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ABSTRACT

In this work, we propose a new variational blind deconvolution
method for spike and slab prior models. Soft-sparse or shrinkage
priors such as the Laplace and other related Gaussian Scale Mix-
ture priors may not be ideal sparsity promoting priors. They assign
zero probability mass to events we may be interested in assigning
a probability greater than zero. The truly sparse nature of the spike
and slab priors allows us to discard irrelevant information in the blur
estimation process, resulting in improved performance. We present
an efficient inference algorithm to estimate the unknown blur kernel
in the filter space, from which we estimate the final deblurred image.
The VB approach we propose in this paper handles the inference in
a much more efficient way than MCMC, and is more accurate than
the standard mean field variational approximation. We prove the
efficacy of our method by means of a series of experiments on both
synthetically generated and real images.

Index Terms— Blind deconvolution, spike-and-slab, variational
Bayesian approach.

1. INTRODUCTION

Blind image deconvolution (BID) is an image restoration problem
where both the blur and the original image are unknown and have to
be estimated from the degraded observed image. This is a very chal-
lenging ill-posed problem where small variations in the estimated
blur result in large variations in the restored image. Also, it is an un-
derdetermined nonlinear inverse problem, which requires the estima-
tion of more unknowns than available observations. To obtain good
image and blur estimations, prior knowledge about the unknowns
and sound estimation procedures are needed.

It is a well known fact that when high-pass filters are applied to
natural images, the resulting coefficients are sparse; i.e., most of the
coefficients are zero or very small while only a small number of them
are large (e.g., at the edges). BID methods can be formulated in ei-
ther the image or the filter space. Several authors have discussed the
advantages of using one space over the other [1–3]. The formulation
on the image space appears to be less sensitive to noise since noise
is more noticeable in the filter space. However, filter space meth-
ods have access to more pseudo-observations to estimate the blur.
Notice that images suited to blur estimation only should have many
step edges and not many details. Once the blur is estimated in the
filter space, a non-blind deconvolution algorithm is used to recover
the sharp image from the observed image and the estimated blur. If
the image space is used, both the image and blur can be estimated
simultaneously [4].

This work was supported in part by the Ministerio de Economı́a y Com-
petitividad under contracts TIN2013-43880-R and DPI2016-77869-C2-2-R,
and the US Department of Energy grant DE-NA0002520.

Variational Bayes (VB) is a sound and well grounded proba-
bilistic estimation approach to BID problems. VB BID methods,
like the vast majority of state-of-the-art BID methods, rely on the
use of sparsity promoting image models. See [3, 5] for reviews on
variational BID methods and image models. Since the work [6],
where a mixture of Gaussians (MoG) is used to impose sparsity and
VB is utilized to perform inference, the interest on sparse priors has
increased. Babacan et al. [7] propose a general Bayesian frame-
work based on Super Gaussian (SG) and Scale Mixture of Gaussian
(SMG) priors for BID. The framework includes, among others, [6]
as a particular case. Notice that popular sparse prior models, such as
TV, `p, MoG, and Student-t [8] are included in the proposed frame-
work. The work in [7] has been extended in [9] to handle Huber
Super Gaussian (HSG) priors, which solve the problem of lack of
differentiability around zero of most common SG priors. Power Ex-
ponential Scale Mixture (PESM) models have been recently intro-
duced, see [10, 11]. They use a mixture of exponential distributions
(being the Laplace distribution a typical one) to represent an sparse
signal. It is interesting to note that while most of the BID research
concentrates on image modelling, work has also been carried out to
force the posterior blur distribution to be a member of a particular
class of probability distributions, see, for instance, [12].

As indicated in [13], soft-sparse or shrinkage priors such as the
Laplace and other related GSM priors may not be ideal sparsity pro-
moting priors. They assign zero probability mass to events we may
be interested in assigning a probability greater than zero. For in-
stance, to obtain better blur estimates in BID and get rid of noise that
compromises the estimation procedure we may want to assign non-
zero probability to a zero output in the filter space. Priors that com-
bine Bernoulli and continuous distributions are starting to be used
to better approximate `0 penalization [14, 15]. Spike-and-slab pri-
ors [16], also named Bernoulli-Gaussian priors [15] since they are
a mixture of a Bernoulli and a Gaussian distribution, are the gold
standard in sparse machine learning. They have the ability of selec-
tively shrink irrelevant variables while relevant variables are mildly
regularized [17]. Applications of this prior include variable selec-
tion [18,19], denoising [13,20], inpainting [13], unsupervised learn-
ing sparse features [21], hyper-spectral image fusion [22] and sparse
signal recovery [15]. Notice that the spike-and-slab prior can be ap-
proximated as the mixture of two Gaussians, one very peaky (the
spike) and another with very high variance (the slab) [23] but this
is still a mixture of two continuous distributions. According to [24]
Spike-and-slab models are more effective than other sparse priors
(Laplacian or Student-t priors, for instance) in enforcing sparsity
and, also, the degree of sparsity can be directly adjusted by modi-
fying the weight of the spike in the mixture .

Unfortunately, due to the form of the prior, Bayesian inference
for spike and slab models is a very challenging task. The exact
posterior can not be calculated. Since classical mean field varia-
tional inference removes essential dependencies in the posterior dis-



tribution approximation, until recently, costly Monte-Carlo Markov
Chain (MCMC) sampling was the usual way to perform inference.
The work by Titsias et al. [13], proposes an alternative VB inference
model to approximate the posterior distribution using a simple and
efficient algorithm. Instead of using a unimodal variational distri-
bution, the authors propose an alternative approximation that more
accurately matches the combinatorial nature of the posterior distri-
bution over the spike-and-slab weights, see also [24] for the use of
Expectation Propagation for posterior approximation.

In this paper, we formulate the BID problem in the filter space.
Then, we introduce a spike-and-slab prior to model our knowledge
on the original image in that space. This will allow us to distinguish
relevant observations for blur estimation from noisy ones, discarding
the latter, and making the blur estimation more robust and accurate.
The VB approach we propose in this paper handles inference in a
much more efficient way than MCMC, and is more accurate than the
standard mean field variational approximation.

The rest of the paper is organized as follows. Section 2 describes
the proposed model for blur estimation. In Sec. 3, Bayesian infer-
ence is performed and, in Sec. 4, a BID algorithm is synthesized.
The performance of the proposed method is assessed in Section 5.
Finally, Section 6 concludes the paper.

2. BAYESIAN MODELING OF THE BLUR ESTIMATION
PROBLEM

In BID, the degraded observed image y is modeled as [3]

y = Hx + n, (1)

where x and n are the original image and noise respectively, and H
is the unknown convolution matrix whose row elements are obtained
from the blur kernel h. We utilize a column vector notation for the
observed and original images and the noise. We also assume that
their size is N .

The BID problem is formulated here in the filter space. We cre-
ate L pseudo-observations yγ by applying high-pass filters {fγ}Lγ=1

to the blurred and noisy image y obtaining

yγ = Fγy = HFγx + Fγn = Hxγ + nγ , (2)

with xγ = Fγx and Fγ is the convolution matrix associated with
the filter fγ .

Assuming that the pseudo-observations are independent, i.i.d.
Gaussian noise, that is, nγ ∼ N (0, β−1

γ I), and denoting yΓ =
{y1, . . . ,yL}, xΓ = {x1, . . . ,xL}, and βΓ = {β1, . . . , βL}, we
can write

p(yΓ|h,xΓ,βΓ) =
∏

γ
p(yγ |h,xγ , βγ), (3)

where p(yγ |h,xγ , βγ) = N (yγ |Hxγ , βγI).
Notice that {xγ}Lγ=1 are sparse since they represent high-pass

filtered instances of the original image. Therefore, to impose sparsity
on the solution, we define a spike-and-slab prior on the value of each
pixel xγi of xγ ,

p(xγi|αγ , πγ) = πγN (xγi|0, α−1
γ ) + (1− πγ)δ(xγi), (4)

where δ(xγi) denotes the Dirac delta function centered at zero. Ob-
serve that this is a truly sparse prior, with probability (1 − πγ), xγi
is exactly zero.

To investigate the model capability, we assume here that πγ and
αγ are known and postpone their estimation to future work. No-
tice that these parameters determine the amount of sparsity and the
variability of nonzero values, respectively.

Let us now write, following [13], xγi as the product of a Gaus-
sian random variable x̃γi ∼ N (x̃γi|0, α−1

γ ) and a Bernoulli random
variable sγi ∼ π

sγi
γ (1− πγ)1−sγi , that is,

xγi = sγix̃γi, (5)

and redefine the prior on the two components of xγi, as

p(x̃γi, sγi|αγ , πγ) = N (x̃γi|0, α−1
γ )π

sγi
γ (1− πγ)1−sγi , (6)

where sγi ∈ {0, 1}. We use the notation x̃Γ = {x̃1, . . . , x̃L} and
sΓ = {s1, . . . , sL}. With all the above, utilizing a flat prior on h,
and denoting the whole set of unknowns by Θ = {h, x̃Γ, sΓ}, we
can write the joint distribution as

p(Θ,yΓ) =p(h)
∏

γ
p(yγ |h, x̃γ , sγ , βγ)

×
∏

γ

∏
i
p(x̃γi, sγi|αγ , πγ). (7)
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Since p(Θ|yΓ) cannot be calculated in closed form, the stan-
dard mean field approximation [25] that factorizes q(x̃γ , sγ) =
q(x̃γ)q(sγ) could be used. However this is a unimodal distri-
bution [13] and, therefore, not a good approximation of the true
posterior distribution. Since the pairs {x̃γi, sγi} are strongly corre-
lated (remind that xγi = sγix̃γi), we treat them as a unit, use the
factorization

q(x̃γ , sγ) =
∏

γ

∏
i
q(x̃γi, sγi) (8)

and utilize the following mean field approximation

q(Θ) = q(h)
∏

γ

∏
i
q(x̃γi, sγi). (9)

The distribution approximating the posterior p(Θ|yΓ) is found by
minimizing the Kullback-Leibler divergence assuming that q(h) is
a degenerate distribution and that the blur is non-negative and its
coefficients add up to one.

We now present how inference on q(x̃γi, sγi) and q(h) is per-
formed.

3.1. Obtaining q(x̃γi, sγi)

Using the Kullback-Leibler criterion and the mean field approxima-
tion in Eq. (9), we have

q(x̃γi,sγi) =
1

Z exp
[

ln p(yγ |h, x̃γ , sγ , βγ) q(Θx̃γi,sγi
)

]
×N (x̃γi|0, α−1

γ )π
sγi
γ (1− πγ)1−sγi , (10)

where Z is the partition function, θ ∈ Θ, and Θθ denotes Θ with θ
removed. To compute the explicit expression for the above posterior
we need to separate the derivations for sγi = 1 and sγi = 0.

First, we find the marginal q(sγi = 1). Particularizing Eq. (10)
to sγi = 1 and integrating on x̃γi, we obtain

q(sγi = 1) =

ˆ
q(x̃γi, 1)dx̃γi =

1

Z (2π)−N/2βN/2γ α1/2
γ πγρ

−1/2
γ

× exp
[
− βγ

2
‖ yγ −

∑
k 6=i

sγkx̃γk hk ‖2
]

× exp
[ β2

γ

2ργ

(
hT
i (yγ −

∑
k 6=i

sγkx̃γk hk)
)2]

, (11)



where hi denotes the ith column of H and

ργ = βγ ‖ h ‖2 +αγ , (12)

with ‖h‖2 = hT
i hi, ∀i since spatially invariant blur is assumed.

Following an analogous procedure for sγi = 0, we have

q(sγi = 0) =

ˆ
q(x̃γi, 0)dx̃γi =

1

Z (1− πγ)(2π)−N/2

× βN/2γ exp
[
− βγ

2
‖ yγ −

∑
k 6=i

sγkx̃γk hk ‖2
]
. (13)

Defining now

ωγi = q(sγi = 1) =
1

1 + e−uγi
, (14)

it is easy to show that

uγi = ln q(sγi = 1)− ln q(sγi = 0) = ln
πγ

1− πγ
+

1

2
lnαγ

− 1

2
ln(ργ) +

β2
γ

2ργ

(
hT
i (yγ −

∑
k 6=i

sγkx̃γk hk)
)2
. (15)

We now calculate the conditional distributions q(x̃γi|sγi) from
Eq. (10). It can be shown that they are both Gaussians of the form

q(x̃γi|sγi = 0) = N (x̃γi|0, α−1
γ ), (16)

q(x̃γi|sγi = 1) = N (x̃γi|µxγi , ρ
−1
γ ), (17)

where
µxγi =

βγ
ργ

hT
i (yγ −

∑
k 6=i

sγkx̃γk hk) (18)

is the mean value of the slabs.
Finally, we can write the posterior as

q(x̃γi, sγi) = q(x̃γi|sγi)q(sγi) (19)

= N (x̃γi|sγiµxγi , sγiρ
−1
γ + (1− sγi)α−1

γ )ω
sγi
γi (1− ωγi)1−sγi .

Furthermore,

sγix̃γi = xγi = ωγiµxγi , (20)

s2
γix̃

2
γi = sγix̃

2
γi = x2

γi = ωγi(µ
2
xγi + ρ−1

γ ), (21)

where ωγi has been defined in Eq. (14) and µxγi and ργ in Eqs. (18)
and (12), respectively.

3.2. Obtaining q(h)

Notice that we are assuming a degenerate distribution on q(h), that
is,

q(h) =

{
1 if h = ĥ
0 elsewhere

, (22)

where ĥ = argminh∈D
∑
γ ‖ yγ − Hxγ ‖2 q(Ωh) and D

denotes the set of valid blurs, i.e., non negative and add up to one.
Notice that∑
γ

‖ yγ −Hxγ ‖2 q(Ωh) =
∑
γ

‖ yγ −
∑
j

xγj hj ‖2

+
∑
γ

‖
∑
j

(xγj − xγj )hj ‖2

=
∑
γ

‖yγ −H xγ ‖2 +
∑
γ

∑
j

( x2
γj − xγj

2
)‖h‖2

(23)

and so we have

ĥ = argmin
h∈D

∑
γ

[
‖ yγ −H xγ ‖2

+
∑

j
( x2

γj − xγj
2
) ‖ h ‖2

]
, (24)

constrained to hi ≥ 0,
∑
i hi = 1. This estimation problem can be

efficiently solved using the ADMM method in [9].

4. BLIND DECONVOLUTION ALGORITHM

The blur estimation algorithm iterates on the estimation of the distri-
bution q(x̃γi, sγi) given the current estimate of h and the estimation
of q(h) from the current estimates of x̃γi and sγi. That is, start-
ing from initial values h(0), µ(0)

Γ and ω(0)
Γ , and k = 0, the algo-

rithm computes µ(k+1)
Γ and ω(k+1)

Γ to obtain xγi
(k+1)

, ∀γ∀i in
Eq. (20), and the estimation of h(k+1) using Eq. (24). It then sets
k = k + 1 and iterates again until convergence.

Following [6, 7, 9], we perform kernel estimation using a mul-
tiscale approach. This allows us to obtain a good kernel approxi-
mation at coarse scales, where it is easier to estimate, and provide a
good starting point to finer levels by upsampling the kernel estimated
at the previous scale.

Notice that whereas this algorithm does not provide an estimate
of the image since it works on the filtered images, not on the image
itself, it provides an estimate of the blur. Once the estimate of the
blur, ĥ, has been obtained, a non-blind deconvolution algorithm is
used to recover an estimation of the original sharp image. In this
paper we obtain an estimate of the original image by solving the
problem

x̂ = argmin
x

1

2
‖ Ĥx− y ‖22 +

λ

p

∑
γ
‖ xγ ‖p, (25)

using the fast iterative method in [26], [9].

5. EXPERIMENTAL RESULTS

To assess the performance of the proposed method we have run the
proposed algorithm on a set of 4 test images with 6 different blur
kernels. The original images, displayed in the upper row of Fig. 1,
were degraded by convolving them with each one of the blur kernels
(see lower row of Fig. 1) and adding noise of standard deviation 0.01,
thus obtaining a set of 24 degraded images.

The proposed BID algorithm is initialized as follows. Initial blur
at the lowest scale is initialized with a 3 × 3 Gaussian kernel with
very small variance. For the rest of the scales, the kernel estimated at
the previous lower scale is upsampled by a factor

√
2 in each direc-

tion. The precision parameters βΓ were set to 5000, ∀γ, its real value
according to the noise in the image (notice that βγ = β/‖fγ‖2),
αγ = α and πγ = π, ∀γ, were selected by grid search. At each
scale, µΓ is initialized at the current pseudo-observation yΓ and
ωγi ∀γ∀i is drawn from a Gaussian distribution with mean 0.5 and
standard deviation 0.01.

We compared the proposed method with the BID method in [9]
and, following the authors, we use the filters f1 = [1,−1] and
f2 = [1,−1]T for the blur estimation problem. For the final im-
age reconstruction, we also use the second order derivative filters
f3 = [−1, 2,−1], f4 = [−1, 2,−1]T , f5 = [1 − 1;−1, 1] and the
same parameter values to make a fair the comparison.

Numerical results for PSNR and SSIM are presented in Tables 1
and 2, respectively. For the color images, PSNR and SSIM of the



1 2 3 4 5 6
Fig. 1. Original images and blur kernels used in the experiment.
Images are 512 × 512. Blur kernel sizes range from 13 × 13 to
23× 23.

Fig. 2. Selected images for visual comparison. First row, degraded
images; second row, restored with the proposed method; third row,
restored with the method in [9]. The images are best viewed on the
screen and zooming in to appreciate the details.

Y band is reported. The data suggest that the proposed method per-
forms better than the method in [9] for most of the images and blur
kernels tested, providing higher PSNR and similar SSIM values. We
think that one of the proposed method strengths is its ability to iden-
tify good pixels for blur estimation. However, as in many other BID
methods, good results depend on a good blur estimation at each scale
and small variations or a poor estimation at a lower scale may ruin
the final result. The proposed method which needs about 320 sec-
onds to run on an i7-5500U CPU @ 2.40GHz with 16GB RAM, is
slower than the method in [9] which needs about 50 seconds. The
reason is that the image update in Eq. (20) is performed pixelwise,
preventing the use of the FFT to speed up the computations. The
modification of the image update to allow FFT processing is under
study. Figure 2 depicts selected images for visual comparison. Color
images were obtained by composing the deconvolved Y band with
the degraded Cb and Cr bands. The images show that the proposed
method provides sharper restorations with less noticeable artifacts.

Figure 3a shows a real blurred and noisy image borrowed from
[27]. Noticeable artifacts appear on the deconvolved image with the
method in [9] (Fig. 3b) while the result from the proposed method,
depicted in Fig. 3c, is sharper, less noisy and present less artifacts.
The estimated PSF (see the inset) is more accurate and not as noisy
as the obtained with the method in [9].

image method kernel
1 2 3 4 5 6

1 Proposed 31.04 30.56 31.18 33.37 31.35 30.60
Zhou [9] 29.24 32.92 32.27 30.99 30.64 27.20

2 Proposed 31.03 30.99 31.41 32.63 30.81 32.04
Zhou [9] 30.11 31.00 30.29 29.25 30.40 31.62

3 Proposed 29.55 31.07 30.64 31.28 29.20 24.47
Zhou [9] 30.77 29.70 31.03 30.18 29.52 30.18

4 Proposed 31.04 30.47 31.75 31.66 30.31 31.21
Zhou [9] 30.08 29.96 30.60 30.15 29.48 30.44

Table 1. PSNR value for the images and kernels in Fig. 1 for the
proposed method and the method in [9].

image method kernel
1 2 3 4 5 6

1 Proposed 0.90 0.90 0.91 0.93 0.92 0.89
Zhou [9] 0.90 0.92 0.93 0.93 0.92 0.86

2 Proposed 0.85 0.86 0.86 0.89 0.87 0.87
Zhou [9] 0.86 0.87 0.86 0.86 0.87 0.87

3 Proposed 0.87 0.89 0.89 0.91 0.88 0.81
Zhou [9] 0.90 0.89 0.90 0.91 0.90 0.89

4 Proposed 0.81 0.80 0.82 0.83 0.80 0.81
Zhou [9] 0.81 0.80 0.81 0.82 0.81 0.81

Table 2. SSIM value for the images and kernels in Fig. 1 for the
proposed method and the method in [9].

6. CONCLUSION

We have presented a new BID method formulated in the filter space.
The novelty of the proposed model lies in the introduction of the
spike-and-slab prior on the high-pass filtered image. A convenient
reparametrization of the spike-and-slab prior makes VB inference
possible and a sensible factorization provides a better approximation
of the posterior. This leads to an efficient algorithm that accurately
estimate the blur kernel due to the ability of such priors to shrink
irrelevant information. Empirical experimentation provide sufficient
proof of the competitiveness of the proposed method. Current re-
search work is being devoted to the estimation of the model param-
eters, that is, noise variances and spike and slab parameters.

(a) (b) (c)

Fig. 3. A real example. (a) Blurred and noisy image. (b) Result with
the method in [9]. (c) Result with the proposed method.



7. REFERENCES

[1] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Efficient
marginal likelihood optimization in blind deconvolution,” in
The Conference on Computer Vision and Pattern Recognition
(CVPR), 2011.

[2] L. Xu, S. C. Zheng, and J. Y. Jia, “Unnatural l0 sparse repre-
sentation for natural image deblurring,” in The Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

[3] P. Ruiz, X. Zhou, J. Mateos, R. Molina, and A.K. Katsaggelos,
“Variational Bayesian blind image deconvolution: A review,”
Digital Signal Processing, vol. 47, pp. 116–127, 2015.

[4] R. Molina, J. Mateos, and A.K. Katsaggelos, “Blind decon-
volution using a variational approach to parameter, image, and
blur estimation,” IEEE Transactions on Image Processing, vol.
15, no. 12, pp. 3715–3727, Dec 2006.

[5] T. E. Bishop, S. D. Babacan, B. Amizic, A. K. Katsaggelos,
T. Chan, and R. Molina, Blind image deconvolution: problem
formulation and existing approaches, chapter 1, CRC press,
2007.

[6] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.
Freeman, “Removing camera shake from a single photograph,”
ACM Trans. Graph, vol. 25, no. 3, 2006.

[7] S. Babacan, R. Molina, M. Do, and A. K. Katsaggelos,
“Bayesian blind deconvolution with general sparse image pri-
ors,” in European Conference on Computer Vision (ECCV),
2012.

[8] A. Mohammad-Djafari, “Bayesian blind deconvolution of im-
ages comparing JMAP, EM and BVA with a Student-t a priori
model,” in International Workshops on Electrical Computer
Engineering Subfields, 2014, pp. 98–103.

[9] X. Zhou, M. Vega, F. Zhou, R. Molina, and A. K. Katsaggelos,
“Fast Bayesian blind deconvolution with Huber super Gaussian
priors,” Digital Signal Processing, vol. 60, pp. 122–133, 2017.

[10] R. Giri and B. Rao, “Type I and Type II Bayesian Methods for
Sparse Signal Recovery Using Scale Mixtures,” IEEE Trans-
actions on Signal Processing, vol. 64, pp. 3418–3428, 2016.

[11] R. Giri and B. Rao, “Learning Distributional Parameters for
Adaptive Bayesian Sparse Signal Recovery,” IEEE Computa-
tional Intelligence Magazine, vol. 11, pp. 14–23, 2016.

[12] X. Zhou, J. Mateos, F. Zhou, R. Molina, and A.K. Katsaggelos,
“Variational Dirichlet blur kernel estimation,” IEEE Transac-
tions on Image Processing, vol. 24, pp. 5127–5139, 2015.

[13] M. K. Titsias and M. Lázaro-Gredilla, “Spike and slab vari-
ational inference for multi-task and multiple kernel learning,”
in Advances in Neural Information Processing Systems, 2011,
pp. 2339–2347.

[14] L. Chaari, J.-Y. Toumeret, and H. Batatia, “Sparse Bayesian
regularization using Bernoulli-Laplacian priors,” in European
Signal Processing Conference (EUSIPCO), 2013, pp. 1–5.

[15] L. Chaari, J. Y. Toumeret, and C. Chaux, “Sparse signal re-
covery using a Bernoulli generalized Gaussian prior,” in Eu-
ropean Signal Processing Conference (EUSIPCO), 2015, pp.
1711–1715.

[16] H. Ishwaran and J. S. Rao, “Spike and slab variable selection:
Frequentist and Bayesian strategies,” The Annals of Statistics,
vol. 33, no. 2, pp. 730–773, 2005.

[17] S. A. Zilqurnain Naqvi, Efficient sparse Bayesian learning
using spike-and-slab priors, Ph.D. thesis, Purdue University,
2016.

[18] G. Malsiner-Walli and H Wagner, “Comparing spike and slab
priors for Bayesian variable selection,” Austrian Journal of
Statistics, vol. 40, pp. 241–264, 2011.

[19] X. Huang, J. Wang, and F. Liang, “A variational Bayesian
algorithm for variable selection,” in Joint Statistical Meetings,
2016.

[20] X. Lu, Y. Yuan, and P. Yan, “Sparse coding for image denoising
using spike and slab prior,” Neurocomput., vol. 106, pp. 12–20,
2013.

[21] S. Mohamed, K. A. Hellerand, and Z. Ghahramani, “Bayesian
and l1 approaches for sparse unsupervised learning,” in 29th
International Conference on Machine Learning, 2012.

[22] B. Lin, X. Tao, S. Li, L. Dong, and J. Lu, “Variational Bayesian
image fusion based on combined sparse representations,” in
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2016, pp. 1432–1436.
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