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ABSTRACT

While Deep Neural Networks trained for solving inverse imaging
problems (such as super-resolution, denoising, or inpainting tasks)
regularly achieve new state-of-the-art restoration performance, this
increase in performance is often accompanied with undesired arti-
facts generated in their solution. These artifacts are usually specific
to the type of neural network architecture, training, or test input im-
age used for the inverse imaging problem at hand. In this paper, we
propose a fast, efficient post-processing method for reducing these
artifacts. Given a test input image and its known image formation
model, we fine-tune the parameters of the trained network and it-
eratively update them using a data consistency loss. We show that
in addition to being efficient and applicable to large variety of prob-
lems, our post-processing through fine-tuning approach enhances the
solution originally provided by the neural network by maintaining
its restoration quality while reducing the observed artifacts, as mea-
sured qualitatively and quantitatively.

Index Terms— Deep Neural Networks, Image and Video Pro-
cessing, Inversion, Fine-tuning, Artifacts, Data Consistency

1. INTRODUCTION

In the past decade, the application of Deep Neural Networks (DNNs)
to inverse imaging problems has gained a considerable amount of
popularity [1]. This approach requires the training of a neural net-
work fθ(·) with parameters θ to learn the mapping between any ob-
served test image y to its restored version x by completing a forward
pass: x̂ = fθ(y). In the non-blind case, the observed image y is
assumed to come from a known image formation model with degra-
dation operator A, which we formulate here as y = Ax. The param-
eters θ are learned through a lengthy training stage which requires
the use of a large dataset with input-output (y, x) pairs. The train-
ing data is commonly obtained by applying the degradation operator
A to the clean images to obtain the corresponding degraded images
used for training. With this straight-forward framework combined
with the fast-growing nature of Deep Learning, new state-of-the-art
results for image restoration tasks are regularly achieved.

However, what the Deep Learning community fails to expose in
their publications are the failure cases of using DNNs for inverse
imaging problems which may result in unnatural-looking images
with unpleasant artifacts. Indeed, under certain conditions, these
networks may produce images of unsatisfactory quality that is not
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up to the established standards. To illustrate this, we summarize be-
low two case scenarios in which such a situation may arise.

Case scenario #1: Disagreements between the training and
testing image formation model in super-resolution. It is well
known that a DNN trained for a specific image recovery problem will
not generalize well to a test data point whose image formation model
differs from the model established when synthesizing the training
dataset. In the case of super-resolution (SR), for example, provid-
ing a test image downsampled by 3 to a neural network trained for
performing the SR problem of scale factor 4 will result in the intro-
duction of mild artifacts in the restored image. We show an example
of such artifacts in Figure 1b. While we observe a sharp increase
in resolution when compared with the bicubic interpolation solution
shown in Figure 1a, the result in Figure 1b carries an artificial qual-
ity, expressed by an un-natural looking super-resolved texture.

Case scenario #2: Artifacts resulting from the training of
Generative Adversarial Networks. The application of the Genera-
tive Adversarial Network (GAN) [2] formulation to inverse imaging
problems has resulted in solutions of previously unseen restoration
quality ([3, 4, 5]). However, as a result of their challenging training
dynamics, GANs frequently generate undesired artifacts in their pro-
duced images. An example of these artifacts is presented in Figure
2b, which shows a super-resolved frame obtained by the GAN-based
model presented in [5] and [6], trained for the video SR problem for
scale factor 4. It is clear from this figure that a small amount of noise
was introduced by the GAN into the super-resolved frame, which the
authors of [5] refer to as a ”dot-pattern” artifact.

The standard approach to resolve the two case scenarios de-
scribed above consists of returning to a training procedure and adapt-
ing the training set-up in an attempt to minimize, or completely re-
move, these artifacts. For example a solution to case scenario #1 is to
modify the training dataset such that multiple degradation operators
of different scale factors are used to fabricate the training data. As
a result, the neural network becomes robust to several degradation
operators A and is thus less prone to generate artifacts. To resolve
case scenario #2, researchers may want to experiment with the use of
improved loss functions during training, such as the use of WGANs
[7], LSGANs [8], and cycle-consistent GANs [9], with the objective
of regularizing the produced artifacts.

While these approaches are perfectly sound course of actions,
they possess the significant drawback of being excessively time-
consuming. Modifying the training procedures of neural networks
may take weeks, sometimes months, of research to converge to a
satisfying product. In many settings, such as industry, this approach
would not be an effective use of time. This approach also requires
access to large computing power and training dataset, which a user
may not necessarily have access to at test time.

In this work, we provide an efficient approach to post-process
an image by fine-tuning the parameters θ of the neural network fθ(·)



without the use of a training dataset. The supervision signal used
for fine-tuning the parameters corresponds to the constraint that our
observed test image y should be related to the output of the DNN
through the known image formation model: Afθ(y) = y. With this
approach, noise patterns and artifacts that are not in agreement with
the observed data will be penalized accordingly during fine-tuning.
Thus as the parameters θ of the DNN are updated to satisfy the
data consistency constraint, they are displaced in parameter space
towards generating a solution with less artifacts.

2. RELATED WORKS

Guiding the neural network’s solution to satisfy the data consistency
constraint Afθ(y) = y for improved results has become an increas-
ingly popular trick in the literature of deep learning for inverse imag-
ing problems. The constraint is in most cases implemented as a non-
trainable projection layer in the architecture of a neural network (see
for example, [10, 11, 12]). These layers naturally map the output
image of the DNNs onto the set of data consistent solutions.

A recent approach in the image processing literature has been
to fully depart from the definition of DNNs as learned mappings
from degraded to restored images, and instead use un-trained DNNs
as regularizers when inverting an observed image y using an ana-
lytical framework. A pioneer of this approach is the Deep Image
Prior (DIP) [13] method, which defines the minimization problem
θ̂ = argmin

θ
||Ahθ(z) − y||2 using a randomly initialized neural

network hθ(·), a fixed random input vector z, and the degradation
operator A. Through the use of an iterative gradient descent scheme,
the algorithm eventually converges to a satisfactory restored image:
x̂ = hθ(y). The supervision used during ”training” is solely given
by the data consistency constraint. The authors of DIP claim that the
architecture of hθ(·) is a strong enough regularizer to produce pleas-
ing images without necessitating further regularization. Indeed, the
obtained solutions of [13] are surprisingly well regularized and sim-
ilar to natural images.

In this work, we consider the case in which we are provided with
a deep neural network fθ(·), trained for a specific image restoration
task on a large dataset of input-output pairs. We focus on the case
in which the network provides an overall suitable solution x̂, with
the exception of generating mild artifacts in its output. In Section 3,
we describe in detail our formulation of fine-tuning the parameters
of the neural network as an inversion problem at test time, without
requiring a training data set. We apply our method on the two case
scenarios defined in Section 1 and show that we can successfully at-
tenuate the artifacts while keeping the restoration quality originally
produced by fθ(·). We end this paper with a discussion in Section
4, which details the benefits and limitations of our proposed method.
To the best of our knowledge, we are the first to establish a frame-
work for fine-tuning neural networks to enhance output images at
test time.

3. METHODS

We assume access to a network fθ(·) trained on a large dataset
(X,Y ) with an objective function C. As a result of training, we ob-
tain the parameters θ by minimizing θ̂ = argmin

θ
EX,Y C(x, y, θ)

where x ∼ X and y ∼ Y are sampled from the training dataset. We
wish to preserve the original restoration quality provided by fθ(·)
whilst removing the generated artifacts. To achieve that, we propose
to fine-tune the parameters of our neural networks by iteratively up-

dating them in the direction which minimizes the generated artifacts.
We eliminate the requirement of re-training the neural network and
instead formulate a supervision signal at test time which only re-
quires the observed image y, its degradation operator A, the trained
θ weights and the network architecture fθ(·). Because artifacts seen
in Ax̂ are not observed in the y image, a supervision signal suitable
for our task penalizes contents of Ax̂ and y that are dissimilar from
each other:

ψ̂ = argmin
ψ

||Afψ(y)− y||22. (1)

We solve the problem posed in Equation 1 using gradient descent by
efficiently computing the derivatives of fψ with automatic differenti-
ation in the Pytorch [14]. Our first iteration sets the initial parameters
to those obtained from the earlier training stage, i.e.: ψ0 = θ. Given
the fine-tuned final parameters ψ, our final post-processed image is
obtained through the mapping: x = fψ(y).
We note here that our formulation in Equation 1 corresponds to
the well established inversion problem posed by all image recovery
tasks, which we apply here to the context of fine-tuning and output
enhancement of an already trained network. While this supervision
signal is very similar to the one used by the Deep Image Prior ap-
proach [13], our motivations for using it are distinct. We formulate
the inversion problem as in Equation 1 not to restore an image from
scratch as in DIP, but to enhance the solution supplied by a trained
neural network. Our work thus combines the learning power of pre-
trained DNNs with the dependability of analytical approaches for
image restoration.
In the next section, we apply our fine-tuning in Equation 1 in the
context of the two case scenarios previously reported. We obtain our
pre-trained neural networks fθ(·) from [5] which were both trained
for the task of video super-resolution (VSR) for scale factor 4. In
this paper, we refer to these two models as the VSRMSE model,
trained with the Mean-Squared-Error loss C = ||fθ(y) − x||22, and
the VSRGAN model trained by introducing a discriminator network
gφ with trainable parameters φ and using the cost function C =
log(1− gφ(fθ(y)). Both the VSRMSE and VSRGAN architectures
correspond to a Convolutional Neural Networks (CNNs) with 15
residual blocks (See Figure 1 in [5]). The input to both networks is
a low-resolution video sequence y = {yt−2, yt−1, yt, yt+1, yt+2}
and the output is the corresponding center high-resolution frame
x = xt.

3.1. Disagreements between the training and testing image for-
mation in super-resolution.

The VSRMSE [5] is pre-trained to perform super-resolution for scale
factor 4. It is thus reasonable to expect that at test time, inputting
a low-resolution video sequence that was downsampled by an SR
factor other than 4 will result in VSRMSE failing to produce clean
super-resolved frames. Figure 1b shows the result of downsampling
the test video frames by 3 instead of 4 and super-resolving these with
the trained VSRMSE. A comparison between the bicubic image in
Figure 1a and the SR result x̂ in Figure 1b reveals that while the VS-
RMSE was not trained for the VSR task of factor 3, it is remarkably
successful at increasing its resolution. Unfortunately, this increase
in resolution is also accompanied with textural artifacts, particularly
around the branches of the trees. Our main objective is to reduce the
generated artifacts observed in Figure 1b while keeping the obtained
increase in resolution provided by VSRMSE. To this end, we ap-
ply the formulation introduced in Equation 1, where y is our video
sequence downsampled by scale factor 3, A is the bicubic down-



(a) 16.90/0.6630 (b) 23.51/0.7230 (c) 25.60/0.7497 (d) 21.72/0.5162

Fig. 1: Super-resolving a sequence downsampled by factor 3. (a) Bicubic interpolation; (b) VSRMSE output ([5]) with disagreeing down-
sampling factors; (c) Our fine-tuned VSRMSE output; and (d) DIP [13].

sampling operator for scale factor 3 and the fθ network is the trained
VSRMSE network for scale factor 4. Provided with our new pa-
rameters ψ as a result of the fine-tuning method, we generate a new
solution x̂ = fψ(y) and display it in Figure 1d. From this figure we
observe that our fine-tuning method successfully attenuates the ring-
ing artifacts while maintaining the initially acquired super-resolved
quality of Figure 1b.
To demonstrate that we truly benefit from fine-tuning the pre-trained
parameters θ as opposed to optimizing with initial random parame-
ters as in the Deep Image Prior [13] work, we run the DIP algorithm
for super-resolving the same observed sequence y by adapting their
code available online at https://dmitryulyanov.github.
io/deep_image_prior to the SR task for scale factor 3. We
show the results of the DIP optimization in Figure 1c. While the
DIP approach successfully sharpens the low-resolution observation,
it also generates strong granular noise in its solution. Because the
weights of our VSRMSE network act as the sole regularizers to our
inversion problem, it should not be surprising that using learned pa-
rameters as opposed to random parameters produces cleaner super-
resolved frames. A quantitative comparison presented in the caption
of Figure 2 reveals that the fine-tuned fψ(y) results in an increase in
PSNR of 2.09 dB from the original fθ(y) and an increase in 3.88 dB
from the DIP solution hθ(z).

3.2. Removing artifacts in GANs.

We now set fθ(·) to correspond to the VSRGAN model proposed by
[5]. We show an example of a frame super-resolved by the VSR-
GAN model in Figure 2b. While producing a frame x̂ of significantly
sharper quality than its MSE-trained counterpart VSRMSE (Figure
2d), it also inevitably introduces artifacts in the super-resolved
frame. Indeed, a closer look at Figure 2b reveals the presence of a
”dot-like” pattern in the super-resolved frame. These artifacts usu-
ally arise from complicated training dynamics due to the adversarial
loss in VSRGAN. More specifically, we hypothesize that during
training, the VSRGAN (erroneously) learns that the artifacts seen
in Figure 2b are suitable high-frequency signals to generate when
simulating high-resolution frames. Our objective thus is to remove
these artifacts whilst keeping the super-resolved quality obtained
from our GAN through appropriate fine-tuning of its parameters θ.
Before applying the method of Equation 1, we note that the edges
in the super-resolved frame are less affected by the artifacts, as
opposed to the particular noisy flat regions in the frame in Figure
2b. The objective of our fine-tuning is thus to reduce the artifacts
in the flat region whilst preserving the sharpness of the edges. With
this in mind, we modify the problem defined in Equation 1 to use a
mask that effectively places more penalty on the parameters that are
responsible for influencing the flat areas of the frame. We compute

the mask by applying the well-knwon Sobel operator S(·) on the
super-resolved frame x̂ = fθ(y) to obtain a high-resolution edge
map of the frame, and then define M(x̂) = 1 − S(x̂) as our mask-
ing operator in our objective function. Thus when applied to the
problem of GAN artifact removal, our inversion problem becomes:

ψ̂ = argmin
ψ

||M(x̂)� (Afψ(y)bic − ybic)||22, (2)

where � denotes the element-wise multiplication operator, and
Afθ(y)bic and ybic refer to the bicubically interpolated ”predicted”
low-resolution and ground-truth low-resolution frames, respectively.
Working with these bicubically interpolated variables as opposed to
their low-resolution counterparts is necessary in order to apply the
masking M(x̂) originally computed in high-resolution space. We
show the results of our post-processing x = fψ(y) in Figure 2c.
Comparing Figure 2c with Figure 2b reveals that the dot-pattern
artifacts were reduced by a significant extent. One may argue that
the result of the fine-tuning led to a slightly smoother solution than
prior to optimization, however, the perceptual quality seen in Figure
2c is still significantly higher than the VSRMSE solution in Figure
2d. In other words, fine-tuning the VSRGAN model results in a
sharper solution than VSRMSE, and a cleaner solution than VSR-
GAN, hence combining the best of both models. The quantitative
metrics for this experiments are consistent with these observations:
the post-processed results with our fine-tuned network obtain the
largest PSNR and SSIM metrics, surpassing the metrics computed
from both the trained VSRGAN and VSRMSE.

4. DISCUSSION

The experimental results of the previous section showed that apply-
ing the data consistency constraints of Equations 1 and 2 on our
trained models resulted in a reduction of the artifacts produced by
VSRMSE and VSRGAN when tested on the case scenarios defined
in Section 1.
Here, we emphasize that our proposed method is not limited to the
problem of VSR or to the two case scenarios detailed in this paper.
In fact, this method is easily extendable to numerous situations in
which a user may want to reduce mild artifacts produced by a neural
network trained for an inverse imaging problem at test time. Our
method is, a priori, agnostic to the type of artifacts, or noise, that we
wish to correct for. Figure 4a, for example, shows an image gener-
ated during a failed training experiment of VSRGAN, during which
the generated frames darkened after each epoch. The result of ap-
plying our post-processing algorithm on such an image is shown in
Figure 4b, where clearly the data consistency term successfully cor-
rects for the discrepancy in brightness and increases the test PSNR
by 1.25 dB.

https://dmitryulyanov.github.io/deep_image_prior
https://dmitryulyanov.github.io/deep_image_prior


(a) 17.67/0.5411 (b) 21.62/0.6892 (c) 22.04/0.7183 (d) 21.61/0.6711

Fig. 2: Correcting the GAN artifacts. (a) Bicubic interpolation; (b) VSRGAN output ([5]); (c) Our fine-tuned VSRGAN output; and (d)
VSRMSE output ([5]).
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Fig. 3: An example of how PSNR changes as a function of fine-
tuning iterations.

As the iterations of our algorithm progress, we observe two simul-
taneous effects: the first is an iterative reduction of the artifacts in
the frame, and the second is a slight smoothing of the frame at each
iteration. The smoothing effect can be reduced by the user by set-
ting a desired ”trade-off” between the minimization of the artifacts
and the conservation of the sharpness originally produced. The user
may either make use of his/her subjective judgement to stop the al-
gorithm when satisfied with the solution, or may compute the PSNR
metric at each iteration, as shown in Figure 3, and settle on a specific
iteration based on the metric. We note here that the post-processed
images shown in Section 3 were extracted from choosing the itera-
tion at which the PSNR peaks. Another user certainly could have
chosen to maintain some of the artifacts and further restrict the sub-
tle smoothing effect of the post-processing by stopping at the earlier
iterations of the optimization.
A clear benefit of our proposed method, which may not be apparent
at first, is its exceptionally fast execution. In case scenario #1, for
example, fine-tuning our network for 30 iterations is completed in
less than 4 seconds when implemented on a GTX 1080 GPU. On
the other hand, the image restored by the DIP [13] method in Figure
1c required a total of 25 minutes of computation on the same GPU
card. Our fine-tuning procedure is thus particularly suitable for real-
time applications, which is certainly an advantageous quality in the
industry domain.
One may argue that a limitation of our method is that certain condi-
tions need to be fulfilled for the fine-tuning to succeed. First, Equa-
tions 1 and 2 require access to a trained network fθ(·), which may not
always be accessible to all. A second requirement is that the degra-
dation operator A used at test time should perform a task which is
akin to the one used during training. Case scenario #1, for example,
explored the case of super-resolution, in which the downsampling

(a) 19.10/0.7315 (b) 20.35/0.7779

Fig. 4: Correcting failed training of VSRGAN for scale factor 3. (a)
output of flawed VSRGAN; (b) fine-tuned VSRGAN.

scale factor of the test input was different from the scale factor used
to train the network. In this case, one may argue that fine-tuning
parameters θ is an appropriate procedure as the trained parameters
for the SR problem of scale factor 3 should not significantly differ
from those of scale factor 4. However, if the degradation model A
changes drastically from training to testing, we do not expect to ob-
tain suitable post-processed results. For example, a neural network
trained for the image denoising task will certainly not test well, even
if fine-tuned for the super-resolution problem at test time, as these
two tasks differ in nature.

5. CONCLUSION

In this work, we proposed an algorithm to attenuate artifacts in im-
ages generated by DNNs for imaging problems, by fine-tuning the
parameters of our neural networks to satisfy a data consistency term
given a new test data point. We found that our approach resulted in
images of higher quality, as measured both qualitatively and quan-
titatively. We show that our methods introduced in this paper are
efficient, applicable to a wide range of cases, and provide full con-
trol to the user to select the image that satisfy the given goals.
Post-processing the solutions of DNNs using fine-tuning on a test
input image is a topic that has so far not been explored in the lit-
erature, which naturally provides room for further research and im-
provement. An example of such improvements may be obtained by
combining the abundant research in analytical methods for inverse
imaging problems with efficient fine-tuning in pre-trained parameter
space. Investigating futher in this direction will provide deep learn-
ing scientists with more leeway to address the failure cases of deep
learning, through the use of reliable, well-established analytical ap-
proaches offered by the image processing community.
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