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Abstract—Semantic information is widely used in the deep
learning literature to improve the performance of visual media
processing. In this work, we propose a semantic prior based
Generative Adversarial Network (GAN) model for video super-
resolution. The model fully utilizes various texture styles from
different semantic categories of video-frame patches, contributing
to more accurate and efficient learning for the generator. Based
on the GAN framework, we introduce the semantic prior by
making use of the spatial feature transform during the learning
process of the generator. The patch-wise semantic prior is
extracted on the whole video frame by a semantic segmentation
network. A hybrid loss function is designed to guide the learning
performance. Experimental results show that our proposed model
is advantageous in sharpening video frames, reducing noise and
artifacts, and recovering realistic textures.

Index Terms—Video Super-Resolution, Generative Adversarial
Networks, Semantic Segmentation, Spatial Feature Transform,
Hybrid loss function

I. INTRODUCTION

With the increasing popularity of electronic devices such
as HDTV and large-screen mobile phones, Video Super-
Resolution (VSR) has gained popularity. VSR aims at pro-
ducing high-resolution (HR) video sequences based on low-
resolution (LR) video ones so as to improve user experience.
Algorithms that tackle the super-resolution (SR) problem
can be divided into two broad categories: model-based and
learning-based algorithms [1]. Recent results seem to indicate
that learning-based algorithms, especially those using the
GAN framework [2], [3], outperform model-based methods
significantly [4]-[6].

Conventional learning-based algorithms use large training
databases of HR and LR video frames to learn mappings
from LR to HR video sequences. Most VSR algorithms use a
short LR video window around a central frame to reconstruct
it, see, for instance, [1]. The main VSR strategies may be
divided into three categories. The first one is based on the
GAN framework, see [1], [2]. This approach uses the generator
to learn the LR to HR mapping and enhances the learning
performance by introducing the discriminator to judge the
quality of the HR estimation. The second strategy is the
combination of semantic content and SR processing, exampled
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in [7], [8]. Semantic information, such as object categories,
texture styles and edge maps, improves the performance of SR
methods. The third category uses patch-wise training for neural
networks, e.g. [6], [9]. Multiple frame patches are provided as
input to the networks to increase their learning efficiency. The
literature shows that these three strategies have been proven
very beneficial to SR methods. However, so far work merging
those three strategies together into one framework has seldom
been reported. This is the contribution of this work.

In this paper, we propose a semantic-prior based GAN
model for VSR problems. As the name suggests, it combines
GANSs, semantic priors and patch-based training strategies into
a single framework. We also present a detailed explanation of
our approach to extract semantic information from each frame
patch and combine it with the current generator. With the aid
of a hybrid loss function, our proposed model produces better
results than our previous work VSRRestFeatGAN, which has
achieved higher performance compared to the state-of-the-art
VSR models [1].

II. METHODOLOGY

The goal of a semantic image segmentation network is to
separate different objects by identifying their textural features
[10]. When combined with a GAN-based approach, the se-
mantic information enhances the performance of the GAN
to accurately reconstruct the HR texture. In our previously
proposed VSR model VSRResFeatGAN [1], we implemented
a GAN-based residual network to learn the mapping from
multiple LR frames y;_k, ..., Yt—1, Yt, Yt+1, ---, Yt+k, Which are
incorporated into the vector Y;, to the HR central frame z; as:

Ty = f(Yt) = f(yt—kv s Yt—1, Yt Yt+1, "'7yt+k)' (1)

When compared to the current competing state-of-the-art VSR
networks, VSRResFeatGAN has been confirmed to generate
estimations with higher quality [1]. However, the GAN ar-
chitecture often generates artifacts, resulting in the unnatural
visual perception of texture areas. To recover HR images
with better perceptual quality and more realistic textures, we
introduce an auxiliary semantic segmentation network to guide
texture reconstruction by providing a semantic prior S for each
pixel in the frame,

S:(PCUPC2,...,PC7L), (2)
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Fig. 1. The architecture of the generator for our proposed S-VSRResFeatGAN.

where Pc,, denotes the probability that the pixel belongs to a
specific category C,,. Then (1) is reformulated as:

o Yerk]S). 3)

‘We refer to this framework as Semantic-VSRResFeatGAN (S-
VSRResFeatGAN).
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A. Basic Architecture

Fig. 1 shows the new framework of our generator in S-
VSRResFeatGAN. Since the use of Convolutional Neural
Networks (CNN) is a well established method to solve super-
resolution problems, the use of patches, as short-time and
stationary signals for inputs, has been found suitable for
networks to converge. When training with patches, the com-
plexity for learning also decreases due to the limited spatial
extent. Therefore, with the purpose to exploit the advantages of
video processing, the generator is provided with 5 bicubically
upscaled LR frame patches at times ¢t —2,t — 1,¢,t+ 1,1+ 2
to recover the HR frame patch ¢. The introduction of multiple
patches from different frames strengthens the learning of
high frequency patterns. Since the content of video frames
is relatively stable in the time slot within 5 frames, we only
make use of semantic segmentation map for the central frame
patch t. The semantic information is extracted by a condition
network, which consists of 5-layer convolutions followed by a
Leaky Rectified Linear Unit (LeakyReLU) activation function,
as shown in Fig. 2.

Feature maps of input frames as well as the semantic prior
are the input to 15 residual blocks for training. We follow the
design of residual blocks in [1], which are composed of two
convolution layers with 3x3 kernel and ReLUs. As Wang et
al. [8] found out that the spatial feature transform works better
with semantic information, we incorporate it into our residual
blocks to guide texture learning, see Fig. 3.

Condition Network

.....................................................

.
]
E <« <« <> &5, <3_2> '
'
5 —> - | — — '
: Conv Leaky Conv Leaky Conv Leaky Conv Leaky Conv '
" (3x3) ReLU (1x1) ReLU (1x1) RelU (1x1) RelU (1x1) ,'
Fig. 2. The condition network for extracting semantic information from

semantic maps

To apply spatial feature transforms to the current GAN-
based framework, two extra convolution layers are used to
transfer the semantic information into parameters A and b.
These parameters are then conveniently combined with feature
maps by the following affine transformation

SFT(F)=AG®F &b, “)

where F' denotes the given feature maps, b and A represent the
parameters learned from semantic information and ©® and &
denote element-wise multiplication and addition, respectively
[8]. With this framework, the whole generator is semantically
controlled by the semantic prior to generate natural HR
textures. In order to produce images of high perceptual quality,
apart from the traditional mean square error loss, we include
feature loss and GAN loss to constrain learning, as detailed
in [1].

B. Patch-based Semantic Segmentation Prior

Our S-VSRResFeatGAN adopted the patch-size train-
ing strategy onto the previously proposed VSRResFeatGAN
model [1].

However, semantic segmentation networks generally work
on whole images, resulting in low performance when tested
on patches. Provided with relatively little information and
a small receptive field, the semantic segmentation network
has difficulties in providing accurate semantic labels for each
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Fig. 3. The new residual block with the introduction of two spatial feature transform layers.

patch. In order to maintain the accuracy of semantic seg-
mentation under the framework of patch-wise training, we
segment whole frames and then map the global semantic map
to the local space. A sliding window is utilized to capture
the local semantic information from the global one. By using
such patches of semantic priors, the network enhances its
local semantic understanding during training, reconstructing
realistic HR textures.

The network we used for semantic segmentation is borrowed
from Deep Parsing Network (DPN), which has demonstrated
its outstanding segmentation performance, see [11].

C. Loss Functions

In order to direct our network to generate images with
better perceptual quality, multiple losses have been combined
to influence the reconstruction [1], more specifically, a convex
combination of pixel, feature, and adversarial losses has been
used. This combined loss is designed to push our HR estima-
tion closer to the ground truth not only in the pixel space, but
also in the feature space.

To enforce the network to create accurate reconstruction in
the pixel space, we make use of the Charbonnnier loss:

=TT e -

where 7, j denotes pixel location and € > 0, approximating the
L1 regularizer [1]. However, only introducing pixel-space loss
is not enough to obtain perceptually satisfying images, since
the outputs result in large areas of texture being blurred. A
VGG based feature loss is added to further enhance edge and
texture details. With the use of the 3rd and 4th convolution
layers inside the VGG network, our HR estimation and the
ground truth are mapped into a learned feature space to
compute the distance between predicted and ground-truth
high-resolution frames. To the pixel-space loss we added
Y(VGG(x), VGG(Gy(Y))). With the introduction of seman-
tic information, the VGG-based feature loss constrains the
network better and produces high-quality outputs.

~(z, Go(Y Vi))2+e,  (5)

We use the discriminator architecture in [1]. While the
generator aims to obtain super resolved images close to real
ones by minimizing the function

Lg@y = Ey [~log Dy (Go (Y))], (6)

the discriminator is trained to distinguish between real and
generated HR images through maximizing the loss

E [log Dy ()] + Ey [log (1 — Dy (Go (Y)))] . (7)

With such adversarial training [12], we push the network to
provide HR frames of high perceptual quality.

To summarize, combining all the loss functions above, our
final loss for the generator is formulated as:

Ligtaie) =@ Y, Y(VGG(x), VGG(Gy(Y)))
(Y, x)eT

Lag) =

+6Ey [—1log Dy (G (Y))]
+l-a=8) > Alx,Ge(Y)),

(Y, x)eT

®)

where o and 8 are non-negative values with o + 3 < 1 and
are determined experimentally to control the weight of each
loss component. The loss for our discriminator is the same as
in (7).

ITII. EXPERIMENTS
A. Training and Parameters

Our experiments were conducted on the publicly available
4K Myanmar video dataset [13]. We sampled frames from the
video sequences and downsampled them to 960x540 pixels
to reduce memory requirements. Our semantic segmentation
model, which is borrowed from [8], [11], was pre-trained on
the MS-COCO dataset [14] and fine-tuned with the ADE20K
dataset [15]. Images will be forced to produce segmentation
maps with 8 categories (buildings, plants, sky, mountains,
water, animals, grasses and background ), which correspond
to object instances frequently seen in the outdoor scenes in
our training dataset.



Thus, for each HR color frame at time ¢, we extracted an LR
color frame and fed it to the semantic segmentation network
to generate a set of semantic maps with the corresponding
probabilities of each category, with size 1 x 8 x H x W.
To synthesize our 2D patch-wise training dataset, we split
the luminance channel y from the HR frame by Matlab’s
rgb2ycbcer function and performed patching. Each sample in
the training input consists of 5 36x36 LR grey patches at times
t—2,t—1,t,t+ 1,t + 2 and the corresponding 8 channels of
the 36x36 semantic prior for time ¢t. Meanwhile, the 36 x 36
HR grey patch at time ¢ is defined to be the ground truth
used during training. All the LR objects are obtained by
MATLAB'’s imresize() to bring the low-resolution patches to
the same spatial extent as the high-resolution ones. In our
experiment, we use a total of 910,000 patch pairs for training.
Our network processes only the luminance channel y, which
is then combined with the bicubically upscaled cb, cr channels
to create the final color output.

In order to facilitate the stability of the training process
for the semantic GAN, we first followed the pretraining
procedure detailed in [1], where a model is first trained
with the MSE loss in pixel-space only before using it as
initial weights in the combined loss training. The authors of
[1] explain that this is necessary for large scale factors to
avoid subsequent failure of the GAN-based training. Thus, we
obtained the pretrained VSRResFeatGAN model provided by
[1]. We note that this model does not include the spatial feature
transform layers. Therefore, in the subsequent GAN training
with semantic prior, apart from the weights of the spatial
feature transform layers, the remaining parts in the generator
of our S-VSRResFeatGAN were initialized with the weights
transferred from the pretrained pixel-wise VSRResFeatGAN
model [1]. For the spatial feature transform layers, we use
the initialization in Kaiming et al. [16]. The discriminator
is trained from scratch. The combined loss in (8) was used
to control the semantic GAN network to produce estimation
of high perceptual quality. We used the same hyper-training
parameters and loss contributions as those specified in [1]. In
these settings, we find that our network converged after the
training for 30 epochs.

B. Evaluation Results

Our model was trained for 2, 3, and 4 SR factors. In order
to test the performance of our model on a general dataset, we
test our model and compare it with VSRResFeatGAN on the
VidSet4 dataset [17], which is a commonly used video dataset
for the assessment of video SR models.

Recently, traditional image quality metrics such as PSNR
and SSIM were found not to accurately estimate the perceptual
quality of an HR estimation. For the purpose of accurately re-
flecting the behavior of our model on perception, when testing
VSRResFeatGAN [1], we use the novel criterion proposed in
Zhang et al. [18] to measure the perceptual similarity between
two images. In the experiments for VSRResFeatGAN [1], the
perceptual similarity network shows an outstanding human
perceptual judgment for determining the sharpness of video

frames. Therefore, we keep this metric to assess the texture
reconstruction of our S-VSRResFeatGAN.

We use PSNR, SSIM and Perceptual Distance (PercepDist)
to compare our S-VSRResFeatGAN VSR model to the current
state-of-the-art VSRResFeatGAN model [1]. Note that the
segmentation accuracy significantly affects the behavior of our
model, which means that a better segmentation contributes
to better outputs. Since our semantic segmentation network
is trained for some special scenes, it is necessary to make
sure that our S-VSRResFeatGAN takes advantage of the right
semantic information when testing on the VidSet4 dataset [17].
Within the four sequences in VidSet4, we particularly focus on
the detailed results in the Foliage sequences, which provides
relatively accurate semantic prior in testing. The results are
shown in tables I and II.

TABLE 1
AVERAGE PERFORMANCE COMPARISON ON VIDSET4 DATASET

Scale VSRResFeatGAN S-VSRResFeatGAN
Factor PSNR/SSIM/PercepDist PSNR/SSIM/PercepDist
u2 30.90/0.9241/0.0283 31.19/0.9316/0.0269
u3 26.53/0.8148/0.0668 26.79/0.8238/0.0659
u4 24.50/0.7023/0.1043 24.81/0.7146/0.1086

For the PercepDist metric, smaller is better.

TABLE I
QUANTITATIVE COMPARISON ON FOLIAGE SEQUENCES

Scale VSRResFeatGAN S-VSRResFeatGAN
Factor =~ PSNR/SSIM/PercepDist PSNR/SSIM/PercepDist
u2 29.71/0.9108/0.0342 30.48/0.9237/0.0258
u3 25.29/0.7544/0.0736 25.80/0.7734/0.0666
u4 23.20/0.5974/0.1203 23.99/0.6421/0.1146

Table I suggests that our S-VSRResFeatGAN model out-
performs VSRResFeatGAN on almost all the metrics on the
VidSet4 dataset [17]. Furthermore, Table II shows that in
terms of the PercepDist metric, our model outperforms the
VSRResFeatGAN model by a larger margin when provided
with a relatively accurate segmentation. We provide qualitative
examples, in Fig. 4 and 5. Focusing on the zoomed-in areas in
the frames we see that our S-VSRResFeatGAN reconstructs
textures with less noise and the estimated textures keep shapes
closer to those of the ground truth.

As mentioned before, the spatial feature transform layers
in our S-VSRResFeatGAN model utilize high-level semantic
information to learn texture styles. Our experiments found
that it is crucial that similar types of texture styles in the
testing set are also included in the training set. Otherwise, even
though the segmentation is accurate, the HR estimation may
have artifacts and distortions from emphasizing wrong texture
styles. When the scale factor becomes larger with the sharp
decrease of the informative prior, the artifacts and distortions
will be more prevalent, as shown in the results of Table I.
The average improvement of PercepDist gradually decreases



Fig. 4. Qualitative comparison between VSRResFeatGAN (2nd row, left) and
S-VSRResFeatGAN (2nd row, right) on scale factor 3, with ground truth (Ist
row, left) as well as bicubic result (1st row, right). The generation of our
S-VSRResFeatGAN is smoother with fewer artifacts and noise.

Fig. 5. Qualitative comparison between VSRResFeatGAN (2nd row, left) and
S-VSRResFeatGAN (2nd row, right) on scale factor 3, with ground truth (1st
row, left) as well as bicubic result (1st row, right). The enlarged region in
our S-VSRResFeatGAN’s output maintains clearer outline and is closer to
the ground truth.

by the increase of the scale factor. Thus, to improve results,
not only the accuracy of semantic segmentations but also the
richness of the texture diversity in each category should be
taken into account.

IV. CONCLUSION

In this paper, we proposed a semantic-prior GAN based
video super-resolution model. Following our previous work on
the VSRRestFeatGAN model, we introduced patch semantics
when training our generator. Experimental results show that
the new model can improve the perceptual quality of HR frame
estimation by removing some of the artifacts and noise, sharp-
ening the outline and refining textures. Although the current
video frames we processed were greyscale, the extension to

RGB frames is straightforward. As our model depends much
on the accuracy of semantic segmentations, in addition to the
diversity and the richness of texture styles inside each category
for learning, future work will focus on more general priors to
be utilized in the spatial feature transform to produce more
realistic frames.
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