Net and M-Net. C-Net has network
parameters α and returns the prediction of the concentration matrix
Cα(Y) ∈ RNs×HW for a given image Y. The posterior qα(C |
Y) is chosen to be the degenerate distribution given by

qα(C | Y) =

{
1 if C = Cα(Y)

0 otherwise
. (4)



M-Net, with parameters β, returns the means µβ
1 (Y), . . . ,µβ

Ns
(Y)

and variances σβ
1 (Y)

2
, . . . , σβ

Ns
(Y)

2
for the approximated poste-

rior qβ(M | Y), which is chosen to be a product of Gaussian distri-
butions, that is,

qβ(M | Y) =

Ns∏
s=1

N
(
ms | µβ

s (Y), σβ
s (Y)

2
I3×3

)
. (5)

To estimate α and β we use a very large dataset of histological
images Y = {Y1, . . . ,YN} and maximize the Evidence Lower
Bound (ELBO) of the log-likelihood of the observations, ELBO =∑

Y∈Y ELBO(Y), where

ELBO(Y) = Eq(C,M|Y)

[
log

p(C,M,Y)

q(C,M | Y)

]
= (6)

= −Eqα(C|Y)

[
log

qα(C | Y)

p(C)

]
(7)

− Eqβ(M|Y)

[
log

qβ(M | Y)

p(M)

]
(8)

− λ2Eqβ(M|Y)

[∥∥∥Y⊤ −MCα(Y)
∥∥∥2
F

]
+ const. (9)

Since p(C) is improper and qα(C) is degenerate the term in the
equation (7) is not properly defined and is not considered. Actually,
this term is minus infinity since the divergence between these two
distributions is infinite. Note that this is not a problem: if we had
used maximum likelihood for the C-Net parameters and the same
approximate posterior distribution qβ(M) for the color matrix, this
term would have not appeared. Then, the expectation in the equation
(8) corresponds to minus the Kullback-Leibler divergence between
the two distributions in equations (2) and (5). This divergence, de-
noted from now on as Lβ

KL(Y), can be computed in closed form us-
ing the well known Kullback-Leibler divergence between two Gaus-
sian distributions,

Lβ
KL(Y) =

Ns∑
s=1

|| µβ
s (Y)−mRui

s ||2

2(σRui
s )2

+

3

2

Ns∑
s=1

(
σβ
s (Y)

2

(σRui
s )2

− log
σβ
s (Y)

2

(σRui
s )2

− 1

)
. (10)

Finally, although the expectation in the equation (9) also admits a
closed-form expression, we have found that the training procedure is
much more stable if we use the reparameterization trick instead [21].
This trick allows us to obtain an unbiased differentiable estimator of
E
[∥∥Y⊤ −MCα(Y)

∥∥2
F

]
, which will be denoted by Lα,β

MSE(Y) in
the following.

In summary, the ELBO in equation (6) is approximated as
ELBO(Y) ≈ −Lβ

KL(Y) − λ2Lα,β
MSE(Y). Instead of maximizing

the approximated ELBO, we equivalently minimize the negative
approximated ELBO, which yields the following objective

min
α,β

∑
Y∈Y

[
Lβ

KL(Y) + λ2Lα,β
MSE(Y)

]
. (11)

The two terms in the above equation play very important roles.
The first monitors M-Net to provide a color distribution close to the
prior and the second combines both C-Net and M-Net to provide
a good reconstruction of the observed image according to the ob-
servation model. The values of λ2 and σRui

s determine the balance
between the two terms. To experimentally determine how this bal-
ance affects the results, we redefine the objective in equation (11) to

include a weighting parameter 0 < θ = λ2/(1 + λ2) < 1 (whose
importance will be evaluated in the ablation study in section 3),

min
α,β

∑
Y∈Y

[
θLβ

KL(Y) + (1− θ)Lα,β
MSE(Y)

]
, (12)

In summary, the proposed inference model uses two networks,
C-Net and M-Net. Both branches, C-Net and M-Net, jointly de-
fine BCD-Net for the Bayesian modeling and inference presented in
this section. Each of them has a specific task: to estimate the stain
concentrations in the case of C-Net and to estimate the color-matrix
posterior in the case of M-Net. However, they are jointly trained
to reconstruct the observed image according to the Beer-Lambert
model in equation (3). In addition, M-Net is also constrained by the
prior defined on the color vectors. Note that using two subnetworks
to boost the performance of a joint task, which amounts to an in-
dependent assumption in the posterior approximation, is a common
approach in blind image deblurring [8, 22] and denoising [19].

2.2. Network architecture

To build C-Net we follow [8] and use Unet [23], which was first
proposed for biological image segmentation. The output of C-Net
has two channels of the same size as the input image, one for the
concentration of each stain in the H&E image. We use four scales in
both the encoder and decoder, where each encoder and decoder block
contains three stacked ResBlocks with LeakyReLU activation and a
small kernel size of 3×3. The number of channels per layer is set to
64. Each downsampling block uses a convolution layer with a 3× 3
filter and a stride of 2. The upsampling uses a transposed convolution
with a 5×5 filter and a stride of 2. M-Net uses MobileNet V3 Small
[24] followed by a linear fully connected layer. The output of M-
Net is the estimation of the means and the logarithm of the variances
of the variational approximation of the color-vector matrix posterior.
As the mean is required to have a unitary norm, we include an L2
constraint [25] for its corresponding M-Net output.

3. EXPERIMENTS

3.1. Experimental settings

Datasets. We use two widely used datasets in histological color
deconvolution-related tasks. To train and validate BCD-Net, we
use data obtained from the Camelyon-17 breast cancer classifica-
tion challenge [26]. This dataset contains images from five different
medical centers in the Netherlands, with intra- and inter-center color
variations. We use 500 slides (100 from each center) that were re-
leased as the training set for the challenge. We use non-overlapping
patches of size 224 × 224 with at least 70% tissue. Our model is
trained using images from three different centers and validated us-
ing images from the remaining two centers, which allow us to cap-
ture a wide range of variations. This dataset does not include a stain
separation ground truth. The Warwick Stain Separation Benchmark
(WSBB) [10] is used to assess the stain separation performance of
BCD-Net. WSSB is of special interest to assess the performance of
BCD methods because it includes the ground truth stain separation
for 24 images of three different tissue types (breast, lung, and colon).
The stain color matrix was obtained by asking pathologists to iden-
tify pixels of biological structures that were stained with a single
stain. Then, the ground truth concentrations CGT were obtained
in [10] as CGT = M+

GTY, where M+
GT is the Moore-Penrose

pseudo-inverse of the color-matrix ground truth.



Table 1: PSNR for BCD-Net with different values of θ on the WSSB dataset [10]. The best value is highlighted in bold.

Value of θ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean PSNR 22.57 24.03 24.18 24.76 23.78 23.80 22.84 21.81 21.84 21.46 21.11

Table 2: PSNR for the best performing methods on WSSB. The
best value of each pair (subset, stain) is highlighted in bold.

Subset Stain RUI MAC VAH ALS SAR TV SGP BKSVD BCD-Net

Lung H 22.47 19.52 25.87 20.62 32.91 33.10 35.21 32.67 27.32
E 22.05 18.09 25.53 23.95 30.77 31.02 33.07 30.61 24.96

Breast H 15.27 26.24 25.46 24.60 28.81 29.14 30.50 32.20 25.58
E 17.66 23.62 27.68 25.92 26.60 26.76 27.71 29.43 23.11

Colon H 22.27 23.91 25.83 21.11 28.57 28.62 29.01 34.08 25.03
E 20.70 21.55 26.29 21.94 27.58 27.60 28.38 33.32 22.55

Mean
H 20.00 23.22 25.72 22.11 30.10 30.29 31.57 32.98 25.98
E 20.14 21.08 26.50 23.94 28.32 28.46 29.72 31.12 23.54

Mean 20.07 22.15 26.11 23.03 29.21 29.38 30.65 32.05 24.76

Implementation. BCD-Net is built using Pytorch and trained
on four NVIDIA GeForce RTX 3090. We use a batch size of 64 (16
per GPU) and the ADAM optimizer with an initial learning rate of
10−4, which is halved every 3 epochs if the loss does not decrease.
To facilitate the network to establish the right order in the H&E chan-
nels, a pretraining epoch is added in which θ is set to 0.99. We train
for a maximum of 100 epochs, with an early stopping callback that
halts the training procedure if the loss has not decreased for 10 con-
secutive epochs. The weights corresponding to the best-performing
epoch on the validation data are saved and used in the following ex-
periments.

3.2. Stain separation performance

To quantitatively assess the model performance on the stain separa-
tion task we analyze the fidelity of the stain-separated RGB images
to those obtained using the ground truth. We compare them using
the Peak Signal-to-Noise ratio (PSNR). For each image, we obtain
a PSNR value for each stain image (Hematoxylin and Eosin) and a
PSNR value corresponding to the mean of both. The mean PSNR
obtained for each value of θ is presented in table 1. Recall that
small values of θ increase the importance of the reconstruction term
Lα,β

MSE(Y), while large values of θ balance the loss towards simi-
larity to the prior. These results show that the regularization term
imposed by Lβ

KL(Y) is relevant for a better stain separation. How-
ever, excessive fidelity to the prior hampers a faithful estimation of
the stains in the image.

In table 2 we present a comparison between BCD-Net and other
non-amortized state-of-the-art methods. These include the classi-
cal non-blind CD method by Ruifrok et al. (RUI) [9], the non-
amortized methods by Macenko et al. (MAC) [6], Vahadane et al.
(VAH) [2], Alsubaie et al. (ALS) [10], and Zheng et al. (ZHE)
[12]. We also include the Bayesian methods Simultaneous Auto-
regressive (SAR) [16], Total Variation (TV) [17], Super Gaussian
Priors (SGP) [3], and Bayesian K-SVD (BKSVD) [4]. The com-
parison shows that the proposed method is still far from the latest
non-amortized methods, but the results are promising. BCD-Net out-
performs RUI, ZHE, MAC, and ALS, and it is competitive with the
commonly used VAH. The figures of merit show that the amortized
BCD-Net model produces an appropriate estimation of the concen-
tration and color-vector matrices, even though it is trained without
stain-separated ground truth samples.

3.3. Computational Efficiency

We analyze the time taken by each of the methods in the table 2 to
perform the stain separation of a 2000×2000 image from the WSSB
dataset. The proposed BCD-Net is run on an NVIDIA Geforce
GTX3090 X GPU and in the same CPU as the rest of the methods.
The results are presented in a biplot (see figure 2) with the average
required time versus the mean PSNR from table 2. These figures
allow us to visually compare the time efficiency and the stain sepa-
ration quality of each model. The best methods are those near the
upper left corner. When using the GPU, the proposed method is the
fastest, requiring an average of 0.74 seconds. Note that this makes
our method even faster than the non-blind method RUI, which re-
quires 0.81 seconds. If the GPU is not available, the proposed BCD-
Net can also run on the CPU, where it takes 9.24 seconds, making it
competitive in time with the state-of-the-art non-amortized methods,
and still faster than SAR, ALS, SGP, and TV.
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Fig. 2: Mean PSNR vs running time for deconvolving a
2000× 2000 image. The proposed BCD-Net is marked in red.

4. CONCLUSIONS

In this paper, we have proposed a novel Deep Variational Bayesian
Blind Color Deconvolution Neural Network (BCD-Net) for stain
separation of histological images. BCD-Net combines DL with ana-
lytical Bayesian modeling to train a DNN by maximizing the ELBO
of the observed optical density images without any stain separation
ground truth. The proposed model includes two subnetworks, C-
Net and M-Net, which jointly estimate a posterior distribution for
the color-vector matrix and the stain concentrations using maximum
likelihood in an amortized inference manner. Both outputs are used
to reconstruct the observed image according to the Beer-Lambert
law. This innovative approach has provided promising results in the
stain separation task while significantly reducing the computational
demands of non-amortized models used in the literature. Moreover,
since our model relies on maximum likelihood to estimate the C-
Net parameters, we believe there is potential for improvement by
considering different prior distributions for the stain concentrations.
Finally, we believe that this work paves the way for further explo-
ration of the BCD problem from a DL perspective and can be used
to further explore the field of histological image analysis.
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