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ABSTRACT

Deep Learning techniques and more specifically Generative Ad-
versarial Networks (GANs) have recently been used for solving the
video super-resolution (VSR) problem. In some of the published
works, feature-based perceptual losses have also been used, re-
sulting in promising results. While there has been work in the
literature incorporating temporal information into the loss func-
tion, studies which make use of the spatial activity to improve GAN
models are still lacking. Towards this end, this paper aims to train
a GAN guided by a spatially adaptive loss function. Experimen-
tal results demonstrate that the learned model achieves improved
results with sharper images, fewer artifacts and less noise.

Index Terms— Video Super-Resolution, Generative Adversar-
ial Networks, Perceptual Loss, Spatial Adaptivity

1. INTRODUCTION

The first Deep Neural Network (DNN)-based approach for Video
Super-Resolution was proposed by Kappeler et al. [1], who used an
end-to-end approach to train a three-layer Convolutional Neural
Network (CNN) for super-resolving a sequence of low-resolution
(LR) frames to the corresponding high-resolution (HR) center
frame. While some authors experimented with the use of Re-
current Neural Networks (RNNs) for VSR [2], the challenges and
difficulties associated with RNN-based training has led CNN-
based approaches to be the favored ones. More recently, the use
of GANs was introduced to learn complex distributions of various
datasets [3]. Due to this, the use of a GAN-based training instead
of an mean squared error (MSE)-based training enables the model
to generate frames of much higher perceptual quality [4, 5, 6].

A promising new trend in VSR has also emerged; instead of
focusing on the previously ubiquitous optimization of the mean
squared error, state of the art approaches are investigating the
use of feature-based cost functions. Many works for image SR
have successfully incorporated feature-based perceptual losses
which resulted in near-photorealistic images [4, 7, 8]. These fea-
ture losses compute differences between high-level image feature
representations extracted from pre-trained convolutional neural
networks. In most recent SR works, a weighted combination of
distance-based losses in both feature and pixel spaces have been
proposed to improve the GAN model and obtained very promising
results applied for still images in [5] and videos in [9].
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It is well-known that adapting the processing to the spatial
activity of an image frame in general produces improved visual
results in many image processing problems [10, 11]. It is there-
fore reasonable to include spatial information into the training
objective functions. However, to the best of our knowledge, no
published results have proposed to incorporate spatial informa-
tion into the distance-based losses used in super-resolution tasks.
Related to this in [6, 9], the authors make use of the motion in-
formation from past and future frames in defining loss functions,
but do not take spatial activity information into account. In the
high-resolution frames generated by our VSRResFeatGAN model
in [9, 12], we could still observe noise and also blurred edges of
objects when zoomed in. We therefore propose in this paper the
use of spatially adaptive losses both in the native spatial domain
as well as in the feature domain when training a GAN-based VSR
neural network.

The rest of this paper is organized as follows. In Section 2 we
first describe our framework for extracting the spatial information
from the high-resolution frames in our training data. We then
combine this spatial information with the Charbonnier loss to
convert our pixel and feature-based perceptual losses to spatially
adaptive ones. Finally, we combine these losses with the adver-
sarial loss and show that we are successful at generating sharper
edges and reducing the noise generated by models which do not
use spatial adaptivity in Section 3. We draw our conclusions in
Section 4.

2. PROPOSED METHOD

The model we proposed in [9, 12], while outperforming the cur-
rent state-of-the-art VSR networks, still produces high-resolution
frames with blurry edges and artifacts, especially in the high fre-
quency regions. A limitation of this work is that spatial activity is
not taken into account when defining the distance losses in both
the image and feature spaces. It is clear that edge regions in the
frames are more difficult to super-resolve than flat regions, hence
a more suitable loss function for training a VSR model should pe-
nalize edge regions more than flat areas. We thus propose to im-
prove on the model introduced in [9, 12] and define spatially adap-
tive losses, in other words, not treat all pixels equally but add more
weight to regions with high spatial activity, such as edges. These
specialized losses restrict the solution learned by the GAN network
so that sharper and void of artifacts (and therefore more pleasing
to the human viewer) solutions are generated.

2.1. Extracting spatial information

There are a number of ways to determine the spatial activity in an
image. A rather straight forward one is with the use of the local



variance. In general, for an image x with elements x(i , j ), the local
variance µi , j (x) at pixel location (i , j ) is calculated according to

µi , j (x) = ∑
(l1, l2 )∈Γi , j

1

|Γi , j |
(x(i + l1, j + l2)−mi , j (x))2 (1)

where

mi , j (x) = ∑
(l1, l2 )∈Γi , j

1

|Γi , j |
x

(
i + l1, j + l2

)
(2)

represents the local mean, Γi , j is the analysis window which in
general changes support at each pixel (i , j ) and |Γi , j | denotes the
number of elements in the analysis window.

The local variance clearly takes large values at the edges and
highly textured areas of an image and small values in the flat re-
gions of an image. There are various ways it can be used to control
loss functions. One step usually taken before its use is to normal-
ize its values to belong to the range [0,1]. While there are various
ways to do so [11], one such way is to define a weight image W (x),
with elements

wi , j (x) =
µi , j (x)

µi , j (x)+δ (3)

with δ> 0 a tuning parameter determined experimentally. Clearly,
in flat regions wi , j (x) ≈ 0, while in areas of high spatial activity
wi , j (x) ≈ 1, since µi , j (x) À δ. In [11] the determination of wi , j (x)
is motivated through the use of the noise visibility function, which
is defined as 1−wi , j (x). It expressed the masking property of the
human visual system according to which noise is visible in the flat
regions but not visible at the edges. The values of the visibility
function for patches in the training set are shown in Figure 1.

In this work we consider multi-channel images (e.g., color and
multi/hyper-spectral images), as well as, the representation of an
image (single channel or multi-channel) in the feature domain,
which is typically a multi-channel domain.

For both of these cases, i.e., multi-channel images in the pixel
domain and multi-channel images in the feature domain, we ex-
tend the definition in Equation 3. For the former case we define

wk,i , j (x) =
µk,i , j (x)

µk,i , j (x)+δk
(4)

where x represents the multi-channel image and k the channel in-
dex.

In the latter case

wk,i , j (x) = f eat (ψ(wk ′ ,i , j (x))) (5)

where k
′

provides the index to the number of channels in the pixel
domain and k the number of channels in the feature domain rep-
resented by the function f eat (). The number of channels in the
two domains are typically not the same. The function ψ() repre-
sents a fusion of wk ′ ,i , j (x). Regarding the f eat () function, we will

be using the activations provided by the 3r d and 4th convolutional
layers of the VGG network, defined in [13].

2.2. Spatially adaptive losses

In this paper, we use two distance-based losses to regularize the
GAN training: one defined in pixel space and another in the fea-
ture space. As described in [9, 12], we have been using the Char-
bonnier loss defined as

γ(u, v) =∑
k

∑
i

∑
j

√
(uk,i , j − vk,i , j )2 +ε2, (6)

Fig. 1: Top row: image patches; Bottom row: corresponding values
of the visibility function.

for the general case of two multi-channel images u and v , with el-
ements uk,i , j and vk,i , j , respectively. Index k is used to describe
the channel number, e.g., k = 1 for a gray-scale image and k =
1,2,3 for a color image.

The Charbonnier loss has shown to be successful in stabilizing
the GAN training and produces more robust solutions [9, 12]. One
limitation of the definition of the Charbonnier loss above is that
all pixel in the frame are weighted equally. However, a typical re-
quirement in SR is to produce HR images which preserve as much
as possible the edge information. Towards this end, during the
training of our generator, regions of high spatial activity should be
weighted heavier than smooth regions. Therefore, we propose the
following modification of the Charbonnier loss for our distance-
based losses:

γw (u, v,W (u)) =
∑
k

∑
i

∑
j

wk,i , j (u)
√

(uk,i , j − vk,i , j )2 +ε2, (7)

where W (u) includes the set of weights wk,i , j (u) and the interpre-
tation of these weights is either according to Equation 4 or 5, de-
pending on whether we are defining the loss in the pixel or feature
spaces, respectively. In the following, we describe how to compute
the spatial activity information in both in pixel and feature spaces,
and incorporate it into the low-level pixel loss and the high-level
feature loss. In this way, the regions of high spatial activity will be
heavier weighted both in the native pixel and feature domains.

Spatially adaptive pixel-wise loss in pixel space. The idea of
incorporating spatial information into the pixel-wise loss is quite
simple, because it only depends on low-level pixel information.
We thus propose to use the weighted Charbonnier loss in pixel
space:

Lpi xel =
∑

(x,Y )
γw

(
x,Gθ (Y ) ,α+βW (x)

)
, (8)

where x is the center high-resolution frame at time t , Y is the
sequence of low-resolution frames defined at times t − M , ..., t −
1, t , t +1, ..., t +M , for a predetermined M , and Gθ (Y ) is the high-
resolution estimate of x provided by the generator network. The
elements of weight matrix W(x) are defined by Equation 4. The
weight α is a hyper-parameter which controls the contribution of
the equally weighted pixel-wise loss (thus defining an unweighted
Charbonnier loss term). The weight β is a hyper-parameter which
controls the weighted Charbonnier loss in pixel space. The larger
the value of wk,i , j (x), the more important the corresponding pixel
becomes in the function to be optimized. In other words, during
the backward pass, larger weight updates will be given to those
pixels responsible for super-resolving these edge-like regions. The
reason for including theαweight is to ensure that the training loss
does not ignore smooth regions in the video frames.

Spatially adaptive perceptual loss in feature space. In addi-



tion to imposing spatial activity constraints at the pixel level, we
also impose restrictions on the feature loss that measures high-
level perceptual differences between the predicted and ground-
truth frames in a precomputed feature space, leveraging the deep
compressed representations learned by deep discriminative clas-
sifiers. Our feature space is computed from the activations pro-
vided by the 3r d and 4th convolution layers of the V GG network
[13], denoted as V GG(·). Thus, our spatially adaptive feature-
based perceptual loss (or feature loss) becomes:

L f eatur e = ∑
(x,Y )

γw (V GG(x),V GG(Gθ(Y )),α (9)

+βV GG(W (x)))

which, similarly to the spatially adaptive loss in pixel space, corre-
sponds to a weighted Charbonnier loss. Note that because the dif-
ference is computed in a high-level feature space, using the weight
matrix W (x) with elements directly computed from Equation 4 is
not appropriate in this case. Therefore, it is necessary to com-
pute the equivalent of the weight matrix W (x) (computed in pixel
space) in the corresponding feature space. Therefore, we propose
to convert W (x) to its equivalent in feature-space by feeding it
into the VGG network as well, i.e., computing V GG (W (x)) and us-
ing its output as the new weight matrix (see Equation 5). There-
fore, the resulting matrix is used to assign more weight to the re-
gions of high spatial activity, as represented in the feature space.
As in the previous section, α and β control the contribution of
equally weighted feature and unequally weighted feature loss, re-
spectively.

2.3. GAN loss

Following the state-of-the-art methods in super-resolution for
both classical and perceptual loss functions [4, 6, 9] we use a
GAN-based training to produce frames of high perceptual quality.
We adopt the VSRResNet architecture proposed in [9, 12] as our
generator. The architecture is shown in Figure 2. It is composed of
15 residual blocks, each block containing two convolutional lay-
ers with kernels of size 3 by 3, with a Rectified Linear Unit (ReLU)
activation function following each convolution step.

The discriminator used in our work is borrowed from [9, 12]
and is composed of three convolutional layers followed by a fully
connected layer and a sigmoid operation, providing the probabil-
ity of a real patch. The discriminator architecture is shown in Fig-
ure 3.

Adapting the GAN formulation first introduced in [3] to VSR
results in solving the adversarial min-max problem

min
θ

max
φ

LG AN
(
φ,θ

)= Ex
[
logDφ (x)

]+ (10)

EY
[
log

(
1−Dφ

(
Gθ (Y )

))]
,

where Dφ is the discriminator with trainable parametersφ and Gθ
is the generator network with trainable parameters θ.

The generator network minimizes the following loss with re-
spect to θ

Lg en = EY
[− logDφ

(
Gθ (Y )

)]
, (11)

While the discriminator network minimizes the following loss with
respect to φ

Ldi s = Ex
[− logDφ (x)

]+EY
[− log

(
1−Dφ

(
Gθ (Y )

))]
(12)

In the next section, we introduce our proposed spatially adap-
tive loss for training the GAN model.

Fig. 2: The proposed generator architecture [9, 12]

Fig. 3: The proposed discriminator architecture [9, 12]

2.4. The spatially adaptive loss

Our final model incorporates spatial adaptivity into the distance-
based losses in pixel and feature space during the adversarial
training. We thus combine the GAN loss with the spatially adap-
tive pixel and feature loss, resulting in the following spatially
adaptive loss

L f i nal =α1
[
EY

[− logDφ
(
Gθ (Y )

)]]
(13)

+ ∑
(x, Y )

γw
(
x, Gθ (Y ) ,α2 +β2W (x)

)
+ ∑

(x, Y )
γw

(
V GG (x) , V GG

(
Gθ (Y )

)
, α3 +β3V GG (W (x))

)
,

where α1 controls the contribution of the GAN loss, α2 and α3
control the contribution of the equally weighted pixel-wise and
feature losses, and β2 and β3 the contribution of the weighted
pixel-wise and feature loss, respectively. We name our final model
trained with this spatially adaptive loss the Spatially Adaptive VS-
RGAN (Spatially adaptive video super-resolution GAN).In the next
sections, we show that the use of our final spatially adaptive loss
greatly improves the performance of generator networks.

3. EXPERIMENTS

3.1. Training and parameters

Our training dataset is extracted from the Myanmar video se-
quence. Each sample in the training dataset is composed of
five extracted 36 × 36 low-resolution patches (M = 2) at times
{t −2, t −1, t , t +1, t +2}, and their corresponding 36×36 HR patch
at time t . The LR frames are computed using bicubic downsam-
pling followed by bicubic interpolation in order to bring them to
the same spatial extent as the HR patch.

Pre-training the generator with a pixel-wise loss helps ensur-
ing a subsequent stable GAN training process. Therefore, we pre-
trained the generator for 100 epochs with the traditional MSE loss
in pixel-level using the ADAM [14] optimizer and a batch size of
64. For this pre-training experiment, the initial learning rate is set
to 10−3and is then further divided by a factor of 10 at the 50th and
75th epoch of the training. We train a separate generator for each
of the SR scale factors of 2, 3 and 4.

Using the weights of this pre-trained generator as initial
weights, we trained our GAN model with the spatially adaptive
perceptual loss defined in Equation 13 for 30 epochs, setting the



learning rate to 10−4 for both the discriminator and generator
networks. The weight decay was set to 10−3 for the discriminator
and 10−4 for the generator. We use the ADAM [14] optimizer and
a batch size of 64. The values for α and β parameters are deter-
mined experimentally with the constraint that their sum adds up
to 1. We find their optimal values to be: α1 = 0.001, α2 = 0.001,
β2 = 0.1, α3 = 0.798 and β3 = 0.1. The ε parameter in the Char-
bonnier loss is set to 0.001 and the parameter δ in Equation 4 is
set to 0.01 in our experiments. We found out that 30 epochs is an
appropriate number for our model to converge.

While the elements of the spatially weight matrix W initially
range from 0 to 1, we choose to scale them by factor 10, which
we found resulted in sharper edges and less artificial noise in the
resulting frames.

3.2. Evaluation results

We trained our model on the Myanmar dataset. In order to check
whether our model could also work well in different datasets,
we test our model on the VidSet4 dataset [15], a commonly used
dataset for testing video super-resolution models.

Recent works in super-resolution have shown that the PSNR
metric does not always provide an accurate assessment of the per-
ceptual quality of the HR images. During experiments, we also
found that PSNR and SSIM values sometimes do not agree with the
subjective evaluation of the quality of a frame. Recently, Zhang et
al. [16] have proposed a new standard to compare the perceptual
similarity between a reference image and a distorted one [17], with
a convolutional neural network. Given a reference (ground-truth)
and example image (prediction), the CNN outputs distance values
which quantify the perceptual similarity between the two images.
The author found that this Perceptual Distance predicted by these
networks provides results consistent with the human judgement.
Similarly, in [12] we found that this perceptual distance was con-
sistent with the human’s opinions regarding the sharpness of the
produced super-resolved video frames.

Using the PSNR, SSIM, and Perceptual Distance (which we re-
fer to as the PercepDist metric), we compare our Spatially Adaptive
VSRGAN with the current state-of-the-art video super-resolution
model, VSRResFeatGAN, proposed in [9, 12] for each scale factor.
The results of our computation are shown in table 1.

VSRResFeatGAN Spatially Adaptive VSRGAN
PSNR/SSIM/PercepDist PSNR/SSIM/PercepDist

2 30.90/0.9241/0.0283 31.64/0.9327/0.0257
3 26.53/0.8148/0.0668 26.80/0.8256/0.0641
4 24.50/0.7023/0.1043 24.72/0.7233/0.1010

Table 1: Comparison with state-of-the-art for VidSet4 dataset for
scale factors 2,3, and 4. For the PercepDist metric, smaller is better.

Table 1 shows that our Spatially Adaptive VSRGAN model sur-
passes the state-of-the-art VSRResFeatGAN model [9, 12] with
respect to all three metrics. A qualitative comparison is shown in
Figures 4-5. Considering the zoomed in regions in the frames we
see that our Spatially Adaptive VSRGAN model more accurately
super-resolves edges and fine details with less noise compared
with the baseline model.

We conclude from these quantitative and qualitative results
that the use of spatial information into the losses for training GANs
has a significant improvement on the perceptual quality of the re-
sulting frame.

Fig. 4: Qualitative comparison of VSRResFeatGAN (2nd row, left)
vs. Spatially Adaptive VSRGAN (2nd row, right) on scale factor 4,
with ground Truth (1st row, left) and input low-resolution (1st row,
right).

Fig. 5: Qualitative comparison of VSRResFeatGAN [12] (2nd row,
left) vs. Spatially Adaptive VSRGAN (2nd row, right) on scale factor
3, with ground Truth (1st row, left) and input low-resolution (1st
row, right)

4. CONCLUSION

In this paper, we have described our approach for using a weighted
loss in pixel and feature-spaces. We showed that the use of such a
spatially adaptive loss during the GAN training results in sharper
edges, better reconstruction of fine details, and a significant de-
crease in the noise resulting from a GAN-based training. Future
work will involve exploring the use of spatial information into our
adversarial loss as well, in order to provide better guidance to the
GAN and improve its solution. Furthermore, we will investigate
the use of additional means to incorporate spatial information
into the loss functions, in order to further encourage our model to
generate more naturalistic frames.



5. REFERENCES

[1] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video
super-resolution with convolutional neural networks,” IEEE
Transactions on Computational Imaging, vol. 2, no. 2,
pp. 109–122, 2016.

[2] Y. Huang, W. Wang, and L. Wang, “Bidirectional recurrent
convolutional networks for multi-frame super-resolution,”
in Advances in Neural Information Processing Systems 28,
pp. 235–243, 2015.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative ad-
versarial nets,” in Advances in neural information processing
systems, pp. 2672–2680, 2014.

[4] M. S. Sajjadi, B. Schölkopf, and M. Hirsch, “Enhancenet: Sin-
gle image super-resolution through automated texture syn-
thesis,” in Computer Vision (ICCV), 2017 IEEE International
Conference on, pp. 4501–4510, IEEE, 2017.

[5] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al.,
“Photo-realistic single image super-resolution using a gener-
ative adversarial network.,” in CVPR, vol. 2, p. 4, 2017.

[6] E. Pérez-Pellitero, M. S. Sajjadi, M. Hirsch, and B. Schölkopf,
“Photorealistic video super resolution,” arXiv preprint
arXiv:1807.07930, 2018.

[7] X. Wang, K. Yu, C. Dong, and C. C. Loy, “Recovering realis-
tic texture in image super-resolution by deep spatial feature
transform,” CoRR, vol. abs/1804.02815, 2018.

[8] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in European Con-
ference on Computer Vision, pp. 694–711, Springer, 2016.

[9] A. Lucas, A. K. Katsaggelos, S. L. Tapia, and R. Molina, “Gen-
erative adversarial networks and perceptual losses for video
super-resolution,” in ICIP, 2018.

[10] E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, and W. J. Emery, “Svm
active learning approach for image classification using spa-
tial information,” IEEE Transactions on Geoscience and Re-
mote Sensing, vol. 52, pp. 2217–2233, April 2014.

[11] S. N. Efstratiadis and A. K. Katsaggelos, “Adaptive iterative
image restoration with reduced computational load,” Opti-
cal engineering, vol. 29, no. 12, pp. 1458–1469, 1990.

[12] A. Lucas, S. Lopez Tapia, R. Molina, and A. K. Katsaggelos,
“Generative adversarial networks and perceptual losses for
video super-resolution,” ArXiv e-prints, June 2018.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” CoRR, vol. abs/1412.6980, 2014.

[15] C. Liu and D. Sun, “A bayesian approach to adaptive video su-
per resolution,” in Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pp. 209–216, IEEE, 2011.

[16] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep networks as a per-
ceptual metric,” in CVPR, 2018.

[17] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep
cnn denoiser prior for image restoration,” arXiv preprint
arXiv:1704.03264, 2017.


	 Introduction
	 Proposed Method
	 Extracting spatial information
	 Spatially adaptive losses 
	 GAN loss
	 The spatially adaptive loss

	 EXPERIMENTS
	 Training and parameters
	 Evaluation results

	 CONCLUSION
	 References

