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Abstract—In digital brightfield microscopy, tissues are usually
stained with two or more dyes. Color deconvolution aims at
separating multi-stained images into single stained images. We
formulate the blind color deconvolution problem within the
Bayesian framework. Our model takes into account the similarity
to a given reference color-vector matrix and spatial relations
among the concentration pixels by a total variation prior. It
utilizes variational inference and an evidence lower bound to
estimate all the latent variables. The proposed algorithm is tested
on real images and compared with classical and state-of-the-art
color deconvolution algorithms.

Index Terms—Blind color deconvolution, histopathological im-
ages, variational Bayes, total variation

I. INTRODUCTION

In digital brightfield microscopy, tissues are usually stained
before digitization and evaluation by pathologists. Hema-
toxylin and eosin (H&E) are probably the most widely used
combination of stains. Computer-Aided Diagnosis (CAD) sys-
tems usually use the amount of each stain absorbed by a sam-
ple to quantitatively determine the presence of cancerous cells
in the tissue [1]. Color deconvolution (CD) is a computational
technique to separate multi-stained images into a set of images,
one for each stain.

Several CD methods have been proposed (see [2] for a
recent review of classical and state-of-the-art CD methods).
One of the first CD methods was proposed by Ruifrok et
al. [3]. This is a supervised manual method where the stain
color vectors are obtained by measuring the relative absorption
of each stain in single-stained images. These vectors are
then applied to all the images, disregarding the inter-slide
variability, which may result in a poor separation. To tackle
inter-slide variability several blind (unsupervised) methods
have been proposed. The works in [1] and [4] used Non-
negative Matrix Factorization (NMF) and SVD corrected for
robustness, respectively, to separate H&E stained images.
More recently, in [5] clustering techniques are used to estimate
the stain color vectors. McCann et al. [6] extended the method
in [4] by taking into account the interaction between eosin and
hematoxylin. In [7], [8], the NMF method in [1] is extended by
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including different sparsity and regularization terms. Alsubaie
et al. [9], following [10], proposed the use of ICA in the
wavelet domain. In [11], [12] a Variational Bayesian model
with Simiultaneous Autoregresive (SAR) prior on the con-
centrations was proposed. These methods reduce noise in the
image but also tend to smooth the borders of the structures in
the image. In this paper we extend the method in [11] by using
a total variation (TV) prior instead of the SAR prior. TV prior
reduces the noise in the images while preserving sharp edges
and has been successfully used to tackle the solution of other
inverse problems such as denoising [13], image restoration
[14] or super-resolution [15].

The rest of the paper is organized as follows: in section II
the problem of color deconvolution is mathematically formu-
lated. Following the Bayesian modelling and inference, in sec-
tion III we propose an automatic method for the estimation of
the concentrations and the color-vector matrix. In section IV,
the proposed method is evaluated in a set of H&E stained
images and its performance is compared with other classical
and state-of-the-art CD methods. Finally, section V concludes
the paper.

II. PROBLEM FORMULATION

A stained histological specimen’s slide digitized by a bright-
field microscope is stored as an RGB color image of size
M ×N represented by the MN × 3 matrix by stacking each
color component into a MN × 1 column vector

I =

 i1R i1G i1B
...

...
...

iMNR iMNG iMNB

 =

 iT1,:
...

iTMN,:

 =
[
iR iG iB

]
,

(1)
Each value iic, c ∈ {R,G,B}, of the image is the transmitted
light across the slide. For diagnostic purposes, however, the
interest is centered on the contribution of each stain to this
value, which can be performed in the absorbency or optical
density (OD) image. According to its definition, the OD for
channel c of the slide, yc ∈ RMN×1, is yc = − log10

(
ic/i

0
c

)
,

where i0c denotes the incident light, and the division operation
and log10(·) function are computed element-wise.



The observed OD image Y ∈ RMN×3 is composed by the
RGB OD channels, i.e., Y = [ yR yG yB ]. The monochro-
matic Beer-Lambert law, for a slide stained with ns stains,
establishes that

YT = MCT + NT , (2)

where N is a random matrix of size MN × 3 with i.i.d. zero
mean Gaussian components with variance β−1, C ∈ RMN×ns

is the stain concentration matrix

C =

 c11 . . . c1ns

...
. . .

...
cMN1 . . . cMNns

 =

 cT
1,:
...

cT
MN,:

 =
[
c1 . . . cns

]
, (3)

with the i-th row cT
i,: = (ci1, . . . , cins), i = 1, . . . ,MN ,

representing the contribution of the stains at the i-th I pixel
value and the s-th column cs = (c1s, . . . , cMNs)

T, s ∈
{1, . . . , ns}, representing the concentrations of the s-th stain,
and M ∈ R3×ns is the normalized stains’ specific color-vector
matrix

M =

mR1 . . . mRns

mG1 . . . mGns

mB1 . . . mBns

 =

mT
R,:

mT
G,:

mT
B,:

 =
[
m1 . . .mns

]
. (4)

Each column ms in matrix M is a unit `2 norm stain color-
vector containing the relative RGB color composition of the
corresponding stain in the OD space.

Color Deconvolution is a technique that allows us to obtain
the stain concentration matrix, C, and the color-vector matrix,
M, from the observed optical densities, Y. Accordingly to
(2), the contribution of each stain to the observed OD image
can be separately calculated from

∑ns

s=1 msc
T
s .

In the following section we use Bayesian modeling and
inference to estimate both C and M.

III. BAYESIAN MODELLING AND INFERENCE

Following the degradation model in (2), we have

p(Y|C,M) =

MN∏
i=1

p(yi,:|M, ci,:)

=

MN∏
i=1

N (yi,:|Mci,:, β
−1I3×3)

∝
MN∏
i=1

exp

(
−1

2
β‖yi,: −Mci,:‖2

)
. (5)

For each independent stain concentrations vector prior we
adopt the TV function, that is,

p(C) =

ns∏
s=1

p(cs) ∝
ns∏
s=1

exp [−αsTV(cs)] , (6)

with αs > 0. The TV function is defined for any cs, s ∈
{1, . . . , ns}, as

TV(cs) =

MN∑
i=1

√
(∆h

i (cs))2 + (∆v
i (cs))

2, (7)

where the operators ∆h
i (cs) and ∆v

i (cs) correspond to, re-
spectively, the horizontal and vertical first order differences at
pixel i.

The color-vector matrix M = [m1, . . . ,mns
] is also un-

known because it depends on many factors that include the
staining procedures and microscopes. In [3], color-vectors for
hematoxylin, eosin, and DAB stains were proposed. Although
those standard color-vectors are not usually exact for each
single image, they have been frequently used. In this paper
we incorporate the similarity to a reference color-vector matrix
M = [m1, . . . ,mns

] into the prior model on M, as

p(M) =

ns∏
s=1

p(ms)∝
ns∏
s=1

γ
3
2
s exp

(
−1

2
γs‖ms −ms‖2

)
, (8)

where γs, s = 1, . . . , ns, controls our confidence on the
accuracy of ms.

With all these ingredients, the joint probability distribution
for our problem is

p(Y,C,M) = p(Y|C,M) p(C) p(M). (9)

We will denote the set of all unknowns by Θ =
{c1, . . . , cns

,m1, . . . ,mns
} and assume that the parameters

β, α1, . . . , αns
, γ1, . . . , γns

are given. Their estimation is left
for future work.

Following the Bayesian paradigm, inference will be based
on the posterior distribution p(Θ|Y). However, this posterior
p(Θ|Y) is intractable. Therefore, we consider an approxi-
mation of p(Θ|Y) by a simpler tractable distribution q(Θ)
following the variational methodology [16]. The distribution
q(Θ) will be found by minimizing the Kullback-Leibler (KL)
divergence, given by [17], [18]

KL (q(Θ) ||p(Θ|Y))=

∫
q(Θ) log

q(Θ)

p(Θ,Y)
dΘ + log p(Y),

(10)

which is always non-negative and equal to zero only when
q(Θ) = p(Θ|Y). In order to obtain a tractable approximation,
the family of distributions q(Θ) are restricted utilizing the
mean field approximation [19] so that

q(Θ) =

ns∏
s=1

q(cs)

ns∏
s=1

q(ms). (11)

However, the use of the TV prior for C makes the integral in
(10) difficult to evaluate even with this factorization. There-
fore, a majorization of the TV prior is utilized to find an upper
bound of the KL divergence (or equivalently a lower bound
of the evidence). First, for αs, cs, and any N−dimensional
vector us ∈ (R+)MN , s = 1, . . . , ns, we define

Ms(cs,us)=exp

[
−αs

2

MN∑
i=1

(∆h
i (cs))

2 + (∆v
i (cs))

2 + uis√
uis

]
.

(12)
Now, using the following inequality for w ≥ 0 and z > 0

√
wz ≤ w + z

2
⇒
√
w ≤ w + z

2
√
z
, (13)



we can write

exp[−αsTV(cs)] ≥Ms(cs,us), (14)

for s = 1, . . . , ns. We define

M(C,U) =
∏
s

Ms(cs,us), (15)

where U = [u1 . . .uns
] and then define F(Θ,U,Y) =

p(Y|C,M)M(C,U)p(M) to obtain

log p(Θ,Y) ≥ log F(Θ,U,Y). (16)

Utilizing the lower bound F(Θ,U,Y) for the joint probability
distribution in (10) we minimize KL (q(Θ) ||F(Θ,U,Y))
instead of KL (q(Θ) ||p(Θ|Y)).

Let us now obtain the analytic expressions for each latent
variable. In what follows we use Θ\θ to represent all the
variables in Θ except θ and 〈·〉q(Θ\θ) denotes the expected
value calculated using the distribution q(Θ\θ). We will remove
subscripts in expected values when clear from the context.

A. Concentration Update

To estimate the s-th stain concentration, the mean field
variational distribution approximation establishes that

q(cs) ∝ exp 〈log p(Y|C,M) + logMs(cs,us)〉q(Θ\cs) .
(17)

Utilizing

e−si,: = yi,: −
∑
k 6=s

〈cik〉 〈mk〉 , i = 1, . . . ,MN, (18)

and
z−si = 〈ms〉T e−si,: , i = 1, . . . ,MN, (19)

we can easily show that

log q(cs) = −β
2

(
−2cT

s z−s+ ‖ cs ‖2
〈
‖ms ‖2

〉)
− αs

2
(cs)

T
[
(∆h)TW(u)∆h + (∆v)TW(u)∆v

]
cs + const

(20)

which produces q(cs) = N (cs| 〈cs〉 ,Σcs
) , where

Σ−1
cs

= β
〈
‖ms ‖2

〉
IMN×MN

+ (∆h)TW(us)∆
h + (∆v)TW(us)∆

v (21)

〈cs〉 = βΣcs
z−s . (22)

Above ∆h and ∆v represent the convolution matrices associ-
ated with the first order horizontal and vertical differences,
respectively, and W(us) is a diagonal matrix of the form
W(us) = diag(u

−1/2
is ), for i = 1, . . . ,MN . This matrix

W(us) can be interpreted as a spatial adaptivity matrix since
it controls the amount of smoothing at each pixel location
depending on the strength of the intensity variation at that
pixel, as expressed by the horizontal and vertical intensity
gradient.

B. Color-Vector Update

In a similar way, we calculate the distribution of ms,

q(ms) ∝ exp 〈log p(Y|C,M) + log p(M)〉q(Θ\ms) . (23)

Using (18), we now have

log q(ms) = −β
2

(
‖ms ‖2

MN∑
i=1

〈
c2is
〉
− 2mT

s

MN∑
i=1

〈cis〉 e−si,:

)
− 1

2
γs ‖ms −ms ‖2 + e, (24)

which produces

q(ms) = N (ms| 〈ms〉 ,Σms
) , (25)

where

Σ−1
ms

=

(
β

MN∑
i=1

〈
c2is
〉

+ γs

)
I3×3 , (26)

〈ms〉 = Σms

(
β

MN∑
i=1

〈cis〉 e−si,: + γsms

)
. (27)

Notice that 〈ms〉 may not be a unitary vector even if ms is.
We can always replace 〈ms〉 by 〈ms〉 / ‖ 〈ms〉 ‖ and Σms

by Σms/ ‖ 〈ms〉 ‖2. Notice also that
〈
c2is
〉

can be calculated
using (22) and

〈
‖ms ‖2

〉
can be easily calculated from (27)

resulting in

MN∑
i=1

〈
c2is
〉

=

MN∑
i=1

〈cis〉2 + tr(Σcs
) , (28)〈

‖ms ‖2
〉

=‖ 〈ms〉 ‖2 +tr(Σms) . (29)

C. U Update

To estimate the U matrix, we need to solve

Û = arg min
U

KL (q(Θ) ||F(Θ,U,Y)) , (30)

which is equivalent, for each s in {1, . . . , ns}, to

ûs = arg min
us

−〈logMs(αs, cs,us)〉q(cs)

= arg min
us

MN∑
i=1

〈
(∆h

i (cs))
2 + (∆v

i (cs))
2
〉

+ uis√
uis

, (31)

whose solution is given by

ûis = arg min
uis

〈
(∆h

i (cs))
2 + (∆v

i (cs))
2
〉

+ uis√
uis

=
〈
∆h
i (cs)

2
〉

+
〈
∆v
i (cs)

2
〉
. (32)

D. Calculating the concentration covariance matrices

The matrix Σcs must be explicitly calculated to find its trace
and also ûis. However, since its calculation is very intense, we
propose the following approximation of the covariance matrix.
We first approximate W(us) using

W(us) ≈ z(us)I, (33)



Algorithm 1 Variational Bayesian TV Blind CD
Require: Observed image I, reference (prior) color-vector

matrix M, β, αs and γs, ∀s = 1, . . . , ns.
Obtain the observed OD image Y from I and set 〈ms〉(0)

=

ms, Σ
(0)
ms = 0, Σ

(0)
cs = 0, 〈cs〉(0), ∀s = 1, . . . , ns, from the

matrix C obtained as CT = M+YT, with M+ the Moore-
Penrose pseudo-inverse of M, and n = 0.
while convergence criterion is not met do

1. Set n = n+ 1.
2. Using 〈cs〉(n−1) and Σ

(n−1)
cs , ∀s ∈ {1, . . . , ns}, update

the new variational parameters û
(n)
s from (32).

3. Using 〈cs〉(n−1), Σ
(n−1)
cs and 〈ms〉(n−1) update the

color-vectors Σ
(n)
ms and 〈ms〉(n) from (26) and (27), ∀s.

4. Using 〈ms〉(n), Σ
(n)
ms and û

(n)
s update the concentra-

tions Σ
(n)
cs and 〈cs〉(n) from (21) and (22), ∀s.

end while
Output the color-vector m̂s = 〈ms〉(n) and the concentra-
tions ĉs = 〈cs〉(n), ∀s ∈ {1, . . . , ns}.

where z(us) is calculated as the mean value of the diagonal
values in W(us), that is,

z(us) =
1

MN

∑
i

1
√
uis

. (34)

We then use the approximation

Σ−1
cs
≈ β

〈
‖ms ‖2

〉
IMN×MN

+ αz(us)(∆
h)

T
(∆h) + αz(us)(∆

v)
T

(∆v) = B. (35)

Note that the matrix B is a block circulant matrix with
circulant blocks (BCCB), thus, computing its inverse can be
very efficiently performed in the discrete Fourier domain.

Finally we have〈
∆h
i (cs)

2
〉

+
〈
∆v
i (cs)

2
〉

= (∆h
i (〈cs〉))2 + (∆v

i (〈cs〉))2

+
〈
(∆h

i (cs − 〈cs〉)2
〉

+
〈
(∆v

i (cs − 〈cs〉)2
〉
.

≈ (∆h
i (〈cs〉))2 + (∆v

i (〈cs〉))2

+
1

MN
tr
[
B−1 ×

(
(∆h)

T
(∆h) + (∆v)

T
(∆v)

)]
. (36)

E. Proposed Algorithm

Based on the previous derivations, we propose the Varia-
tional Bayesian TV Blind Color Deconvolution in Algorithm 1.
The linear equations problem in (22), used in step 4 of Alg. 1,
has been solved using the Conjugate Gradient approach.
Finally, from Alg. 1, an RGB image of each separated stain,
Îsep
s , can be obtained as

(Îsep
s )T = exp10 (−m̂sĉ

T
s ). (37)

IV. EXPERIMENTAL RESULTS

We compared the proposed approach with classical and
state-of-the-art CD methods on the Warwick Stain Separation
Benchmark (WSSB) in [9]. WSSB includes 24 H&E stained
images of different types of tissue: breast, colon and lung.

In [9], ground truth stain color-vector matrices, MGT , were
manually selected based on biological structures. Given those
color-vector matrices, ground truth concentrations were de-
rived as CT

GT = M+
GTYT. Their corresponding ground truth

RGB separated images can be obtained from (37). Figure 1(a)
shows an example of breast observed image whose ground
truth RGB separated E-only and H-only images are depicted,
respectively, in the left and right hand sides of Fig. 1(b).

We have obtained a reference value for the color-vector
matrix M, M, by selecting a single pixel containing mainly
hematoxylin and another pixel containing mainly eosin from
each type of tissue, breast, colon and lung. These reference
color vectors have also been used by the method in [12].
In Alg. 1 the parameters β, αs and γs ∀s = 1, . . . , ns, are
assumed to be known and their values have been experi-
mentally determined to be α1 = 7, α2 = 17, β = 6000
and γ1 = γ2 = 1020. The stopping criterion ‖ 〈cs〉(n) −
〈cs〉(n−1) ‖2/‖ 〈cs〉(n) ‖2 < 10−4 for both stains, that is,
s = 1, 2, was used for the proposed algorithm.

We have compared the proposed method against non-blind
color deconvolution method in [3], the classical blind method
in [4] and the recent methods in [6], [8], [9] and [12]. For all
the competing algorithms, parameters were selected following
the recommendations on the original paper or the reference
software freely available. Comparison is performed numeri-
cally by calculating the Peak Signal to Noise Ratio (PSNR) and
Structural Similarity (SSIM) [20] between the reconstructed
H-only and E-only images and their corresponding ground
truth images, as well as visually.

Table I shows the numerical results of applying the proposed
Alg. 1 to the dataset. The figures of merit obtained for the
proposed method are higher than all of the competing methods.
The H and E separated images obtained using the proposed and
the competitors methods for the breast observed H&E image in
Fig. 1a are shown in Fig. 1c-h. Due to space constraints, results
from the method in [6] are not shown since they were quite
close to those provide by the method in [4]. The figure shows
that the best results are obtained by the proposed method
and those in [8], [11] although the proposed method and
the method in [11] produce more detailed images than those
obtained by [8] and the proposed method produces crisper
images than [11].

V. CONCLUSIONS

A novel variational Bayesian blind color deconvolution
algorithm for histological images has been developed. It takes
into account the spatial relations between pixels, by means
of a total variation prior model, as well as the similarity to
a reference color-vector matrix. Variational inference and an
evidence lower bound to estimate all the latent variables are
used. Comparison with classical and recent methods demon-
strated the superiority of the proposed method. Future work
includes the automatic parameter estimation.
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