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ABSTRACT

Passive Millimeter Wave Images currently used to detect hid-
den threats suffer from low resolution, blur, and a very low
signal-to-noise-ratio. These shortcomings render threat de-
tection, both visual and automatic, very challenging. Fur-
thermore, due to the presence of very severe noise, most of
the blind image restoration methods fail to recover the sys-
tem blurring kernel from a single image. In this paper we
propose a robust Bayesian multiframe blind image deconvo-
lution method that approximates the posterior distribution of
the blur by a Dirichlet distribution. We show that this ap-
proach naturally incorporates the non-negativity and normal-
ization constraints for the blur and cope well with the image
noise. The performance of the proposed method is tested on
both synthetic and real images.

Index Terms— passive millimeter wave imaging, blind
image deconvolution, variational Dirichlet

1. INTRODUCTION

Every object with a non-zero absolute temperature emits mil-
limeter waves, that is, waves in the range of the electromag-
netic spectrum from 30 to 300 GHz which corresponds to
wavelengths between 10 and 1 mm. A Passive Millimeter
Wave (PMMW) image is formed by detecting the millimeter
waves emitted from the objects in a scene. Clothing is trans-
parent to millimeter-waves while many other objects block
millimeter waves. Therefore, PMMW images (PMMWTI) are
widely used to detect objects concealed under clothing.
PMMWTI are faced with a number of problems: low spa-
tial resolution: (i) each image is around 200 x 60 pixels
with the pixel size measured in centimeters due to the work-
ing wavelength; (ii) an extremely low signal-to-noise ratio
(SNR); (iii) a low contrast due to the passive radiometry, (iv)
and the presence of blur. It is not possible to precisely cali-
brate the system to avoid blur due to the previously mentioned
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problems. Due to the low quality of the images, automatic
threat detection systems perform poorly and concealed ob-
jects must be detected by a human operator [1].

Denoising techniques have been applied to PMMWTI us-
ing adaptive sparse representations [2], non-local mean [3],
BM3D transform domain collaborative filtering [4] and adap-
tive manifolds [5]; to the best of our knowledge, however,
there are no published results on PMMWI deconvolution.
Blind Image Deconvolution (BID), image deconvolution in
the present of an unknown blur, although it has been exten-
sively studied (see [6—18]) it is still an open problem [19].
BID on PMMWIs usually fails to recover the blurring kernel
from a single image due to the severe noise. We postulate that
multiframe blind image deconvolution methods (see [20-22]
and references therein) can be used to estimate the system
blur, that can be used to restore the observed images, obtain-
ing sharper images which can then be used to improve the
performance of threat detection systems. Note that most mul-
tiframe methods assume multiple observations of the same
scene with different blurs. However, our PMMW system cap-
tures different images that undergo the same blur degradation.

In this paper we extend the BID method in [18] to pro-
pose a robust Bayesian multiframe blind image deconvolution
method that approximates the posterior distribution of the blur
by a Dirichlet distribution. We show that this approach natu-
rally incorporates the non-negativity and normalization con-
strains for the blur and cope well with the image noise.

The paper is organized as follows. In section 2 we model
the acquisition system and introduce the utilized framework.
In section 3 we adapt the variational Dirichlet formulation to
blur estimation in [18] to our multiframe problem. Once the
blur is estimated, it can be used in a non-blind deconvolution
algorithm to estimate the restored images. In section 4, the
proposed methodology is tested both on synthetic and real
images. Finally, section 6 concludes the paper.

2. PROBLEM FORMULATION

Let us assume that we have access to N images captured by a
single PWMMI system. Each one of the observed (degraded)



images y; can be modeled as
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where x; is the original (unknown) image, H the convolution
matrix obtained from the system blur kernel h, and n; the
assumed zero-mean Gaussian white noise with variance o2.
Note that since all images are captured by the same system,
we can assume that all observations share the same blur and
noise variance.

Our objective is to estimate the blur kernel h that charac-
terizes the system as well as the images x; to better identify
any hidden object. Since there is an infinite number of pairs
of kernels and images that match the model in Eq. (1), con-
straints (prior knowledge) on x; and h must be added. A com-
mon way to solve the estimation problem (see [6-9,11,12]) is
to alternatively solve the optimization on the image and blur.
Recent published papers ( [14-16, 18] for instance), however,
have shown that using gradient images leads to better kernel
estimation. Hence, in this work we formulate the blur esti-
mation process in the filter space and the estimation of the IV
images in the image space leading to
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where k denotes iteration index, H* and Xf“ are the con-
volution matrices formed by h* and x*!, respectively,
V,-Xf“, for © = 1,2, are the matrices obtained from the
horizontal (¢ = 1) and vertical (¢ = 2) gradient of the image
xf“, Ry, and Ry, are regularization functions, and A\x > 0
and A;, > 0 are the regularization parameters controlling the
trade-off between the data fidelity and regularization terms.

For the estimation of each one of the restored images from
Eq. (2) we use the Fast Nondimensional Gaussianity Measure
method proposed in [18], that combines fast convergence and
good restoration results.

3. VARIATIONAL DIRICHLET

In this section we aim at obtaining the estimation of the
blur in Eq. (3) with constraints in Eq. (4) assuming that
Rn(h) = ||h|%2. From a Bayesian point of view, Eq. (3)
can be viewed as the Maximum a posteriori (MAP) so-
lution for the Gaussian conditional probability p(y|h) o
exp(— Y, ZiﬁiHVinh — V.y:il|3) and the blur prior

p(h) o exp(—52z ||h[[3), with Ay, = 02 /07. A shortcoming
h

of this approach is that the constraints in Eq. (4) cannot be
integrated into the MAP formulation.

In this paper we apply the variational approach to approx-
imate the solution in Eq. (3) by a Dirichlet distribution that
is the closest one, in the Kullback-Leibler (KL) divergence
sense, to the posterior distribution of the blur given the obser-
vation p(hly). The Dirichlet probability density function is
defined as (see p. 261 in [23]),
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where o« = {a(1),a(1),...,a(K)}, with K the number of
elements of the kernel, and B(«), the so called multinomial
Beta function, with form
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with I" denoting the gamma function and S, = Zjil a(y).
Note that the support of the Dirichlet distribution is h, h(j) €
(0,1) and ZK:1 h(j) = 1, and the expected value for the
kernel is £ [hf = a/S,. Hence, the use of the Dirichlet dis-
tribution allows us to approximate p(h|y) by a distribution
that incorporates the constraints in Eq. (4) without explicitly
including them into the problem formulation.
Then, we aim at finding the Dirichlet distribution

¢a(h) = argmin K'L(ga(h), p(hly)),
or, equivalently, finding & satisfying
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and a > [b should be understood as « having all its compo-
nents greater or equal to [b. Although, theoretically, c > 0 is
adequate, in practice, we need a small lower bound (b for o
to avoid numerical instability.



Let us now show the form of each term in Eq. (5). As
shown in [23], the negentropy term has the form
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where ¢ = I'"/T" is the digamma function. Making use of the
expectation E,_ n)[h] = a/S, and covariance matrix Yo,
for Dirichlet distributions, see [23], we can easily obtain
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where A g is the vector formed with the diagonal elements of
Aie,Ay(i) = A(i,1),i=1,2,... K.

We note that, since the equality constraint in Eq. (4) is en-
forced by the used approximation, the problem in Eq. (5) can
be efficiently solved by the gradient projection method [24],
with the optimizations performed in [18] for a faster conver-
gence.

Unfortunately, since the signal-to-noise ratio is extremely
low for the PMMWI, the direct kernel estimation does not
usually provide useful kernels even in this multiframe frame-
work, especially when the blur has a large support. To alle-
viate this problem, a multiscale scheme [10] is applied in the
kernel estimation step. First, the observed images are down-
sampled and a kernel is estimated from them at the coarsest
level. Since the noise is reduced by the downsampling pro-
cess and the blur size is much smaller, the kernel is better
estimated. Then, for the next scale, we use an upsampled ver-
sion of the kernel as a good initial point for the BID estima-
tion and repeat the process up to the finest level. At this level,
the image has full resolution and the kernel is better estimated
since the initial guess is closer to the real blur.

Once the blur has been correctly estimated we can use
a non-blind image deconvolution method to reconstruct each
one of the images taken by the system. In this work we
use the Fast Nondimensional Gaussianity Measure restoration
method proposed in [18], the same method used for kernel es-
timation.

4. EXPERIMENTAL RESULTS

The proposed multiframe image deconvolution method has
been tested on both synthetic and real images. To generate a
set of synthetic PMMWTIs, we used anthropomorphic silhou-
ettes as 2D models. The size of each image is 60 x 120 pixels
with a spatial resolution of 2 cm/pixel. Each pixel gray level
in the model corresponds to its absolute temperature. Then,
a PMMWI is obtained using Planck’s law. Figure 1 shows
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Fig. 1. Original images from the synthetic image database.
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Fig. 2. (a), (c) and (d) synthetic degraded images and real blur
kernel. (b), (d) and (f) their corresponding restored images
and kernels using the whole set of images.

examples of generated images, simulating a person with con-
cealed objects. Each image is convolved with an Airy point
spread function [25] to take into account the diffraction of the
PMMW imaging system. Its parameters were set to 60cm
aperture diameter of the lens and 5m for the distance to the
object (silhouette).

We simulated three different blur scenarios. The first one
considers that the image is in focus, that is, no blur other than
the diffraction effect is considered; the other two scenarios
also add Gaussian blur with standard deviation 1.5 and 2.5, re-
spectively. For each scenario, we simulated a set of 36 blurred
images with Gaussian noise of SNR 10dB to simulate the in-
ternal noise of a PMMW Camera. This noise is similar to the
one found in real images [26].

Starting from a 3 x 3 Gaussian kernel with variance 0.25 at
the coarsest scale and an upsampling factor of /2 , the multi-
scale kernel estimation method was run until the relative vari-
ation of the cost function was less than 10~° or a maximum
of 20 iterations was reached. The blur regularization param-
eter \p, that controls kernel smoothness and greatly depends
on the noise and the size of the image, was set to 100 for the
finest level and updated accordingly for other image sizes on
the multi-scale scheme. The image regularization parameter,
Ax, controls the noise in the restoration. The larger Ay is,
the smoother the restoration will be and smaller the edge in-
formation for the blur estimation process we have. We noted
that, for the kernel estimation process, it is better to have a
smooth image than a noisy one so the high value A\x = 0.01
is selected.

Figure 2 shows an example of degraded and restored im-
ages, as well as the three real and estimated blurs. From the
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Fig. 3. Estimated kernels using different numbers of images.
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Fig. 4. Example of real images in the database. Upper row:
observed images. Lower row: restored images. With a con-
cealed object (a) on the chest, (b) on the tight, (c) on the shin,
(d) on the forearm, (e) no concealed object. (f) estimated blur
kernel using the 32 images in the database.

images it is clear that the method is able to successfully re-
cover the blur and provide useful restorations to help detect
concealed objects.

We also show the estimated kernels as a function of the
number of images. We run the method on subsets of 1, 3, 9,
16, 28, and 36 randomly chosen images from the full set of
36 images. Figure 3 shows the estimated kernels for the dif-
ferent blur scenarios considered. Numerical results are shown
in Table 1. From this table it is clear that the larger the num-
ber of images, the higher the mean ISNR is, meaning that a
better blur estimate is obtained. However, using more than 28
images there is a only marginal increase in mean ISNR.

We also tested our method on a set of 32 real PMMWI
captured with the same camera. The dataset contains images
of different subjects with concealed objects on different body
parts (chest, arms and legs) and also contains images of sub-
jects without any hidden object. A noise variance value of 150
was estimated from background images. These images were
captured during the same session when the blurred images
were taken. The upper row of figure 4 shows an example of
the images in the database. The lower row of figure 4 shows
the corresponding restored images using the whole database
to estimate the blur kernel, shown in Fig. 4f. We note that
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Fig. 5. Restored images (upper row) and estimated blur
(lower row) when different image numbers are used for blur
estimation.

Table 1. Mean ISNR for the whole image database when dif-
ferent number of images is used for the blur kernel estimation.
Number of images

blur 1 3 9 16 28 36
noblur | -092 0.73 433 6.89 746 17.72
02=15| 269 363 446 412 450 4.56
02=25| 290 276 3.13 3.18 327 3.27

the method successfully removed the noise from the images
which are now crisp. The concealed objects are now much
more clearly visible. The obtained blur resembles the blur
obtained from the synthetic images which validates the pro-
posed approach. We run the method on different subsets of
randomly chosen images. Looking at the obtained blur ker-
nels (see Fig. 5) we can see that not much improvement is
obtained when more than 20 images are used.
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6. CONCLUSIONS

We have presented a multiframe blind image deconvolution
method able to estimate the blur kernel in PMMWI. The
proposed variational Dirichlet methodology approximates the
posterior distribution of the blur by a Dirichlet distribution.
The non-negativity and normalization blur constraints are in-
herent properties of the Dirichlet distribution and, hence, they
are naturally imposed to the blur. Experiments show that the
proposed method estimates the blur precisely even when the
noise is very severe. Using the proposed restoration method
in combination with classification techniques will improve
the performance of PMMW!I detection systems.
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