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Abstract—Generative Adversarial Networks (GANs) have been
used for solving the video super-resolution problem. So far,
video super-resolution GAN-based methods use the traditional
GAN framework which consists of a single generator and a
single discriminator that are trained against each other. In this
work we propose a new framework which incorporates two
collaborative discriminators whose aim is to jointly improve
the quality of the reconstructed video sequence. While one dis-
criminator concentrates on general properties of the images, the
second one specializes on obtaining realistically reconstructed
features, such as, edges. Experiments results demonstrate that
the learned model outperforms current state of the art models
and obtains super-resolved frames, with fine details, sharp
edges, and fewer artifacts.

Index Terms—Video Super-Resolution, Spatially Adaptive,
Generative Adversarial Networks, the Composite Discriminator

I. INTRODUCTION

One of the fundamental problems in image and video
processing is Video Super-Resolution (VSR) whose aim is
to recover High-Resolution (HR) video sequences from Low-
Resolution (LR) ones. Recent Super-Resolution (SR) works
seem to indicate that learning-based methods produce
more realistic images than model-based methods [1], [2].
Deep Neural Networks have been widely chosen as the tool
for such learning-based approaches [3]–[5].

Generative Adversarial Networks (GAN) [6], which are
able to learn complex distributions from samples, have
recently gained popularity in the VSR literature. Researchers
utilize GAN-based training instead of classical (Mean-
Squared-Error) MSE to encourage networks to favor so-
lutions that look more like natural videos [7]–[10]. Most
of these GAN-based approaches incorporate feature-based
perceptual losses to generate frames of higher perceptual
quality. In addition, recent GAN-based VSR works improve
their performance by incorporating useful information, like
image spatial [9] or temporal [7], [8], [10] information,
during training. For example, the results reported in [9]
show that incorporating spatial information into part of
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the training objective function (pixel and perceptual losses)
helps to generate sharper frames with fewer artifacts and
less noise. All these works include this information by either
adding or improving loss terms in the training objective
function [8], [9] or by improving the generator network
[7], [8], [10]. No published results in VSR have tried to
incorporate this information by making the discrminator
much more powerful. GAN-based VSR methods have so far
utilized the traditional two-player GAN framework proposed
in [6], that is, an one generator and one discriminator
min-max game. Some recent GAN studies [11], [12] have
proposed alternative GAN frameworks and shown that these
models are able to effectively tackle many modeling limi-
tations of traditional GANs.

In this work we propose a new GAN framework to tackle
VSR problems. A composite discriminator is used during
training. The model learns useful spatial information and
uses it to produce improved generated frames with more
accurate edge reconstruction and visually pleasing quality.
The convergence of the proposed approach is established.
By training with this new GAN framework, we outperform
current state-of-art methods [7], [9], [10] which are trained
using the traditional GAN framework with no additional
spatial information included in the discriminator. The main
contribution of this paper is the use of two discriminators
with complementary objectives. The second discriminator
could potentially enforce other important attributes of an
image, other than edges, such as, attributes pertaining to
the texture of an image.

The rest of the paper is organized as follows. In section II,
we describe our new GAN model with two collaborative dis-
criminators and how it takes useful spatial information into
account to generate better super-resolved video sequences.
We also provide a proof of convergence of the proposed
approach and an intuitive justification of the collaborative
model. We then describe the pixel and feature losses used
to train. In section III we report on experiments to evaluate
our proposed model for VSR, and show that we are more
successful at generating more accurate edges and reducing
artifacts and noise than models trained with the traditional
GAN framework with a single discriminator. We draw our
conclusions in section IV.



II. THE PROPOSED APPROACH

The model proposed in [7], [10] sometimes produces
SR frames with blurred edges and noise in high-frequency
areas. A limitation of this model is that the spatial activity of
image regions is not specifically taken into account during
training. It is, however, clear that edge information plays a
very important role in the quality of the reconstruction and
that edge regions are more difficult to super-resolve than
flat-regions. We propose the use of a composite discrimina-
tor which includes a novel edge sharpness enforcing collab-
orative discriminator to obtain realistic edges. Our model
makes use of high frequency information extracted from
frames in our training datasets and forces the generator
to specifically take into account edge (high spatial activity)
areas. By doing so, the generator is forced to produce crisper
edges and fewer artifacts.

A. A composite discriminator

GANs [6] learn to generate samples from a specific
data distribution through an adversarial training procedure.
In the traditional GAN approach for image generation, a
generator network learns to generate an image given a latent
random vector z at its input. The learning of the generator
is guided by an auxiliary network, a discriminator, which
is simultaneously trained to distinguish between images
generated by the generator and images from the training
dataset. Given a generator G(z), with latent variable z to
be defined later, the discriminator is trained to distinguish
between real and fake images, i.e., it outputs D(x) = 1 when
x is sampled from the training dataset of natural images and
D(G(z)) = 0 when the images are produced by the generator.
On the other hand, the generator is trained to make the
discriminator believe that its generated images G(z) are
real, i.e., trained to assign to the discriminator output
a probability D(G(z)) = 1. As a result of this adversarial
training, the generator eventually converges to a solution
which the discriminator fails to identify as "fake", which
generally implies successful learning of the image manifold
by the generator.

In [7], [10] we propose the use of the powerful generative
property of GANs in VSR. Using GAN-based instead of MSE-
based training enables the models to obtain frames of much
higher perceptual quality. The original GAN setting was
modified by inputting the sequence of input low-resolution
frames Y to the generator instead of a random vector z. This
is similar to the use of GANs in still image super-resolution
[13], where a single LR image is provided as input to the
generator. The generator is adversarially trained to super-
resolve the input LR frames in a way that the discriminator
cannot distinguish between the reconstructed HR frames,
x̂ = G(Y) and real HR images. The GAN formulation first
introduced in [6] was adapted to VSR by solving:

min
θ

max
φ

LGAN(φ,θ) = Ex[logDφ(x)]

+EY[log(1−Dφ(Gθ(Y)))], (1)

where x is the center HR frame of dimensions N × N ,
Y is a short sequence of LR input frames around its LR
version y, each of dimensions N × N (notice that the LR
images are bicubically upsampled), Dφ is the discriminator
network with trainable parameters φ and Gθ is the gen-
erator network with trainable parameters θ, where here
these parameters correspond to the learnable convolutional
kernels of our networks.

The above model is the basis of all the so far based GAN
formulation, but a close look at the optimization function
indicates that the better discrimination could be achieved
by using a model of the form

min
θ

max
φ,φ′ LGAN(φ,φ′,θ) = Ex∼px(x)[log(Dλ

1φ(x)D1−λ
2φ′ (x))]

+EY∼pY(Y)[log((1−D1φ(Gθ(Y)))λ(1−D2φ′ (Gθ(Y)))1−λ)], (2)

where two different discriminators D1φ and D2φ′ with
parameters φ and φ′, respectively, are used and 0 <λ< 1.

Notice that following the approach in [6], it can be easily
shown that fixing θ

max
φ,φ′ LGAN(φ,φ′,θ)

= Ex∼px(x)

[
log

px(x)

px(x)+pg(x)

]
+Ex∼pg(x)

[
log

pg(x)

px(x)+pg(x)

]
,

(3)

where pg (x) is the probability distribution induced on x
by Y. Furthermore, following the approach in [6] it can be
shown that

D1φ(x) = D2φ′ (x) = px(x)

px(x)+pg(x)
. (4)

and also that the global minimum on θ in Eq. (2) is achieved
when and only when pg (·) = px(·). However, the network
architecture of D1φ(x) will prevent it from always satisfying
Eq. (4). For instance, this discriminator may concentrate
on detecting important image properties but may not be
capable of detecting all of them. This is similar to the
case when prior models are used to restore images. For
instance, horizontal filters are used to regularize horizontal
differences but these filers are insensitive to vertical ones. In
GAN terminology, a discriminator may be good at detecting
certain fake note properties (or even be good on some
notes) but not all of them. In this paper we approach the
possible limited capabilities of D1φ by introducing a second
discriminator that, in our case, concentrates on the quality
of high frequency areas and, in particular, on producing
realistic edges. To do so we redefine D2φ′ (·) = D2φ′ (W ·),
where W denotes a high pass filter. Notice that other
definitions of D2φ′ (·) are possible, but we will concentrate
here on recovering high spatial activity areas.

Let us now provide a graphical description of our col-
laborative model. In Fig. 1, the W operator is a spatial
information extractor. We use the method illustrated in [14]
[9] to define the W operator, which is consistent with the
masking property of the human visual system, according to
which noise is visible in flat regions but not visible at edges.



Fig. 1: The proposed model.

The output of the W operator is a weighted image (edge
focusing map), where pixels in areas of high spatial activity,
like edge regions, have much larger values than those in flat
regions (in this work, all the pixel values are normalized to
the range [0,1] during training). In the rest of the paper, the
weighted image generated after the application of operator
W will be simply referred to as the edge map.

We adopt the VSRResNet architecture proposed in [7],
[10] as our generator. The architecture is shown in Fig. 2.
It is based on 15 residual blocks, each block containing
two convolutional layers with kernels of size 3 by 3, with a
Rectified Linear Unit (ReLU) activation function after each
convolution step.

We adopt the same architecture for both discriminators
D1φ and D2φ′ (used in [10]), shown in Fig. 2. The network
is composed of three convolution layers followed by a fully
connected layer and a sigmoid operation. However, they are
provided with different inputs. The input to discriminator
D1φ are super resolved and HR frames, while the input
to discriminator D2φ′ are the corresponding edge maps of
the super resolved and HR frames. Besides of fooling the
original discriminator D1φ, the generator has also to fool
the discriminator D2φ′ , so the edge map of the generated
super resolved frame has to be realistic, close to the edge
map of its corresponding HR frame. As a result, generated
frames have more accurate edges with less noise and fewer
artifacts and both discriminators collaborate to obtain bet-
ter images. We name our proposed model the Collaborative
Discriminator GAN (CoDiGAN), when applied to VSR we
will denote it by VSRCoDiGAN.

B. Pixel and Feature Losses

To regularize undesired artifacts that may escape the col-
laborative model, we use two distance-based regularizers,
defined in pixel and feature spaces, respectively.

Let us consider the Charbonnier loss, defined as

γ(u, v) =∑
k

∑
i

∑
j

√
(uk,i , j − vk,i , j )2 +ε2, (5)

where u and v are multichannel images with elements
uk,i , j and vk,i , j , respectively, where k denotes channel (for
instance, k = 1 for a gray-scale image and k = 1,2,3 for a
color image), i , j denotes pixel location and ε> 0. The pixel-
wise loss only depends on low-level pixel information, and
it is defined as the Charbonnier loss of the difference of
two frames in pixel space, that is,

∑
(x,Y)∈Tγ (x,Gθ (Y)), where

x and Y are sampled from the training dataset T. The per-
ceptual loss in feature space computes differences between
high-level image feature representations extracted from pre-
trained convolutional neural networks. In this paper, we
choose our feature space to be the representation space
obtained from extracting the feature maps from the third
and fourth convolution layer of the VGG network defined
in [15], denoted as V GG (·) in this paper. Therefore, the
feature loss is defined as

∑
(x,Y)∈Tγ (V GG (x) ,V GG (Gθ (Y))).

In the next section, we show the final loss for training the
generator.

C. Final Loss for Generator

Combining the losses defined in the previous sections,
our generator has to effectively minimize adversarial losses
together with pixel and feature losses, thus our final loss
function becomes:

Lfinal(θ) =α1
[
EY

[− logD1φ (Gθ (Y))− logD2φ′ (W (Gθ (Y)))
]]

+α2
∑

(x,Y)∈T
γ (x,Gθ (Y))

+ (1−α1 −α2)
∑

(x,Y)∈T
γ (V GG (x) , V GG (Gθ (Y))) , (6)

where 0 < α1,α2 and α1 +α2 < 1, We have fixed λ to 1/2.
In the next section, we show that this model improves the
quality of the super resolved video.

III. EXPERIMENTS

A. Training and Parameters

We synthesized the training dataset of HR/LR-sequence
pairs from the Myanmar video sequence. Our training
dataset consists of nearly 1 million pairs, where each sample
in the training dataset is composed of five extracted 36×36
LR patches at times t− 2, t− 1, t, t+ 1, and t+ 2, and its
corresponding 36×36 HR patch at time t. The LR frames
were computed using bicubic downsampling followed by
bicubic upsampling to bring them to the same spatial extent
as the original HR patch.

To ensure convergence of generator and discriminator
loss functions, it is critical for the generator network to start
at a reasonable θ at the beginning of the training [10]. Thus,
prior to beginning the adversarial training, we first trained
the generator network for 100 epochs with the traditional
pixel based MSE loss using the ADAM [16] optimizer and
a batch size of 64. For this pre-training, the initial learning



Fig. 2: The proposed architecture for the generator (first row) and discriminator (second row) [10]

rate was set to 10−3 and it was then further divided by a
factor of 10 at the 50th and 75th epochs of the training. We
train our generator for the scale factor 3. Using the weights
of this pre-trained generator as initial weights, we trained
our spatially adaptive collaborative GAN model with the loss
functions defined in (6) for 30 epochs, setting the learning
rate to 10−4 for the generator and both discriminators. The
weight decay was set to 10−3 for the discriminators and 10−4

for the generator. We use the ADAM [16] optimizer and a
batch size of 64. The values of α1 and α2 used in (6) were
determined experimentally. We found their optimal values
to be: α1 = 0.0005, α2 = 0.001. The parameter ε in (5) is set
to 0.001. We found out that 30 epochs were appropriate for
our model to converge.

B. Evaluation Results

As we have already indicated, we trained our model on
the Myanmar dataset. In order to check whether our model
could also work well in different datasets, we tested it on the
VidSet4 dataset [17], a commonly used dataset for testing
VSR models, which contains 4 scenarios.

We compared our proposed VSRCoDiGAN model with
the current state-of-the-art video super-resolution models
for VidSet4 test dataset. More specifically, we compared it
with VSRResFeatGAN [10] which uses a similar adversarial
training approach as ours but with a single discriminator,
that is, without explicitly using spatial information into
account. Our second model used for comparison is the
spatially adaptive GAN (SA-GAN) for the VSR problem
[9], which incorporates spatial information into pixel and
feature losses and is trained using the traditional single
discriminator GAN framework.

Table I reveals that both VSRCoDiGAN and SA-GAN
outperform the state-of-the-art VSRResFeatGAN model in

TABLE I: PSNR and SSIM comparison with state-of-the-art
VSR models on the VidSet4 dataset for scale factor 3.

VSRResFeatGAN SA-GAN VSRCoDiGAN
PSNR/SSIM PSNR/SSIM PSNR/SSIM

calendar 23.40/0.8033 23.59/0.8130 23.63/0.8086
city 27.23/0.7832 27.48/0.7925 27.57/0.7869

foliage 25.29/0.7544 25.74/0.7754 26.37/0.7974
walk 30.20/0.9182 30.40/0.9213 30.64/0.9230

Average 26.53/0.8148 26.80/0.8256 27.06/0.8289

all scenarios (calendar, city, foliage, walk). This suggests that
including spatial information into training helps to improve
the quality of generated frames. Furthermore, we observe
that our VSRCoDiGAN model performs better than SA-
GAN in most cases, which indicates that it is beneficial to
formulate the training with collaborative discriminators to
explictly incorporate high frequency spatial information in
the learning process. Also, as table I indicates, our method
improves the visual quality of the generated frames for all
scenarios. A qualitative comparison is shown in Fig. 3. Con-
sidering the zoomed in regions in the frames (numbers and
letters in the first column and the star in the second col-
umn), we can clearly observe that our VSRCoDiGAN model
generates more accurately super-resolved edges (closer to
those in ground truth frames) with fewer artifacts and
less noise compared to VSRResFeatGAN and SA-GAN. We
conclude from these quantitative and qualitative results that
including a spatially adaptive discriminator to incorporate
spatial information into the GAN training has a significant
positive impact on the quality of the resulting frames.



(a) Ground Truth

(b) VSRResFeatGAN

(c) SA-GAN

(d) VSRCoDiGAN

Fig. 3: Qualitative comparison of results obtained by VSR-
ResFeatGAN [10], SA-GAN [9], and VSRCoDiGAN on scale
factor 3. The ground truth frames are shown in Fig. 3(a).

IV. CONCLUSION

In this paper, we have shown that our VSRCoDiGAN
model, which uses a novel spatially adaptive collaborative
discriminator to explicitly bring high frequency spatial in-
formation into training, results in significantly fewer arti-
facts and more accurate edges. The zero-sum game prop-
erty of our model has been established and its justification
in terms of selective discrimination was provided. In the
future, we will explore the possibility of using collaborative
GAN models targeting specific video sequence properties,
such as temporal consistency.
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