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Abstract—Most current state of the art blind image
deconvolution methods model the underlying image (either in
the image or filter space) using sparsity promoting priors
and perform inference, that is, image, blur, and parameter
estimation using variational approximation. In this paper we
propose the use of the spike-and-slab prior model in the filter
space and a variational posterior approximation more expressive
than mean field. The spike-and-slab prior model, which is the
“gold-standard” in sparse machine learning, has the ability to
selectively shrink irrelevant variables while relevant variables are
mildly regularized. This allows to discard irrelevant information
while preserving important features for the estimation of the blur
which results in more precise and less noisy blur kernel estimates.
In this paper we present a variational inference algorithm for
estimating the blur in the filter space, which is both more efficient
than MCMC and more accurate than the standard mean field
variational approximation. The parameters of the prior model
are automatically estimated together with the blur. Once the blur
is estimated, a non-blind image restoration algorithm is used to
obtain the sharp image. We prove the efficacy of our method on
both synthetically generated and real images.

I. INTRODUCTION

In image deconvolution, it is usual to model the degradation
suffered by an original image x as [1]

y = Hx +n, (D

where, using matrix-vector notation, y is the observed image,
n represents the noise and the matrix H is the convolution
matrix whose row elements are obtained from the blur kernel
h. In blind image deconvolution (BID) both the original image
x and the blur h are unknown and both have to be estimated
from the available data, that is, the degraded observed image.
Notice that the inverse problem in (1) is underdetermined since
for estimating the original image and the blur we have more
unknowns than available observations. It is also an ill-posed
problem in the sense of Hadamard, i.e., small variations in
the observed data can lead to large variations in the solution
and, even more, small variations in the estimated blur result in
large variations in the restored image. To obtain good image
and blur estimates, prior knowledge about the unknowns and
sound estimation procedures are needed.

BID methods can be formulated in either the image or
the filter space. In the image space, the restored image and
blur are estimated directly from the observed image. In the
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filter space, however, the observed image is first filtered with
different high-pass filters to obtain a set of sparse pseudo-
observations. Several authors have discussed the advantages
of using one space over the other [1]-[3]. While filter space
methods have the advantage of having access to more pseudo-
observations (one for each used filter) to estimate the blur,
they appear to be more noise-sensitive. In the filter space, a
non-blind deconvolution algorithm is always used to recover
the sharp image after blur estimation. Image space approaches
can estimate the image and blur simultaneously [4] although
they usually first estimate the blur from the observed image
and then they resort to a non-blind deconvolution algorithm
to recover the final sharp image since images suited to blur
estimation tend to have many steep edges and not many details.

Variational Bayes (VB) is a sound and well-grounded
probabilistic estimation approach to BID problems. VB
BID methods, like the vast majority of state-of-the-art BID
methods, rely on the use of sparsity promoting image models.
See [1], [5] for reviews on variational BID methods and image
models. Since the work [6], where a mixture of Gaussians
(MoG) is used to impose sparsity and VB is utilized to perform
inference, the interest on sparse priors has increased. Babacan
et al. [7] propose a general Bayesian framework based on
Super Gaussian (SG) and Scale Mixture of Gaussian (SMG)
priors for BID. The framework includes, among others, [6] as
a special case. Notice also that popular sparse prior models,
such as TV, £,, MoG, and Student-t [8] are included in the
proposed framework. The work in [7] has been extended in
[9] to handle Huber Super Gaussian (HSG) priors, which solve
the problem of lack of differentiability around zero of most
common SG priors. It is interesting to note that while most of
the BID research concentrates on image modeling, work has
also been carried out to force the posterior blur distribution to
be a member of a particular class of probability distributions,
see, for instance, [10].

As indicated in [11], soft-sparse or shrinkage priors such
as the Laplace and other related SMG priors may not be
ideal sparsity-promoting priors. They assign zero probability
mass to events we may be interested in assigning a probability
greater than zero. For instance, to obtain better blur estimates
in BID and get rid of noise that compromises the estimation
procedure we may want to assign non-zero probability to a
zero output in the filter space. Priors that combine Bernoulli
and continuous distributions are starting to be used to better
approximate the ¢y penalization [12], [13]. Such is the case



of spike-and-slab priors [14], also named Bernoulli-Gaussian
priors [13] since they consist of a mixture of a Bernoulli and a
Gaussian distribution. These priors constitute the gold standard
in sparse machine learning, having the ability to selectively
shrink irrelevant variables, while mildly regularizing the
relevant ones [15]. Applications of this prior include variable
selection [16], [17], denoising [11], [18], inpainting [11],
unsupervised latent variable models [19], hyper-spectral image
fusion [20] and sparse signal recovery [13]. Notice that the
spike-and-slab prior can be approximated as the mixture of
two Gaussians, one very peaky (the spike) and another with
very high variance (the slab) [21] but this is still a mixture of
two continuous distributions. According to [22] spike-and-slab
models are more effective than other sparse priors (Laplacian
or Student-t priors, for instance) in enforcing sparsity. The
degree of sparsity can also be directly adjusted by modifying
the weight of the spike in the mixture.

Unfortunately, due to the form of the prior, Bayesian
inference for spike and slab models is a very challenging task.
The exact posterior can not be calculated. Since classical mean
field variational inference removes essential dependencies
in the posterior distribution approximation, until recently,
costly Monte-Carlo Markov Chain (MCMC) sampling was
the usual way to perform inference. The work by Titsias
et al. [11], proposes an alternative VB inference model to
approximate the posterior distribution using a simple and
efficient algorithm. Instead of using a unimodal variational
distribution, the authors propose an alternative approximation
that more accurately matches the combinatorial nature of the
posterior distribution over the spike-and-slab weights (see also
[22] for the use of Expectation Propagation for posterior
approximation).

Note that spike-and-slab models depend on a series of
parameters that need to be set or estimated. The estimation
of the model parameters is a very important issue in BID
since they dramatically affect the quality of the final result.
Usually, their values are chosen by trial-and-error, using a grid
search on a set of selected values, generalized cross-validation
(GCV) [23], discrepancy principle [24], or measures such as
the whiteness measure [25]. However, when using the VB
approach, the parameter estimation can be performed within
the framework [4], [7], [9].

In this paper we formulate the BID problem in the filter
space and introduce a spike-and-slab prior to model our
knowledge on the original image in that space. This allows us
to distinguish relevant observations for blur estimation from
noisy ones, discarding the latter, and make the blur estimation
more robust and accurate. We also derive a method to estimate
the prior model parameters automatically from the observed
data within the VB framework. The VB approach we propose
in this paper handles inference in a much more efficient way
than MCMC, and is more accurate than the standard mean
field variational approximation.

The rest of the paper is organized as follows. Section II
describes the proposed model for blur estimation. In Sec. III,
Bayesian inference is performed and, in Sec. IV, a BID

algorithm is synthesized. The performance of the proposed
method is assessed in Section V. Finally, Section VI concludes
the paper.

II. BAYESIAN MODELING OF THE BLUR ESTIMATION
PROBLEM

The BID problem is formulated here in the filter space. We
create L pseudo-observations y. by applying high-pass filters
{£,}£_, to the blurred and noisy image y obtaining

yy=F,y=HF,x+F,n=Hx, +n,, 2)

with x, = F,x and F,, is the convolution matrix associated
with the filter £,. In this work a linear convolution is assumed.
The size of each pseudo-observation is V.

Assuming that the pseudo-observations are independent, and
denoting yr = {y, }1_y. xr = {x;}1_y, and B = {812,
where (3, is the inverse of the noise variance, we can write

p(yr|h7XF7BI‘) :HVP(Y’Y‘haX’YHB'y): (3)

where p(y7|h, XWﬂW) = N(yW|HX77ﬂ71)'

Notice that {xv},%:1 should be sparse since they represent
high-pass filtered instances of the original image. Therefore,
to impose sparsity on the solution, we define a spike-and-slab
prior on the value of each pixel x,; of x,

p(x'yi|a'yaﬂ—'y) = WWN<1.M"O7O‘;1) + (1 - 777)5(1'%)7 4)

where 6(-) denotes the Dirac delta function and NV (Z.;]0, o)
denotes a zero mean Gaussian distribution on Z,; with
variance o 1. Observe that this is a truly sparse prior: .
is exactly zero with probability 1 — 7.

Let us now write, following [11], x; as the product of a
Gaussian zero-mean random variable Z.; ~ N(Z;]0,05")
and a Bernoulli random variable s.; ~ 757" (1 — )17,
that is,

T = S'y’ijj'yia )

and redefine the prior on the two components of x.;, as
5 = =1\ 5~i 1—syi
D(Zryis Syl Qs Ty) = N (243]0, @ )y (L =y ) 507, (6)

where s.; € {0, 1}. We use the notation Xp = {X,}!_,, sp =
{sy}_1, ar = {ay}}_; and 7p = {7, }L_, and utilize flat
priors on the hyperparameters ar and 7 as well as on the
blur h. Other distributions can be used on the hyperparameters,
such us gamma distributions [4], if any information about their
value is available. Notice that, since the size of the blur is much
smaller than the size of the image, enough data is available
to obtain a precise estimation, even if no information on the
prior form of the blur is available, which supports the use of
an improper non-informative priors.

With all the above and denoting the whole set of unknowns
by ® = {ar,nr,h,Xr,sr}, we can write the joint
distribution as

p(®,yr) =p(ar)p(wr)p(h) HW p(y~|h, Xy,85,8,)
X H7 Hip@viv Syil Oy, Ty). (7



III. VARIATIONAL INFERENCE FOR BLUR ESTIMATION

Since p(®l|yr) cannot be calculated in closed form,
the standard mean field approximation [26] that factorizes
q(Z~,8y) = q(Z~)q(sy) could be used. However this is
a unimodal distribution [11] and, therefore, not a good
approximation of the true posterior distribution. Since the pairs
{Z.i,54i} are strongly correlated (recall that ., = 5;Z+:),
we treat them as a unit, hence we use the factorization

H H q 3771,7571 (®)

and utilize the following mean field approximation
q(@) - q(al" H H q x’yus’yz (9)

The distribution approximating the posterior p(®|yr) is found
by minimizing the Kullback-Leibler divergence. In absence of
any other knowledge, we assume that q(ar), q(7r) and g(h)
are degenerate distributions and that the blur is non-negative
and its coefficients add up to one.

We now present how inference on q(Z;,s,;) and q(h) is
performed.

q(Z~, S+)

A. Obtaining q(Z~;, S~:)
Using the Kullback-Leibler criterion and the mean field
approximation in (9), we have

'y'i’s'yi)

(10)

- 1 -
A(TryirSyi) = z exp <lnp(yy\h, Xy Swﬁv»q(@i
x N (Z:]0, a;l)ﬂ?"’(l — ),
where Z is the partition function, § € @, and ®y denotes
© with 6 removed. To compute the explicit expression for
the above posterior we separate the derivations for q(s,;) and
q(Z+i|s+;) obtaining
1

—_— 11
T an

Wyi = q(sy; =1) =

where
Ty

-Inay

7,:1 1:1
o = (55 = 1) B

1 B, r
) In(p,) + 2p’y (h (yy — Zk-;é
where h; denotes the ith column of H and
=6 [ ? +as,

with ||h|2 = hlh;, Vi, since spatially invariant blur is
assumed.

We now calculate the conditional distributions q(Z~;|s~:)
from (10). It can be shown that they are both Gaussians of the
form

—Ing(sy; =0)=1In 1

b)) (12)

(13)

A(Zril sy = 0) = N(fvi|07a§1), (14)
Q(Erilsyi = 1) = N(Evil i, 05 1), (15)
where
B N
Mz = ih;r(y’y - Zk;ﬁi <5'ykx'yk>hk) (16)

2l

is the mean value of the slabs.
Finally, we can write the posterior as

A(Tryis 84i) = A(Trilsqi)d(s4i) = w(1 - )1 S
X N(i’vi|3~/ill%m3’viﬁ’;1 +(1— 572)@;1)- 17
Furthermore,
<3'yi-i"yi> = <$’Yl> = Wryilz.;» (18)

(2,000 = lsp®2> = @2 = wyi(pd,, +p3Y),  (19)

where w.;, pe., and p, have been defined in (11), (16) and
(13), respectively.

B. Obtaining q(h)

Notice that we assume a degenerate distribution on q(h),
which leads to obtaining the point estimate of h, h, as

h=argmin} | <[l yy = Hxy [* Dgcan)
— 1 — 2
=arg mﬁn Z’Y { || Y~ H<X7> H
# 3 (@ =@ I,

constrained to h; > O,Zi h; = 1. This estimation problem
can be efficiently solved using the ADMM method in [9].

(20)

C. Obtaining o(wr) and q(ar)

Finally, we proceed to estimate the parameters of the prior
model, rr and ar. We factorize q(rr) =[] q(m,) where

1 if =7
qm){ ™ =

0 elsewhere @D

and obtain 7, = arg maxlwz’i <s”>(1 - 71',),)21‘, Q=syi
o<
which produces a

1 w
= D, v = 2 (22)
We also factorize q(a) = [[, a(ay) where
1 ifa, =04y
alary) = { 0 elsewhere 23)

and obtain &, = argmax, [[; N (|0, 1), which yields

& > $Syip D Wi '
T Z <x71 ZL Weyi (N%w + pil)

IV. BLIND DECONVOLUTION ALGORITHM

(24)

The blur estimation algorithm iterates on the estimation of
each one of the unknowns from their respective distributions
given the current estimate of the rest of the unknowns which
leads to the estimation procedure summarized in Algorithm 1.

Following [6], [7], [9], we perform kernel estimation using
a multiscale approach. This allows us to obtain a good kernel
approximation at coarse scales, where it is easier to estimate it,
and provide a good starting point to finer levels by upsampling
the kernel estimated at the previous scale.



Algorithm 1 Blur estimation algorithm

Require: Filtered degraded image set yr, noise precision
Br and initial values for h?, 71'9,, ag and wgi and ugw, for
y=1...,L,i=1,...,N.
Set k= 0.
repeat
For each filter v and each image pixel ¢, update w’ji and
”];w from (11) and (16), respectively, and update <x7i>k
and <;v2i>k from (18) and (19), respectively.
Find 7TF+1 and alkfl from (22) and (24), respectively.
Find h**+! using (20).
Set k=Fk+1.
until convergence
return h = h*.

Notice that whereas this algorithm does not provide an
estimate of the image since it works on the filtered images,
not on the image itself, it provides an estimate of the blur.
Once the estimate of the blur, fl, has been obtained, a non-
blind deconvolution algorithm is used to obtain an estimate of
the original sharp image. In this paper we obtain an estimate
of the original image by solving the problem

5 N e A
%= argmin s | Bx -y 54537 Il @9

using the fast iterative method in [27], [9].

V. EXPERIMENTAL RESULTS

We have tested the proposed method on a set of 4 test
images with 6 different blur kernels. Each original image in
the upper row of Fig. 1 was convolved with each one of the
blur kernels in the lower row of Fig. 1 and Gaussian noise
of variance 10~% was added to obtain a set of 24 degraded
images.

The proposed method was compared with the BID method
in [9]. Following [9], we use the filters f; = [1,—1] and
fo = [1,—1]7 for the blur estimation problem. For the final
image reconstruction, we also use the second order derivative
filters f3 = [—1,2,—1], fs = [-1,2, =17, f5 = [1-1; —1,1].
For a fair comparison, we also use the same values for the
parameters.

The proposed algorithm is initialized as follows. Initial blur
at the lowest scale is a 3 x 3 Gaussian kernel with variance
0.5. For the rest of the scales, the kernel estimated at the
previous lower scale is upsampled by a factor v/2 in each
direction. The precision parameters 3, were set to 5000, V-,
its real value according to the noise in the image (notice
that 3, = B/||f,]|?). At each scale, p is initialized at the
current pseudo-observation yr and w.;, VVi, is drawn from
a Gaussian distribution with mean 0.5 and standard deviation
0.01, m, = 0.5, Vv, and ar is obtained from the previous
scale.

Some restored images and their corresponding blur
estimates are shown in Fig. 2. The proposed method obtains
restorations with fewer noticeable artifacts. Color images were

v . Ay
1 2 3 4 6

5

Figure 1. Original images and blur kernels. Images are 512 x 512. Blur
kernel sizes range from 13 x 13 to 23 x 23.

Table 1
PSNR AND SSIM VALUE FOR THE PROPOSED METHOD AND THE METHOD
IN [9].

kernel

1 2 3 4 5 6

Proposed 30.01 30.44 30.16 32.69 28.70 31.33
Zhou [9] 29.24 32.92 32.27 30.99 30.64 27.20
Proposed 0.885 0.890 0.897 0.928 0.871 0.904
Zhou [9] 0.899 0.920 0.927 0.927 0.917 0.861
Proposed 30.49 29.56 31.72 30.62 30.88 28.87
Zhou [9] 30.11 31.00 30.29 29.25 30.40 31.62
Proposed 0.830 0.836 0.863 0.870 0.858 0.844
Zhou [9] 0.863 0.867 0.862 0.865 0.870 0.874
Proposed 29.63 26.52 32.53 30.04 30.38 28.90
Zhou [9] 30.77 29.70 31.03 30.18 29.52 30.18
Proposed 0.862 0.769 0.909 0.893 0.892 0.884
Zhou [9] 0.899 0.891 0.905 0.908 0.896 0.895
Proposed 31.38 31.05 32.46 31.35 30.46 29.04
Zhou [9] 30.08 29.96 30.60 30.15 29.48 30.44
Proposed 0.807 0.800 0.821 0.810 0.805 0.789
Zhou [9] 0.806 0.803 0.812 0.817 0.807 0.807

image measure method

1 PSNR

SSIM

2 PSNR

SSIM

3 PSNR

SSIM

4 PSNR

SSIM

obtained by composing the deconvolved Y band with the
degraded Cb and Cr bands. Numerical PSNR and SSIM values
for the (Y band) of the whole set of images are presented in
Table 1. The data suggest that the proposed method performs
better than the method in [9] for most of the images and
blur kernels tested, providing higher PSNR and similar SSIM
values. However, as in many other BID methods, good results
depend on a good blur estimation at each scale and small
variations or a poor estimation at a lower scale may ruin
the final result. The proposed method which needs about 400
seconds to run on an i7-5500U CPU @ 2.40GHz with 16GB
RAM, is slower than the method in [9] which needs about 50
seconds. The reason is that the image update in Eq. (18) is
performed pixelwise, preventing the use of the FFT to speed
up the computations and that the method in [9] does not
automatically estimate the parameters so several runs may be
needed to adjust the method’s parameters.

Figure 3a shows a real blurred and noisy image borrowed
from [28]. Noticeable artifacts appear on the deconvolved
image with the method in [9] (Fig. 3b), while the result by
the proposed method, depicted in Fig. 3c, is sharper, less noisy
and presents fewer artifacts. The estimated PSF (see the inset)
is more accurate and not as noisy as the one obtained with the
method in [9].



Figure 2. Selected images for visual comparison. First row, degraded images;
second row, restored with the proposed method; third row, restored with the
method in [9]. The images are best viewed on the screen and zooming in.

(@) b ©

Figure 3. A real example. (a) Blurred and noisy image. (b) Result with the
method in [9]. (c) Result with the proposed method.

VI. CONCLUSION

We have presented a new BID method formulated in the
filter space. The novelty of the proposed model lies in the
introduction of the spike-and-slab prior on the high-pass
filtered image. A convenient reparametrization of the spike-
and-slab prior makes VB inference possible and a sensible
factorization provides a better approximation of the posterior.
This leads to an efficient algorithm that accurately estimates
the blur kernel due to the ability of such priors to shrink
irrelevant information. All the prior model parameters are
estimated along with the blur within the VB framework.
Automatic estimation of the noise parameter, as well as the use
of other hyperprior distributions on the parameters, is under
study. Empirical experimentation provides sufficient proof of
the competitiveness of the proposed method.
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