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Chihuahua, México Granada, Spain Evanston, IL, USA

al116148@alumnos.uacj.mx {mataran, jmd, rms}@decsai.ugr.es aggk@eecs.northwestern.edu

ABSTRACT

In this paper a new combination of image priors is introduced and
applied to Bayesian image restoration. Total Variation (TV) image
prior preserves edge structure while imposing smoothness on the so-
lutions. However, it does not perform well in textured areas. To
alleviate this problem we propose to combine TV with the Poisson
Singular Integral (PSI) image prior, which is able to preserve image
textures. The proposed method utilizes a bound for the TV image
model based on the majorization-minimization principle, and per-
forms maximum a posteriori Bayesian inference. In the experimen-
tal section the proposed approach is tested on synthetically degraded
images with different levels of spatial activity and areas with differ-
ent types of texture. Since the proposed method depends on a set of
parameters, an analysis, about their impact on the final restorations,
is carried out.

Index Terms— Deblurring, Bayesian image restoration, Total
Variation, Poisson Singular Integral

1. INTRODUCTION

When we take a picture, we want a detailed representation of the
scene, but very often the observed image is degraded. The degrada-
tion is usually caused by movement during the recording process or
because the scene is out of focus. Image deconvolution is an impor-
tant task in image processing. Its goal is to recover or estimate the
original image x from a blurred and noisy obervation y. The image
degradation model is a convolution between the original image and
the known blurring operator H. It can be expressed as

y = Hx + n, (1)

where n is Gaussian additive white noise with zero mean and vari-
ance β−1.

Nowadays, different approaches try to solve this inverse prob-
lem. Methods based on Wavelets and Curvelets, capture and pre-
serve sharp features in the image, and combined with threshold or
shrinkage rules provide good results [1, 2].

Models based on the Bayesian paradigm provide solution to
problems like blind deconvolution [3], space-variant deblurring [4],
camera shake [5] and light field sensing [6]. Many of the proposed
methods utilize a Total Variation (TV) image prior [7].

This research was supported by CONACYT, the Spanish Ministry of
Economy and Competitiveness under project TIN2010-15137, the European
Regional Development Fund (FEDER), the University of Granada under CEI
Biotic project CEI2013-MP-14 and, in part by the US Department of Energy
grant DE-NA0000457.

Total Variation preserves object boundaries (edges) but often
eliminates image texture, because TV restricts the space of solutions
to the space BV (R2) of functions of bounded variation; however,
most natural images do not exactly belong to this space [8]. The tex-
ture in an image plays an important role in visual quality and it is not
well modeled in such a space.

Carasso in [8] formulates the image restoration problem in Lip-
chitz spaces where a broader class of images can be accommodated.
He proposes a new approach to recover the texture in images. The
central idea is the implementation of the Poisson Singular Integral
(PSI), which recovers the texture where the TV fails. PSI is also uti-
lized in [9], where its authors propose a model which combines PSI
and curvelet-type decomposition space semi-norm as regularizer.

The work presented by Chen et al. [10] proposes the use of
texture-preserving image deblurring method. The authors adopt a
two-step non-iterative processing procedure which first uses regular-
ization in the frequency domain to remove the noise, and then uti-
lizes a modified non-local means filter to reduce the leaked colored
noise in order to obtain a good texture-preserving deblurred image.

In this paper, we propose a novel algorithm for image decon-
volution, using a prior model combination (TV and PSI) in order
to impose different properties on the restored image. The method
produces restorations with edges and textures preserved, high PSNR
and good visual quality. The paper is organized as follows. In sec-
tion 2, the Bayesian modeling of the problem is presented. Section
3 discusses the inference procedure and proposes an algorithm to re-
store the images. Section 4 contains the experimental section and,
finally, section 5 concludes the paper.

2. BAYESIAN MODELING

The Bayesian paradigm is one of the most popular tool in image
restoration (see [11] and references therein). The observation y and
the original image x are treated as stochastic variables, and an infer-
ence process using Bayes’ rule allows to obtain the restored image.

2.1. Observation Model

The degradation model in Eq. (1) provides the conditional probabil-
ity distribution:

p(y|x, β) ∝ exp(−β
2
‖y −Hx‖2). (2)

EUSIPCO 2013 1569744251

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2.2. Image Model

In this paper we use a prior model combination, in order to ensure
different properties of the restored image are presented [12]. The TV
[11] prior has the advantage of preserving the edge structure while
imposing smoothness on the solution. It is defined as

p1(x|α1) ∝ exp(−α1TV(x)), (3)

where TV(x) =
∑P
i=1

√
∆h
i (x)2 + ∆v

i (x)2 with the operators
∆h
i (x) and ∆v

i (x) corresponding to the horizontal and vertical first
order differences at pixel i, respectively, and P is the image size.
However, this model does not work well in textured areas. To allevi-
ate this problem, we combine TV with the Poisson Singular Integral
(PSI) [8] filter which preserves textures. The PSI filter is defined in
the Fourier domain for each t > 0 as

z(ξ, ν, t) =

(
t+

4e−tρ − e−2tρ − 3

2ρ

)1/2

, (4)

where ξ, ν are the coordinates in Fourier domain and ρ =
√
ξ2 + ν2.

We denote by Z the convolution matrix associated to filter z in the
spatial domain, and then define the second prior model as

p2(x|α2) ∝ exp(−α2

2
‖Zx‖2). (5)

Figure 1 shows a set of realizations of the PSI prior model with vari-
ance 1, for different t values. As it can be observed t controls the
smoothness of the texture. As t changes so does the texture granu-
larity (notice the log scale).

Combining both models in Eq. (3) and (5), the prior distribution
is given by

p(x|α1, α2) ∝ exp(−α1TV(x)− α2

2
‖Zx‖2). (6)

3. BAYESIAN INFERENCE

The restored image sought after is the Maximum a Posteriori (MAP)

x̂ = arg max
x

p(x|y, β, α1, α2)

= arg max
x

p(y|x, β)p(x|α1, α2), (7)

which is obtained by minimizing

L(x) =
β

2
‖y −Hx‖2 + α1TV(x) +

α2

2
‖Zx‖2. (8)

Due to use of the TV image prior, we need to utilize a majorization-
minimization procedure [13]. Based on the average inequality [11],
we have

TV(x) ≤ 1

2

P∑
i=1

∆h
i (x)2 + ∆v

i (x)2 + ui√
ui

=
1

2
M(x,u). (9)

We then minimize

L̄(x) =
β

2
‖y −Hx‖2 +

α1

2
M(x,u) +

α2

2
‖Zx‖2. (10)

This procedure introduces an additional parameter set u = (u1, u2,
. . . , uP ), calculated as (see [11] for details)

ui = ∆h
i (x)2 + ∆v

i (x)2. (11)

(a) t=10−1 (b) t=10−2

(c) t=10−4 (d) t=10−6

Fig. 1. Realizations of the prior model in Eq. (5) for different values
of t.

Then the MAP estimator, x̂, is obtained as the solution of the linear
equation system

Ax = βHTy, (12)

where

A = βHTH+α1((∆h)TW∆h+(∆v)TW∆v)+α2Z
TZ, (13)

and ∆h and ∆v are the convolution matrices associated with hor-
izontal and vertical gradients, respectively, and W = diag( 1√

ui
).

We solve this system utilizing a conjugate gradient method. Since
the estimation of x and u are coupled, we have the following itera-
tive algorithm that alternatively estimates x and u until convergence.

Algorithm 1 Proposed Restoration Algorithm

Require: An initial estimate of the original image, x0

Set k = 0
repeat

1. Set uki = ∆h
i (xk)2 + ∆v

i (xk)2 for i = 1, . . . , P .
2. Compute Ak using the {uki }i=1,...,P in Eq. (13).
3. Set xk+1 as the solution of Akx = βHTy.
4. Set k = k + 1.

until ‖xk − xk−1‖2/‖xk−1‖2 < tol

4. EXPERIMENTS AND RESULTS

We tested the proposed algorithm on three different images,on three
different images, Cameraman, Barbara, and Baboon. We chose
these test images because they have different levels of spatial ac-
tivity and areas with different types of texture. The images were
synthetically degraded following the observation model in Eq. (2) by
normalization to [0, 1] interval, blurring each original image with a
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Fig. 2. PSNR evolution with different values of λ1 and λ2 for the
Barbara image. (a) Degradation with a SNR of 34 dB, (b) Degrada-
tion with a SNR of 24 dB.

Gaussian blur with support 21×21 and standard deviation 1.5. Zero
mean Gaussian noise with variance σ2

1 = 10−4 and σ2
2 = 10−3 was

added to blurred images to obtain two set of degraded images with a
SNR of about 34 dB and 24 dB, respectively.

To obtain the restored images, we run Algorithm 1 starting from
the degraded image as initial estimate of the original image, that
is, x0 = y and using tol = 10−4 in the stopping criterion. The
proposed method depends on a set of parameters, which need to be
set to obtain the best performance. The experiments have been run
on an Intel(R) Core(TM) i5 2.4 GHz processor.

The PSI prior in Eq. (5) depends on the parameter t that controls
the texture preservation. We run experiments to test the influence of
this parameter on the restored images. We changed the parameter t
in the range −6 ≤ log t ≤ −1, following [8], and found that the
difference on PSNR obtained with different values for the parameter
twas low. This was a surprising result since the value of t conditions
the shape of the prior model and it was supposed to preserve different
textures on the image. Using a single value of t for the whole image
is very likely not optimal and changing it locally will better adapt
the algorithm to the different textures of the image. In this paper,
however, we fixed t = 0.1 as suggested in [8].

We searched a set of values for the parameters that control the
prior and degradation models as follows. First, notice that Eq. (10)
can be written as

L̄(x) = λ‖y −Hx‖2 + λ1M(x,u) + λ2‖Zx‖2, (14)

with λ = (1− λ1 − λ2),

λ1 =
α1

β + α1 + α2
and λ2 =

α2

β + α1 + α2
. (15)

In these equations, λ, λ1 and λ2 take values in the interval [0, 1) and
satisfy λ+ λ1 + λ2 = 1. Thus, λ, λ1 and λ2 represent the influence

Table 1. Numerical results for the test images.
Cameraman

SNR=24.44 dB, PSNR=22.81 dB SNR=34.44 dB, PSNR=23.62 dB

Model Param PSNR Time (s) Model Param PSNR Time (s)
λ1 λ2 λ1 λ2

TV+PSI 10−2 10−7 24.93 11 TV+PSI 10−3 10−7 26.61 7
TV 10−2 0 24.93 11 TV 10−3 0 26.61 7
PSI 0 10−1 24.20 1 PSI 0 10−2 25.90 1

LOG 25.26 13 LOG 26.25 11
Barbara

SNR=24.11 dB, PSNR=23.01 dB SNR=34.11 dB, PSNR=23.88 dB

Model Param PSNR Time (s) Model Param PSNR Time (s)
λ1 λ2 λ1 λ2

TV+PSI 10−2 10−4 24.03 45 TV+PSI 10−4 10−1 24.65 4
TV 10−2 0 24.03 41 TV 10−3 0 24.59 12
PSI 0 10−1 23.88 2 PSI 0 10−2 24.60 4

LOG 24.09 44 LOG 24.42 41
Baboon

SNR=24.56 dB, PSNR=21.25 dB SNR=34.56 dB, PSNR=21.80 dB

Model Param PSNR Time (s) Model Param PSNR Time (s)
λ1 λ2 λ1 λ2

TV+PSI 10−3 0.2 22.27 12 TV+PSI 10−7 10−1 23.33 2
TV 10−3 0 21.88 29 TV 10−4 0 23.11 8
PSI 0 10−1 22.02 2 PSI 0 10−2 23.33 4

LOG 22.10 43 LOG 23.21 32

on the restored image of the observed data, the TV, and the PSI mod-
els, respectively. Notice that selecting λ1 and λ2 in Eq. (14) is easier
and more intuitive than selecting β, α1 and α2 in Eq. (10). We per-
formed a search on this range by moving λ1 and λ2 in the set of val-
ues [0, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4], and
as we indicated above setting λ to 1 − λ1 − λ2. We note that for
values of λ1 or λ2 larger than 0.4 the quality of the restored image
reduces drastically so we did not consider them in our experiments.
In Fig. 2 we present the evolution of the PSNR as a function of λ1

and λ2 for the Barbara image for the two noise degradations consid-
ered. In both cases, the shape of the curve is similar. We note that
the value of the PSNR is quite similar around this maximum, which
means that the method is not very sensitive to different values of the
parameters λ1 and λ2. This behavior was also observed on the rest
of the test images so it confirms that it is not needed to select the
parameters with a high precision to obtain good restorations.

However, we found significant differences on the values of the
parameters that achieve the maximum PSNR for the different im-
ages. The values of the parameters, the computational time and the
value of the PSNR for the observed and restored images are summa-
rized in Table 1. This table also includes, for comparison purposes,
the figures of merit for the recently proposed log prior model in [3]
(LOG). Although, the method in [3] was formulated as a blind de-
convolution method, in this paper, we assume that the blur and the
noise variance are known. We can extract some conclusions from
those values. First, as the noise increases, higher reliance on prior
information is needed and, hence, the values of the parameters λ1

and λ2 increase. Second, the relation of the importance of the PSI
and TV models highly depend on the contents of the image. So, if
the image presents a low level of detail, as it happens in the cam-
eraman image, the restoration method prefers smooth restorations
and the maximum value for the PSNR is obtained when λ2 is equal
to zero, giving control of the smoothness of the solution to the TV
prior model. If the image also presents high level of noise, slightly
better results are obtained by the LOG method, because it better con-
trols the high noise. However, if the image contains a very high level
of detail, as is the case with the Baboon image, better results are
obtained if the TV prior influence is almost neglected by setting the

3
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Fig. 3. Original Barbara image.

value of λ1 very close to zero and leaving the control of the noise and
texture preservation to the PSI prior model. This is expected since
the TV prior tends to smooth out the small details in the image. Note
however that, as the noise increases, including a small contribution
by the TV prior provides better results since the PSI prior cannot dif-
ferentiate between highly detailed textures and noise [9]. In images
with a combination of detailed and smooth regions, a combination of
both prior models provides the best result for the proposed method.
This is the case with the Barbara image that reaches it maximum
PSNR when λ1 and λ2 are both greater than zero.

For visual evaluation of the results, Fig. 3 shows the original
Barbara image and Fig. 4 shows the observed images for different
noise levels, the restorations with the proposed method using dif-
ferent values for the parameters λ1 and λ2, and the restoration with
the LOG method. Although all restored images present a high qual-
ity, the image obtained using a combination of the TV and the PSI
models (Figs. 4i and 4j) show a higher visual quality and better pre-
serve textures in areas as the handkerchief and the tablecloth while
controlling noise, as can seen in the details in Fig. 5. The image
obtained using only the TV prior, that is, using λ2 = 0 (Figs. 4e
and 4f) and the LOG method (Figs. 4g and 4h) look flat and most of
the texture has been lost while the images using only the PSI prior
(λ1 = 0), depicted in Figs. 4c and 4d, are noisy. This agrees with the
numerical results in Table 1. Notice that when the noise is higher,
more contribution of the TV prior was needed in order to eliminate
noise and, thus, texture in the restored image, as the handkerchief
and the trousers, could not be successfully recovered.

5. CONCLUSIONS

In this paper we present a novel methodology to restore blurred
images with noise. The combination of TV and PSI prior models
provides better visual quality and PSNR than utilizing both models
alone. The model recovers fine-scale details (texture) in cases were
TV completely fails and our experimental results confirm this. The
proposed method shows good performance on images with a com-
bination of detailed and smooth regions, and textured images with
high noise where the combination of TV and PSI controls the noise
while preserving the details. The proposed method depends on a se-
ries of parameter whose value needs to be fixed or estimated from the
available data. Although in this paper those parameters are selected
to obtain the best results, in future works, we aim at automatically
estimate the parameters together with the restored image.

(a) Observation with a SNR of 24 dB. (b) Observation with a SNR of 34 dB.

(c) Restoration of (a): only PSI model. (d) Restoration of (b): only PSI model.

(e) Restoration of (a): only TV model. (f) Restoration of (b): only TV model.

(g) Restoration of (a): LOG method. (h) Restoration of (b): LOG method.

(i) Restoration of (a): TV+PSI models. (j) Restoration of (b): TV+PSI models.

Fig. 4. Experimental results for the Barbara image.
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(a) Original. (b) Observation with a SNR of 34 dB.

(c) Restoration of (b): only TV model. (d) Restoration of (b): only PSI model.

(e) Restoration of (b): LOG method. (f) Restoration of (b): TV+PSI models.

Fig. 5. Details of the restorations in Fig. 4.

6. REFERENCES

[1] J.-L. Stark, F. Murtagh, and J. M. Fadili, Sparse image and
signal processing, Cambridge University, 2010.

[2] E. Shaked and O. V. Michailovich, “Deconvolution of Poisso-
nian images via iterative shrinkage,” IEEE International Symp-
posium on Biomedical Imaging: From Nano to Macro (ISBI),
pp. 1309–1312, April 2010.

[3] S. D. Babacan, R. Molina, M. N. Do, and A. K. Katsaggelos,
“Blind deconvolution with general sparse image priors,” in
European Conference on Computer Vision (ECCV), September
2012, pp. 341–355.

[4] M. Tallón, J. Mateos, S. D. Babacan, R. Molina, and A. K. Kat-
saggelos, “Space-variant kernel deconvolution and denoising
in dual exposure problem,” Information Fusion, vol. 14, no. 4,
pp. 396–409, October 2013.

[5] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Scholkopf,
“Fast removal of non-uniform camera shake,” in International
Conference on Computer Vision (ICCV), November 2011, pp.
463–470.

[6] S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz, R. Molina, and
A. K. Katsaggelos, “Compressive light field sensing,” IEEE
Transactions on Image Processing, vol. 21, no. 12, pp. 4746–
4757, December 2012.

[7] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total varia-
tion based noise removal algorithms,” Physica D, pp. 259–268,
November 1992.

[8] A. S. Carasso, “Singular integrals, image smoothness, and the
recovery of texture in image deblurring,” SIAM Journal on
Applied Mathematics, vol. 64, no. 5, pp. 1749–1774, June-July
2004.

[9] L. Huang, L. Xiao, Z. Wei, and Z. Zhang, “Variational image
restoration based on Poisson singular integral and curvelet-type
decomposition space regularization,” in IEEE International
Conference on Image Processing (ICIP), September 2011, pp.
685–688.

[10] F. Chen, X. Huang, and W. Chen, “Texture-preserving image
deblurring,” IEEE Signal Processing Letters, vol. 17, no. 12,
pp. 1018–1021, December 2010.

[11] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Vari-
ational Bayesian blind deconvolution using a total variation
prior,” IEEE Transactions on Image Processing, vol. 18, no.
1, pp. 12–26, January 2009.

[12] M. Vega, J. Mateos, R. Molina, and A. K. Katsaggelos, “As-
tronomical image restoration using variational methods and
model combination,” Statistical Methodology, vol. 9, no. 1-2,
pp. 19–31, January 2012.

[13] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Parameter
estimation in TV image restoration using variational distribu-
tion approximation,” IEEE Transactions on Image Processing,
vol. 17, no. 3, pp. 326–339, March 2008.

5


