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ABSTRACT
In this paper we propose a space-variant kernel estimation method
for effective deconvolution when combining different exposure im-
age pairs. The proposed algorithm can be applied to images blurred
by both camera and object motion in an efficient manner. The
blur in the long exposure shot is mainly caused by camera shake
or object motion, and the noise of the underexposed image is in-
troduced by the gain factor applied to the sensor when the ISO is
set to a high value. The main idea in this work is to incorporate
a spatially-varying deblurring/denoising which is applied to image
patches. The method exploits kernel estimation and error measures
to choose between denoising and deblurring each patch. In addition,
the proposed approach estimates all necessary parameters automat-
ically without user supervision.

1. INTRODUCTION

The blur caused by camera shake and object motion is still a chal-
lenging problem, even more so when images are taken in dim en-
vironments. There are a number of problems that need to be ad-
dressed in single image blind deconvolution, including spatially-
varying blur, and saturated pixels in the long exposure shots. Uti-
lizing an accompanying short exposure image for the deconvolu-
tion provides valuable information that significantly improves the
restoration. Unfortunately, although this additional image contains
accurate information about image edges, it is generally contami-
nated with a high level of noise and color information might be lost.

A number of methods have been developed that use different
exposure image pairs for blind deconvolution [1–3]. Most of the
previous work assumes a space-invariant blur kernel, which is sel-
domly true in practice. This assumption could cause not enough
suppression of the blur in some regions, and might lead to signif-
icant artifacts in other image parts. Recent works attempt to over-
come this by using space-variant blur modelling and estimation [4],
or by abandoning the blur kernel estimation completely [5]. In [4],
the images are divided into patches and separate blur kernels are es-
timated for each patch. Although it is space-variant, this approach
can easily lead to blocking artifacts. Furthermore the estimated ker-
nel generally exhibits a high level of noise due to the use of noisy
observation in the kernel estimation process. In [5] a method with-
out kernel estimation is proposed. The two images are fused into a
single image by first classifying areas of the image into blurry and
sharp followed by a weighted linear combination of them.

In this paper, we propose a new method to combine a long expo-
sure blurry image with a short exposure noisy one to obtain a sharp
restoration that is both noiseless and free of blur. Firstly we divide
our input images in overlapped patches and estimate the blur kernel
in each patch. We then employ a fully-automatic procedure to esti-
mate the unknown image from the estimated kernels and the image
pair. The proposed algorithm selectively applies deconvolution or
denoising to the image patches to extract the sharp features from
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the image pair. Finally, the estimation of the overlapped patches
is combined using a windowing function to recover a blocking-free
restoration as proposed in [6]. Experimental results demonstrate
that the proposed approach provides both high quality blur and im-
age estimates even in challenging datasets.

2. PROPOSED ALGORITHM

We assume a linear and space variant degradation model, so that the
observation processes can mathematically be expressed in matrix-
vector notation as

y1 =Hx+n1 (1)
y2 = x+n2, (2)

where y1 and y2 are the Ny×Nx observed long- and short-exposure
images, respectively, represented as column vectors of size (Ny×
Nx)× 1, x the unknown original image, n1 and n2 the noise com-
ponents, and H the unknown (Ny×Nx)× (Ny×Nx) space-variant
blur matrix.

The proposed method takes as input the image pair y1, y2, the
number of patches in which the image will be divided into horizon-
tally and vertically px and py, respectively; the size of our spatially-
varying blur (hy,hx), the percentage of overlap between patches,
and the windowing function to blend the patches. The algorithm
consists of the following steps:
1. Registration of the image pair (Section 2.1)
2. Computation of the image overlapping patches (Section 2.2)
3. For each patch

(a) Kernel estimation, followed by kernel correction (Section
2.3)

(b) Deconvolution of the patch (Section 2.4)
4. Blending the restored patches to form the final image using a

windowing function (Section 2.5)
We represent the images in the YCbCr colorspace. In the decon-

volution stage, the luminance component is restored using the esti-
mated blur kernels, and finally fused with the chrominance compo-
nent of the blurred image. The steps of the algorithm are explained
in detail in the following sections.

2.1 Registration
Due to camera and object motion between the subsequent expo-
sures, as well as different exposure conditions, the image pair must
be photometrically and geometrically registered. For photometric
registration, we apply histogram equalization of the short-exposure
image to increase the brightness using the histogram of the long-
exposure image. The geometric calibration is done by extracting
features from both images using Surf [7] and matching them using
RANSAC [8]. The quality of the restoration highly depends on the
accuracy of this stage.

2.2 Computation of patches
As we have already stated, our approach to space-variant kernel
estimation is based on dividing the images in overlapping image
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patches and estimate the blur in each patch. For a given overlap-
ping fraction 0 ≤ overlap < 1 in each direction (we assume the
same overlapping in both directions for simplicity) and a number of
patches px and py in the horizontal and vertical directions, respec-
tively, the horizontal and vertical block sizes, are

blockSizez =

⌊
Nz

(1−overlap)pz +overlap

⌋
, z ∈ {x,y}. (3)

2.3 Kernel estimation
The space-variant kernel is estimated per patch using y1 and y2.
Since all following equations are applied to each patch, we use
p = (pv, pu) with 1 ≤ pv ≤ py and 1 ≤ pu ≤ px, to refer to the
specific patch (pv, pu). Thus y

p
1 refers to patch (pv, pu) of the

long-exposure observation; equivalently y
p
2 is the same patch in the

short-exposition image. The matrix Y
p
2 represents the image patch

y
p
2 written as a (Ny×Nx)× (hy× hx) convolution matrix. Finally,

hp represents the blur kernel in patch p. Values outside the bound-
aries of an image patch are filled with its neighboring patch values
when available or by replicating pixel values in the image borders.

Using Eqs. (1) and (2), the estimate ĥp of a kernel hp is found
as

ĥp = min
hp
‖ yp

1 −Y
p
2h

p ‖2, (4)

subject to the constraint 0≤ h
p
i ≤ 1 , i = 1, ...,(hx×hy).

In order to solve this constrained linear least-squares problem
we use the Matlab function lsqlin. Once the kernel has been
estimated following this procedure, we normalize it to sum up one.
Notice that because y

p
1 and y

p
2 are photometrically registered the

constraint ∑ih
p
i = 1 is generally satisfied. If that were not the case

we could always introduce that constraint.

2.3.1 Kernel correction stage

In this stage, we apply a correction to the estimated kernels in
patches with weak texture or saturated pixels, that is when there is
not enough available information for the kernel estimation. The al-
gorithm, that is detailed in Alg.1, corrects the kernel of a patch if the
difference with its neighboring kernels is higher than a threshold,
and then is replaced by the mean of the kernels of the neighboring
patches including itself. The threshold is automatically set to half
the range of all neighboring differences. An alternative procedure
for kernel correction is proposed in [4].

Algorithm 1 Proposed Kernel Correction Algorithm.
Input: The full space-variant kernel matrix with a kernel hp per
patch p
Output: The corrected space-variant kernel matrix.

1. For each kernel hp.
(a) Compute the mean kernel hp

mean as the mean of its neighbor
kernel patches including hp.

(b) Calculate di f f p = ||hp−h
p
mean||1.

2. Compute the threshold as thr = max(di f f )+min(di f f )
2 , where di f f

is the vector formed by di f f p, p = 1, ...,(px× py)

3. For each kernel hp such that di f f p > thr, replace hp by h
p
mean.

2.4 Deconvolution
After the kernel estimation and correction steps, we need to ob-
tain an accurate estimation of the image for each patch. Then we
apply deconvolution to all image pair patches. We incorporate the
Bayesian deconvolution algorithm developed in [2] with some mod-
ifications to save memory and time. We skip the details of the

deconvolution algorithm due to the lack of space and provide an
overview in the following.

The key idea in [2] consists of modelling the unknowns within
a hierarchical Bayesian formulation and develop a blind deconvo-
lution algorithm which jointly estimates the unknowing image and
blur. However the blur estimation in [2] does not provide good re-
sults in our case due to the small size of the patches that makes the
joint estimation of the image and blur unfeasible. However, since
we already estimated an accurate kernel, we casted the restoration
method in [2] to deal with the easier case of image estimation when
the blur is known. Starting from Eqs. (1) and (2), we assume that
the noises n1 and n2 in both observed images follow independent
Gaussian distributions of zero mean and variances β

−1
1 , β

−1
2 , re-

spectively, and use a TV-prior to model the prior knowledge on the
image and Gamma distributions as prior for the noise and image
model parameters. A variational approach is employed to obtain
an approximation of the posterior distribution of the restored image
and the parameters. The image estimation for each patch p is found
as

xp = Σ
p
x
(
β

p
1 (H

p)ty
p
1 +β

p
2 y

p
2
)

(5)

(Σp
x )
−1 = β

p
1 (H

p)tHp +α
p(444u)tWp444u

+α
p(444v)tWp444v +β

p
2 I), (6)

where 444u and 444v are the discrete approximations to the gradient
operator in the horizontal and vertical directions respectively, Wp

denotes the spatially varying weighting of each derivative penalty
term, and β

p
1 and β

p
2 are the inverses of the noise variance corre-

sponding to the observations yp
1 and y

p
2 , respectively. The parame-

ter estimates are found using

wp
j = (444u

j(x
p))2 +(444v

j(x
p))2 , j = 1, ...,B (7)

Wp = diag

 1√
wp

j + ε

 , j = 1, ...,B (8)

α
p =

B

2∑ j

√
wp

j

, j = 1, ...,B (9)

β
p
1 =

B
‖ yp

1 −Hpxp ‖2 (10)

β
p
2 =

B
‖ yp

2 −xp ‖2 , (11)

with B= blockSizex×blockSizey. To calculate xp in Eq. (5) and the
parameters in Eqs. (7)-(11) we use an iterative procedure. Initial-
izing xp to y

p
1 , the long exposure image patch and using ε a small

positive value to avoid division by zero, we update the parameter
using Eqs. (7)-(11) and then for those parameters we calculate a
new estimate xp utilizing Eq. (5).

The explicit computation of Σ
p
x in Eq. (6) is performed in [2]

via the conjugate gradient method. Because of the computational
cost for such an amount of patches, we employ a different proce-
dure for image estimation similar to the one proposed in [9] which,
in our case, is computationally much more efficient than conjugate
gradient. In order to solve Eq. (5) we proceed as follows. First
rewrite Eq. (5) as

(Σp
x )
−1xp = β

p
1 (H

p)ty
p
1 +β

p
2 y

p
2

and then note that at a given pixel j,

1 =

(
β

p
1 (H

p)ty
p
1 +β

p
2 y

p
2
)

j(
(Σ

p
x )−1xp

)
j

, j = 1, ...,B. (12)

1679



Multiplying both sides of Eq. (12) by xp, results in the follow-
ing iterative image update,

(xp
new) j =

(
x

p
old

)
j

×

(
β

p
1 (H

p)ty
p
1 +β

p
2 y

p
2
)

j(
β

p
1 (H

p)tHpx
p
old +α p [DtZpD]x

p
old +β

p
2 x

p
old

)
j
,

(13)

where Dt = [(444u)t ,(444v)t ], Zp =

[
Wp 0

0 Wp

]
, xp

new denotes

the new estimate of xp and x
p
old denotes the estimation of xp before

the parameters have been updated. All parameters in Eqs. (7-11)
are calculated utilizing x

p
old and used in the right hand side of Eq.

(13). We have also experimented with other deconvolution methods
such as Richardson-Lucy [10, 11] and the method in [6], but they
provided results with higher amount of ringing artifacts.

2.4.1 Object motion correction

The proposed method results in high-quality image estimates in the
case of camera shake. However, as with other deconvolution algo-
rithms, it fails to estimate the image accurately when objects are
moving in the scene. Notice that the modelling y

p
1 =Hpxp +n

p
1 ,

in case of object motion blur, is quite unrealistic because the motion
blur will very likely be variant within the patch.

In the case of object motion, the algorithm has to separate the
background pixels (which are not blurred) from the object in the
foreground. This can be achieved by using a segmentation algo-
rithm, but this is generally computationally unfeasible. In this pa-
per, we work on an image patch basis, selecting for each one of the
patches if the deconvolution algorithm or a denoised version of the
noisy patch should be used. Notice that due to the short exposure
time of y2, it is expected that this observation is not affected by mo-
tion blur. Consequently better results are expected by denoising y

p
2

than deblurring y
p
1 (in patches affected by object motion blur). Fur-

thermore if the blur estimated by the proposed method is incorrect
we can always try to only remove the noise in the second observa-
tion patch y

p
2 .

To select between deconvolving or denoising a patch, we first
compute two restorations for each patch, one using the deconvolu-
tion method described above, and the other one applying the denois-
ing method in [12] using the inverse of the value estimated in Eq.
(11) as noise variance for the patch. These restorations are denoted
by x

p
1 and x

p
2 , respectively. We then calculate two error measures

for each one of the two restorations as

error1k =‖ y
p
1 −Hpx

p
k ‖

2 (14)

error2k =‖ y
p
2 −x

p
k ‖

2,

for k = 1,2. Then, the denoised patch is selected as the patch es-
timate if both error12 and error21 are greater than errT hreshold;
otherwise, the deconvolved patch is chosen. The justification for
this decision process comes directly from the fact that in the case of
object motion, the estimated kernel contains significant errors due
to the mixing of moving and static parts and will not correctly ex-
plain the two observed images simultaneously. In this case, error12
and error21 will have large values, and therefore, the denoising re-
sult is used in these patches. Furthermore we also select the de-
noised patch when the denoising method provides low data-fit errors
(error11 > error12), but this rarely occurs in practice.

The running time for the deconvolution method, implemented
in Matlab and summarized in algorithm 2, is quite reduced, being
just 2 minutes in a 2.13 Ghz core 2 Duo laptop, with a kernel size
of 47×47, 6×6 patches and 512×512 image size.

2.5 Blending of patches
Once all patches have been estimated, in the final stage to avoid
blocking artifacts, we merge all restored patches using a windowing

Algorithm 2 Proposed Deconvolution Algorithm.

Input: y
p
1 ,y

p
2 the long- and short-exposure image patches, respec-

tively; hp the corrected kernel estimates in patch p
Output: xp the restored patch

Set xp
new = y

p
1

Do
1. Set xp

old = x
p
new

2. Find the estimation of the parameters using Eqs. (7)-(11) with
xp = x

p
old

3. Find x
p
new, the new image patch estimate using Eq. (13)

While ‖x
p
new−xp

old‖2

‖xp
old‖2 > threshold.

Set xp
1 = x

p
new, the deconvolved patch.

Obtain x
p
2 using the denoising algorithm in [12] with noise variance

(β
p
2 )
−1

Compute the error measures for xp
1 and x

p
2 using Eq.(14)

if (error12 > errT hreshold AND error21 > errT hreshold) OR
error11 > error12 then

Set xp = x
p
2

else
Set xp = x

p
1

function for each patch, winp, as follows

x=
P

∑
p

winpxp

P

∑
p

winp
l = 1 for1≤ l ≤ (Nx×Ny), (15)

with P the number of patches in the image.
We tried various windowing functions for winp (Gaussian, rect-

angular and Hann), and found that a Hann window function over
each patch, with a normalization to sum to one as proposed in [6]
and described in Eq. (15) provided the best results.

3. EXPERIMENTS

In this section we report experiments obtained using the real im-
age pairs acquired in dim environments with two different digital
cameras: an Olympus C5060WZ is used in the first experiment,
while the images in the second and third experiments were cap-
tured with a Canon EOS 400D. Results are shown in Figs. 1 and 2.
The short-exposure observations have been photometrically and ge-
ometrically registered as explained in section 2.1 before displaying
which explains the high level of noise and the blocking artifacts in
the images. We have experimented with different blur kernel sizes
and number of images patches depending on the input images. In
all cases, we use an overlap percentage of 50% and a Hann window
is used for the weights. The threshold and errT hreshold in Alg. 2
are set to 10−4 and (error11 + error22), respectively.

In the first experiment we worked with the image pair depicted
in the first row of Fig. 1 which presents a severe motion blur and
high level of noise. The exposure time for the blurred image is 1.3s
with ISO 100 and 1/100s, ISO 400 for the dim image. The number
of blocks is set to 6×6, with a kernel size of 47×47. The image in
the second column of Fig. 2, represents the strategy chosen: patches
in white represent a denoising restoration, for the rest we used our
deconvolution approach. The proposed method successfully decon-
volved and removed the noise of the input images. Note that small
details such as the letters in the cup or in the book behind the vase
are now visible.

The second experiment shows the behavior of our algorithm for
an object motion scene together with a small camera shake. The
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Figure 1: Real observed images and results of our algorithm. From left to right: observed long- and short-exposure image pair and final
restoration.
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Figure 2: Results of the experiments. Each row corresponds to the
results obtained for each experiment in Fig. 1. The column on the
left shows the obtained kernel estimation. The column on the right
depicts the result of the object motion correction. The white patches
represents patches where denoising is applied.

exposure time in the blurred image is 1/4s in the absence of com-
pensation (EV 0) and 1/15s with exposure compensation (EV -2)
for the dim image, both shots with ISO 400. Since the blur is not
so severe, we used a kernel size of 11× 11 pixels and increased
the number of blocks to 10× 10. Although the presence of noise
in the under-exposed image is lower than in the previous case, this
experiment illustrates how our algorithm detects patches where the
kernel is not accurately estimated, based on the error measures de-
tailed on section 2.4.1, due to objects motion. Note that the cyclist
and the child, both moving, are detected (see Fig. 1, 2nd row, last
column), and replaced by the denoised, sharp versions. Flat dark
patches, where no information for blur estimation is available are
also selected from the denoised version while the rest of the image
is successfully deconvolved.

The last experiment illustrates the behavior of our algorithm in
an extremely dim indoor scene, which mixes again both, motion and
camera shake blur. The exposure time in the blurred image is 1/8s
in the absence of compensation (EV 0) and 1/30s with exposure
compensation (EV -2) for the dim image, both shots with ISO 400.
Although the blur is not severe, the estimated kernel, depicted in the
last row of Fig. 2, shows that the slight camera rotation was success-
fully detected by the blur estimation process, and the restoration in
the last row of Fig. 1 demonstrates the accuracy of the proposed
method. Note that the blur was successfully removed from the im-
age and no noise from the short-exposure image (depicted Fig. 1,
last row, central image) was introduced in the restored image (see,
for instance, the area above the columns on the left hand side of the
image). In this experiment we utilized a kernel size of 21×21, and

10×10.
In all tested images the quality of the restored image is high,

providing a significant noise reduction and ghost free restoration in
all experiments.

4. CONCLUSIONS

In this paper we have proposed a method to restore blurred images
taken in dim environment with the help of a short-exposure crisp
but noisy image. The developed algorithm can be applied for both,
camera shake and object motion blur by using a space variant kernel
estimation and relying on the noisy observation. The method min-
imizes blur artifacts and noise propagation in the recovery process.
It is important to note that except for the size of the blur kernels,
number of patches and its percentage of overlap, all parameters are
estimated automatically by the proposed method. Future work in-
cludes the use of dynamic patch size.
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