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Abstract—With the increase of popularity of high and ultra
high definition displays, the need to improve the quality of
content already obtained at much lower resolutions has grown.
Since current video super-resolution methods are trained with a
single degradation model (usually bicubic downsampling), they
are not robust to mismatch between training and testing degra-
dation models, in which case their performance deteriorates. In
this work we propose a new Convolutional Neural Network for
video super resolution which is robust to multiple degradation
models and uses the pseudo-inverse image formation model
as part of the network architecture during training. The experi-
mental validation shows that our approach outperforms current
state of the art methods.

Index Terms—Video Super-resolution, convolutional neuronal
networks, image formation

I. INTRODUCTION

The problem of image super-resolution (SR) is to ob-
tain a high-resolution (HR) image from an observed low-
resolution (LR) image. The high to low image formation
model can be written as:

y = D(x ⊗k)+ε, (1)
where y is the LR image, x is the HR image, ε is the
noise, x ⊗k represents the convolution of x with the blur
kernel k and D is a downsampling operator (usually bicubic
downsampling). In the case of video SR (VSR), y and x
represent frames of the LR and HR sequences, respectively.
Recently, the demand for high and ultra high definition
displays has been increasing while most of the available
content has been obtained at much lower resolutions.
Consequently, the need for methods to improve the quality
of these LR videos has also increased.

We can distinguish two approaches for image and video
SR: model-based and learning-based. Approaches in the
first category explicitly define and use the process (blurring,
sub-sampling and noise adding) by which an LR image
is obtained from the HR image or video sequence [1]–
[4]. Learning-based algorithms use large training databases
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of HR and LR image/sequence pairs to learn to solve the
super-resolution problem. Very frequently, they do not ex-
plicitly utilize the LR image formation model. Convolutional
Neural Networks (CNN) have become a popular tool when
using the learning approach. Liao et al. [5] trained a CNN
to predict an HR frame from an ensemble of SR solutions
obtained by traditional reconstruction methods. In [6], they
show the benefits of residual learning for video SR by
predicting only the residuals between HR and LR frames.
Caballero et al. [7] train a spatial transformer network
jointly with an SR network which registers video frames so
the network benefits from sub-pixel information. Makansi
et al. [8] and Tao et al. [9] found that performing the up-
sampling and motion compensation (MC) jointly increases
the quality of the resulting SR frame. In [10], Liu et al.
construct a temporal adaptive learning-based framework.
In this framework a neural network is trained to learn the
temporal dependency between input frames to increase the
quality of the HR prediction. Kappeler et al. [11] propose to
train a CNN which takes bicubically interpolated LR frames
as input and learns the direct mapping that reconstructs the
central HR frame. In [12] we proposed a deeper residual
network trained using feature and adversarial losses that
significantly increased the perceptual quality of the output
when compared with CNNs trained with Mean-Squared-
Error based losses.

Although learning-based algorithms that use CNNs have,
in general, produced better results than classical SR meth-
ods, LR sequences at test time are assumed to have been
subjected to the same degradation used during the training
phase. In other words, current methods are not robust to
mismatch between training and testing degradation models,
in which case their performance greatly deteriorates [13].
If they are trained for example with only bicubic down-
sampling, this lack of robustness against changes in the
degradation significantly jeopardizes their application in
practice.

In [14], Zhang et al. use Alternating Direction Method
of Multipliers (ADMM) for image recovering problems with
known linear degradation models, such as image decon-
volution, blind image deconvolution, and Super-Resolution



(SR). ADMM methods split the recovery problem into two
subproblems: a regularized recovery one (subproblem A)
and a denoising one (subproblem B). The authors propose
to use a CNN for the denoising problem. This allows them
to use the same network for multiple ill posed inverse
imaging problems. At the same time, some works have been
proposed to increase the performance and the flexibility
of SR learning-based models by taking into account the
image formation model. Sonderby et al. [15] proposed
a new approach which estimates and explicitly uses the
image formation model to learn the network. The blurring
and downsampling process that obtains LR frames from
HR ones is estimated and a Maximum a Posteriori (MAP)
HR image estimation is approximated with the use of a
Generative Adversarial Networks (GANs). Zhang et al. [16]
propose for multiple-degradation SR the use of a CNN
that has as input not only the LR image but also the PCA
representation of the blur kernel used in the degradation
process.

In this work, we propose a new model that adapts the
approximation proposed in [15] to Multiple-Degradation
Video Super-Resolution using the pseudo-inverse image
formation model not only in the image formation model (as
proposed in [15]), but also as an input to the network. We
show that the proposed model outperforms by far current
state of the art methods for bicubic degradation in terms
of PSNR and SSIM metrics. Our experiments also show
that the proposed model is far more robust to multiple
degradations than current approaches.

The rest of the paper is organized as follows. In section
II, we present our model for VSR and the CNN architecture
used. In section III, we detail and discuss our experiments
with the proposed model. Finally, conclusions are drawn in
section IV.

II. MODEL DESCRIPTION

For this work, as we have already indicated, we use x
to denote an HR image in a video sequence and y its
corresponding observed LR image. Furthermore, we use
y to refer to the LR images in a time window around x.
This means that y contains 2l +1 LR images, that is, if x is
indexed by t , y contains frames t −l ,...,t ,...t +l . In our case,
l = 2.

The process of obtaining an LR image from the HR one,
as previously indicated in Section I, is usually modeled
using Eq. 1. In this paper, we assume that the image
formation noise is negligible (ε= 0) and, following previous
works in the literature, see, for instance, [16], we assume
that the blur k is an isotropic Gaussian kernel and D
represents bicubic downsampling. Although more complex
blurs can also be considered these models are frequently
assumed to be a good representation of the high to low
degradation process [16]. The process of obtaining x from
y is now much more challenging than when only bicubic
downsampling is considered, which is the modelling used
in previous works, such as, [5], [6], [8]–[12].

(a) HR (b) Bicubic

(c) σ= 2.0 (d) σ= 3.0

Fig. 1: Example of artifact introduced by the bicubic down-
sampling interpolation for a scaling factor of 3. (a) shows
the original image, (b) corresponds to bicubically down-
sampling the image in (a), (c) and (d) show bicubically
downsampled images which have previously being blurred
with σ = 2 and σ = 3 Gaussian kernels. The downsampled
images have been enlarged to the size of the original one
using bicubic upsampling.

Let us now see how we can approach this multi-
degradation model. First, we assume that the blur k is
known. It can be approximated using any of the tech-
niques proposed in [17]–[19]. Our experiments show that
the estimated kernels are in practice accurate enough.
Furthermore, estimating k and x at the same time does not
work well in practice. A blind approach without a specially
designed architecture has poor generalization ability. This
goes against our objective which is to obtain a model robust
against multiple degradation operators.

In order to make our network capable of dealing with
multiple degradations, we try to separate its learning from
the degradation as much as possible. To reach this goal,
given D and k we define A = Dk and adapt the approach
in [15] to our Multiple-Degradation Video Super-Resolution
problem by considering the function

gθ(y) = (I − A+A)fθ(y)+ A+y, (2)
where A+ denotes the Moore-Penrose pseudoinverse of the
degradation A. Since A A+A = A and A+A A+ = A+, and
because the rows of A are independent A A+ = I , we have

Agθ(y) = A(I − A+A)fθ(y)+ A A+y = y (3)
and so gθ(y) is an HR image which satisfies eq. (1) when
ε= 0.

Our approach still needs to address a very important
problem: the parameters of the network θ should be found
as to perform in a satisfactory way for all possible A. To
solve this robustness issue, the network fθ(·) needs to know
not only the LR observation y but also the degradation A
(notice that this is not necessary when only one degradation
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Fig. 2: The MD-AVSR architecture based on VSRResNet [12]. The network consists of a series of convolution operations
with 64 kernels of size 3×3, applied on each input frame. The resulting feature maps are then concatenated together
to obtain 320 feature maps. This is followed by two convolution operations and 15 residual blocks. Each residual block
consists of two convolutional operations with 64 kernels of size 3× 3, each followed by a ReLU layer. Following the
definition of a residual block, the inputted feature maps are added to the output feature maps to obtain the final output
of the residual block. Before the 10th Residual block, we use upscale the feature maps by a factor f using a subpixel
shuffle layer [20].

is considered). We solve this problem by adding to the input
of the network A+y encoded by a network eψ(·). The goal
of this information encoder eψ(·) is to extract significant
information from the degradation to guide the SR process.
Notice that other approaches, as the one used in [16], can
be considered. eψ(A+y) consists of three convolutions of
3×3 and 32 filters with zero-padding and followed by ReLU
activation. To ensure that the spatial size matches that of
y we use a stride equal to the scaling factor at the last
convolution. We train eψ(·) and fθ(·) simultaneously.

For the architecture of fθ(·), we adapt our VSRResNet
model [12] to this approach. VSRResNet is a deep residual
CNN that consists of 3 3×3 convolutional layers followed
by a ReLU activation, 15 Residuals Blocks with no batch
normalization and a final 3×3 convolutional layer. Padding
is used at each convolution step in order to keep the spatial
extent of the feature maps fixed across the network. Instead
of using as input the bicubically upsampled frames as in
[12], we decided to use a sub-pixel shuffle layer [20] to
perform the upscaling. Together with the speed increase,
we opted for this approach because bicubic upsampling
over smoothes the images and introduces artifacts. Notice
that these artifacts differ from one degradation operator
to another (see Fig.1). This makes the learning process
more difficult. Finally, we experimentally determined that
the best way to incorporate eψ(A+y) is by concatenating
these feature maps before the first residual block, see Fig.2
for details. We call the resulting model Multiple Degradation
Affine Video Super Resolution (MD-AVSR).

Notice that in order to use this approach we need to
calculate the A+ operator prior to training. In [15] this op-
erator is estimated using a convolution operation followed
by a subpixel shuffle layer [20]. The network parameters
w are estimated by minimizing the following loss function

with gradient descent, that is,
ω̂=argmin

ω
Ex‖Ax − A A+

ω(Ax)‖2
2

+Ey‖A+
ω(y)− A+

ω(A A+
ω(y))‖2

2, (4)
where A+

ω denotes the pseudo-inverse with ω network
parameters.

Instead of learning for each A a network that learns
the corresponding A+

ŵ , we have implemented a network
that given A predicts its corresponding ω̂. The input to
this network is the Principal Component Analysis (PCA)
representation of the kernel k of A. The network is trained
so the predicted ω̂ solves Eq. 4. We have not found any
significant loss in performance by doing this instead of
using Eq. 4 to calculate ω̂ for each A.

III. EXPERIMENTAL RESULTS

The training dataset consists of 106 patches of size 48×
48 pixels extracted from the Myanmar training sequences.
From each HR patch at time t , we obtain the corresponding
LR sequence of patches at time t−2, t−1, t , t+1, and t+2.
Patches with variance less than 0.0035 were removed due
to being uninformative. Our models are compared on the
test sequences of the Myammar dataset.

The discussed architecture was trained using the MSE
loss (Ex,y[‖x − gθ(y)‖2]) with the Adam optimizer [21] for
100 epochs. The learning rate was set to 10−3 for the first
50 epochs and then divided by 10 at the 50th and 75th
epochs. The weight decay parameter was set to 10−5 for all
the models.

In order to determine the contribution of the proposed
architecture in conjunction with the pseudo-inverse input,
we first train the network with only bicubic downsampling
of factor 3 as the degradation. This model uses fθ(y), not
fθ(y,eψ(A+y)). In other words, it does not incorporate the
information of the degradation inside the network that
calculates the residual. However, it uses gθ(·). We refer to



(a) VSRResNet Bicubic (b) VSRResNet σ= 2.0 (c) SRMDNF Bicubic

(d) SRMDNF σ= 2.0 (e) VSRMDNF Bicubic (f) VSRMDNF σ= 2.0

(g) MD-AVSR Bicubic (h) MD-AVSR σ= 2.0 (i) HR

Fig. 3: Qualitative results of our video super-resolution system compared to other state of the art methods for bicubic
downsampling and Gaussian blur with σ= 2.0 and bicubic downsampling. Notice how MD-AVSR is able to recover more
details compared to others.

this model as AVSR. We call NoAVSR the model that uses
the same architecture as AVSR (see Fig. 2) without the affine
approach, that is, it minimizes Ex,y‖x− fθ(y)‖2. To determine
the contribution of the subpixel shuffle layer, we train an
architecture similar to AVSR but using bicubic upsampling
at the input instead of using the subpixel shuffle layer. We
refer to this model as B-AVSR.

We call the model that uses fθ(y,eψ(A+y)) MD-AVSR
which is trained with multiple degradations. The degrada-
tions considered here are a combination of a Gaussian blur
with different kernels k and bicubic downsampling of factor
3. For each training sample, we generated random Gaussian
kernels with σ in the range [0.2, 3.0]. Then, we blurred the
HR video sequences and applied bicubic downsampling to
generate the LR samples. To determine the contribution

of using fθ(y,eψ(A+y)) instead of fθ(y), we trained fθ(y)
following the same procedure used for MD-AVSR. We call
this new model BMD-AVSR. Our model was also trained
to incorporate the degradation operator following the SR-
MDNF approach in [16], that is, using PCA(k). We have
experimentally determined that the optimal place to add
this information is before the first residual block. We trained
this network as we did with MD-AVSR. We call this model
VSRMDNF.

The second column of table I shows the comparison of
our models to current state of the art VSR methods for
only bicubic downsampling testing, that is, given an HR
video sequence, we obtain an LR one by only bicubically
downsampling it. As we can see, AVSR shows a significant
increase in PSNR of more than 0.5dB compared to NoAVSR



and VSRResNet, that is, the benefits of using gθ(·) instead
of fθ(·) are obvious. Notice also that there is no different be-
tween NoAVSR and VSRResNet, which indicates that a deep
residual network which does not use an affine projection
does not benefit from learning the up-scaling operation,
that is, there is no difference between using the bicubically
upsampled input or a subpixel shuffle layer. However, as
can be seen in table I (second column), B-AVSR performs
significantly worse than AVSR, which suggests that artifacts
introduced by bicubic interpolation harm the training of
the affine network. Finally, MD-AVSR outperforms all other
models on bicubic degradation even when it was not
trained to specialize on it.

Table I also shows the results of our methods compared
against current state of the art for multiple degradations.
We can see that the proposed MD-AVSR surpasses all other
models for all values of σ considered. As expected, AVSR
performs poorly for degradations different from bicubic
downsampling. This probes the importance of training
with all the types of degradation that can be expected
in real applications. Notice that BMD-AVSR suffers from a
sharp decrease in performance which indicates the need
to use the degradation information in fθ(·) if we expect
to utilize the same network with multiple degradations.
Finally, MD-AVSR outperforms VSRMDNF as much as AVSR
does NoAVSR and VSRResNet, which shows that the ben-
efits of using the pseudo-inverse are carried over to the
multiple degradation setting. Figure 3 shows a qualitative
comparison of VSRResNet, VSRMDNF and MD-AVSR.

Bicubic σ= 1.0 σ= 2.0 σ= 3.0
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

VSRResNet 35.97/0.9481 33.39/0.9210 29.09/0.8365 27.18/0.7680
NoAVSR 35.92/0.9474 33.39/0.9156 29.16/0.8362 27.18/0.7678
B-AVSR 36.09/0.9487 33.41/0.9214 29.13/0.8374 27.20/0.7685

AVSR 36.35/0.9522 33.52/0.9279 29.23/0.8454 27.42/0.7836
IRCNN [22] 34.41/0.8937 34.44/0.8937 33.58/0.8937 29.92/0.8937

SRMDNF [16] 35.08/0.9299 35.14/0.9298 34.78/0.9224 33.20/0.8937
BMD-AVSR 34.97/0.9330 34.59/0.9275 34.27/0.9200 34.62/0.9270
VSRMDNF 35.95/0.9471 35.82/0.9439 35.28/0.9365 35.01/0.9319
MD-AVSR 36.52/0.9525 36.27/0.9494 35.60/0.9406 35.22/0.9352

TABLE I: Comparison of the proposed and state of the art
models for Myanmar dataset for factor 3. σ refers to the
Gaussian blur deviation used.

IV. CONCLUSIONS

We have introduced a Multiple-Degradation Video Super-
Resolution model that explicitly utilizes the LR image for-
mation model as an input to the network: MD-AVSR. The
model is trained with MSE only. Experiments show that
MD-AVSR outperforms current state of the art methods in
terms of PSNR and SSIM for both multiple degradation
and bicubic degradation only settings. In the future, we
will further improve the perceptual quality of the SR frames
by incorporating perceptual losses such as Adversarial and
Feature losses.
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