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ABSTRACT

Recent research on image super-resolution (SR) has shown
that the use of perceptual losses such as feature-space loss
functions and adversarial training can greatly improve the
perceptual quality of the resulting SR output. In this paper,
we extend the use of these perceptual-focused approaches
for image SR to that of video SR. We design a 15-block resid-
ual neural network, VSRResNet, which is pre-trained on a
the traditional mean-squared-error (MSE) loss and later
fine-tuned with a feature-space loss function in an adver-
sarial setting. We show that our proposed system, VSRRes-
FeatGAN, produces super-resolved frames of much higher
perceptual quality than those provided by the MSE-based
model.

Index Terms— Video, Superresolution, Convolutional
Neuronal Networks, Generative Adversarial Networks, Per-
ceptual Loss Functions

1. INTRODUCTION

Video super-resolution, namely estimating high-resolution
(HR) frames from low-resolution (LR) input sequences, has
become one of the fundamental problems in image and
video processing. With the popularity of high-definition
display devices, such as High-definition television (HDTV),
or even Ultra-high-definition television (UHDTV) on the
market, there is an avid demand for transferring LR videos
into HR videos so that they can be displayed on high resolu-
tion TV screens, void of artifacts and noise. Such monitors
provide unprecedented details for both entertainment and
scientific applications.

Super-resolution (SR) algorithms can be divided into
two categories: model-based and learning-based algo-
rithms. Model-based approaches [1, 2, 3, 4] explicitly
model the Low Resolution (LR) frames as blurred, sub-
sampled, and noisy versions of the corresponding High
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Resolution (HR) frames. On the other hand, learning-based
algorithms use large training databases of HR and LR videos
to learn to solve the video super-resolution problem. Re-
cently, Deep Neural Networks have been the popular tool
of choice for such learning-based approach. For exam-
ple, Liao et al. [5] train a CNN to predict a high-resolution
frame from an ensemble of SR solutions obtained from
traditional reconstruction methods. Kappeler et al.[6] pro-
pose to train a Convolutional Neural Network (CNN) to
take bicubically interpolated low-resolution frames as in-
put and learn the direct mapping that reconstructs the
central high-resolution frame. Li and Wang [7] show the
benefits of residual learning in video super-resolution by
predicting only the residuals between the high-frequency
and low-frequency frame. Caballero et al. [8] jointly train
a spatial transformer network and a super-resolution net-
work to warp the videos frames to one another and benefit
from sub-pixel information. Makansi et al. [9] and Tao
et al. [10] have found that performing a joint upsampling
and motion compensation (MC) operation increases the
SR performance of the model. Liu et al. [11] propose to
construct a temporal adaptive learning-based framework,
in which a neural network is trained to learn the temporal
dependency between input frames to increase the quality
of the HR prediction.

In this paper, we introduce the use of a deep residual
neural network as the basis of our VSR framework. Increas-
ing the depth of the network allows for the training of a
more powerful SR system and removes the need for apply-
ing the computationally expensive motion-compensation
operation to the input LR frames. In addition, we develop
a perceptual loss function specifically designed to improve
the the quality of the super-resolved video.

The rest of the paper is organized as follows. In sec-
tion 2.1, we describe the deep residual architecture used
as the basis of our framework. Sections 2.2 and 2.3 jus-
tify the use of feature-based distance and adversarial loss
functions as our proposed perceptual loss model for video
super-resolution. We perform experiments to evaluate our
VSR system, the VSRResFeatGAN, which are detailed in sec-
tion 3. The results and discussions are provided in section
3.2.
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2. FROM VSRNET TO VSRRESNET WITH A COMBINED
PERCEPTUAL LOSS

Let us consider a set of high resolution and low resolution
video sequence pairs, T. We denote by x the images in the
high resolution video sequences, y is used to denote the low
resolution, interpolated images in a window around x. Our
goal is to learn a super-resolving network, fy(.), which takes
y as input and predicts x.

Our proposed architecture is based on the VSRNet
model described in [6], which consists of three convo-
lutional layers that learn a mapping from the input low-

resolution motion compensated frames to the super-resolved

central frame x. We propose major improvements over
the framework originally proposed by [6] We train a much
deeper residual architecture which outputs high-quality
reconstructed SR frames and whose input images are not
motion compensated. Furthermore, we append a com-
bined perceptual loss function to the traditional pixel-wise
Mean-Squared-Error (MSE)

Lus (% £ (v)) = Ix = fp (y) 115 M
used in [6], which we show significantly increases the over-
all quality of the super-resolved image.

2.1. Increasing the capacity with the use of residual blocks

Intuitively, better super-resolution solutions may be ob-
tained by increasing the representation power of our video
super-resolution CNN, as an increase in the representation
capability of our model results in richer final learned repre-
sentation of the latent HR frame from the input LR frames.
Indeed, current state-of-the-art NN-based architectures
for image SR are based on very deep residual neural net-
works ([12, 13]). This poses the question of whether such
increase in performance can also be observed for the video
super-resolution problem.

We modify the VSRNet model proposed in [6] by extend-
ing its architecture with fifteen residual blocks. Our pro-
posed VSRResNet architecture is shown in Figure 1. The
5x 5 and 7 x 7 convolutional kernels in VSRNet are replaced
by 3 x 3 kernels in VSRResNet. In order to keep the spatial
size of the feature maps constant across the neural network
architecture, padding is used at each convolution step. We
note here that no batch normalization ([14]) operation is
used in the residual blocks, as our experiments did not find
it to lead to an increase in performance.

2.2. Incorporating image statistics learned by discrimi-
native CNNs into the loss function

When the first CNN-based models for super-resolution
were introduced, the de facto standard loss function was
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the mean squared error between the proposed super-
resolved image and the corresponding ground truth high-
resolution image, measured in the pixel-space [6]. While
using this loss offers advantages, such as easier optimiza-
tion and favouring larger PSNR values, it has been shown to
fail to correlate with the Human Visual System (HVS) char-
acteristics [15]. Indeed, recent studies show that an image
with a high PSNR can be significantly less photo-realistic
than one with a lower PSNR (see, for example, [16, 17]).

Convolutional neural networks trained for discrimina-
tive tasks have been shown to be excellent feature extrac-
tors for tasks involving natural images. One successful deep
CNN is the VGG-16 classification model proposed in [18].
Our first perceptual loss component utilizes the activa-
tions provided by the fourth convolutional layer of VGG-16
(which we denote as VGG(.)) as the space in which we com-
pute the mean-squared-error between the predicted HR
frame and the ground truth HR frame, that is, we introduce
the term:

Ly £ (y)) = [VGG() - VGG (fp (1) I3 2

Using Eq. 2 as a component of our training loss function
forces the super-resolved frame fy(y) to be perceptually
close to the ground truth x, where perceptual distance here
is measured in the space of the image statistics learned by
the VGG-16 network.

2.3. Learning powerful VSR image priors with GANs

The second loss component we introduce forces the net-
work fy (y) to cheat a discriminator network d (which must
be learned) capable to discriminate between real and fake
SR images. This learning process can be realised with the
use of Generative Adversarial Networks (GANs) [19].

In the adversarial setting defined by GANs, a HR frame,
either the generated HR frame, noted here gy(y), or sam-
pled from the training data T, is fed to the discriminator dj,
which then outputs the probability that the input frame was
real (i.e., dy(x) = 1) or produced by gy (i.e., dyp(gg(y) = 0). In
a GAN framework, the video SR network and the discrimi-
nator are trained by solving:

I‘g?{)x V(0,¢) = Exllogdy(x)] + Ey[(1 - log(dep(ga(y)]  (3)

The ability of GANs to indirectly learn powerful im-
age priors makes them particularly attractive in the con-
text of producing images of high-perceptual quality, and
has been proved useful in various imaging problems (e.g.,
[16, 20, 21]). Therefore, our video super-resolution com-
bines the distance in feature-space and pixel-space with
a GAN-based adversarial setting, which defines our final
optimization problem to train VSRResFeatGAN:
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Fig. 1: The VSRResNet architecture. The first convolution extracts spatial information from each frame. The second con-
volution layer takes a concatenation of the extracted features across the different time steps. The following fifteen residual
blocks learn the transformation that provides the final HR solution.

é:argmin Z [aIIVGG(x)—VGG(fe(y))H%
0 (y,xeT

+ Blog(1 — d (fy () + A - a - PlIx—fyy) 113
& = max{ Exllogdy (] + Ey (1 ~log(dy (£ ()]

(@]
®)

where we fix the discriminator architecture to that used
in [16], and @ > 0 and B > 0 with a + 8 < 1 are hyper-
parameters which control the contribution of each loss
component and are determined experimentally.

3. EXPERIMENTAL RESULTS

3.1. Training Procedure

We use the 4K resolution Myanmar video dataset to train
our model. Following Kappeler et al.’s [6] approach, we use
53 of the provided 59 scenes as our training and validation
set, and use the remaining 6 scenes for testing. The low-
resolution frames are obtained from the high-resolution
frames by using MATLAB'’s imresize to downscale the frames
by a downsampling factor of 3. To match the sizes of the
input and output of our network, we bicubically interpo-
late the low resolution frames. Motion compensation on
the input frames is commonly performed in NN-based set-
tings for video SR, and its use has been investigated by
(61, [71, [9]). However, in order to save computational time
during inference and to let the neural network learn sub-
pixel motion to perform better upsampling, we choose not
to apply MC on our input video sequences. The training
dataset consists of patches pairs of 36 x 36 pixels formed by
one high-resolution patch at time ¢ and the corresponding
low-resolution patches at time t -2, t—1, ¢, t+ 1, and ¢ + 2.

Prior to training VSRResFeatGAN with Equation 4, we
pre-train our deep residual network VSRResNet using the
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Adam optimizer [22] for 100 epochs and the traditional
pixel-space mean-squared-error as our loss function. We
use an initial learning rate of 0.001, which is then divided
by 10 at the 50th and 75th epoch of the training.

To utilize the perceptual components, we fine-tune the
weights of VSRResNet for 15 epochs with the combined
loss defined in Eq 4 to obtain VSRResFeatGAN. The learn-
ing rate y for fy(y) was fixed to 107°. The discriminator d
was trained with a learning rate of y; = 107% and was pre-
trained for 5 epochs before starting the fine-tuning of the
generator. We use l,-weight decay of strength 0.0001 on the
parameters of both fg(-) and dy(-).

The a and f parameters in Equation 4, which determine
the contribution of each loss component, were set to a =
0.998 and f = 0.001. These hyper-parameters were deter-
mined experimentally through the use of a small fraction of
our training dataset.

3.2. Results and Discussion

Table 1 provides a quantitative comparison between VSR-
Net [6], VSRResNet, and VSRResFeatGAN in terms of PSNR
and SSIM.

Bicubic | VSRNet [6] | VSRResNet | VSRResFeatGAN
PSNR 31.59 34.42 35.86 28.53
SSIM | 0.8957 0.9247 0.9478 0.9216

Table 1: Average PSNR and SSIM values for the Myanmar
test sequences for a scale factor of three. The reported
PSNR for the VSRNet [6] model was obtained by testing on
amotion-compensated video sequence.

Our results in Table 1 show that training a deeper model
(the VSRResNet model) results in a significant increase in
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Fig. 2: Qualitative results of our video super-resolution system: (a) original HR frame, (b) VSRResNet, (c) model obtained
with a@ = 0.99 and B = 0, (d) model obtained by setting a« = 0 and = 0.001 in Equation 4, and (e) VSRResFeatGAN with
a =0.998 and B = 0.001 in Equation 4. The patches in the second and third rows correspond to the patches highlighted in
the correspond first row image. Results for the full test dataset are available at this url: https://goo.gl/wKe9Rx

PSNR, observing a 1.6 dB increase relative to that of the VS-
RNet model. On the other hand, the use of losses that de-
part from the traditional pixel-wise difference such as the
feature-space and the adversarial losses used in VSRRes-
FeatGAN leads to a consequent decrease in the PSNR, re-
sulting in a drop from 35.86 dB to 28.53 dB. This is consis-
tent with the SR literature (e.g., [16]) which show that the
use of perceptual loss disagrees with the PSNR measure, yet
on the other hand still improves the image quality. Figure
2(e) supports this claim, as it is clear that the VSRResFeat-
GAN system increases the overall sharpness and perceptual
quality of the output frame compared with that shown in
Figure 2(b) which shows the results of training with pixel-
wise MSE.

Looking closely at the patches in Figure 2 reveals that
the feature-space and adversarial losses (See Figure 2(c)
and Figure 2(d), respectively), when used individually,
introduce a mild form of artifacts in the super-resolved
frames. The output frames when training with @ = 0.99 and
B =0in Eq. 4 (i.e., removing the contribution of the ad-
versarial loss), for example, contain grid-like patterns (also
referred to as checkerboard artifacts in the literature). The
artifacts observed with the adversarial loss training (this
time setting @ = 0 and = 0.001 in Eq. 4) are of a different
nature, ressembler ringing patterns at edges in the frames.

Using a combination of the pixel-space, feature-space,
and adversarial losses as in Equation 4 leads to a more visu-
ally pleasing image, as observed in Figure 2(e). The grid-
like pattern originally generated by the feature loss is re-
moved in the predictions obtained by the combined loss.
This can be explained by the fact that the generator eventu-
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ally learns to "undo" the grid-like pattern generated by the
feature-loss, as these patterns are easily detectable by the
discriminator. Similarly, incorporating the adversarial loss
tames the strong edge ringing effect seen in Figure 2(d) pro-
duced by this loss; which produces an overall perceptually
pleasing HR frame. Therefore, we conclude that using these
individual loss components as a combination instead of in-
dividually leads to results of much higher quality.

4. CONCLUSIONS

In this paper, we have introduced VSRResFeatGAN, a new
learning-based system for video super-resolution. Our
method introduces the use of a very deep residual neu-
ral network with high learning capacity, trained with a
feature-based distance metric within a GAN framework.
These losses allow our SR system to learn powerful on the
super-resolved video frames. The experimental validation
shows that this perceptual-based setup allows to estimate
SR frames of greater quality than those obtained with the
standard MSE estimate.
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