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ABSTRACT 

A framework for recovering high-resolution information from a 
sequence of sub-sampled and compressed observations is 
presented.  Compression schemes that describe a video 
sequence through a combination of motion vectors and 
transform coeff icients are the focus (e.g. the MPEG and ITU 
family of standards), and we consider the influence of both the 
motion vectors and transform coeff icients within the 
reconstruction algorithm.  A Bayesian approach is utili zed to 
incorporate the information, and results show a discernable 
improvement in resolution, as compared to standard 
interpolation methods. 
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1. INTRODUCTION 

High-frequency information is often discarded during the 
acquisition and processing of an image.  This data reduction 
begins at the image sensor, where the original scene is spatially 
sampled during acquisition, and continues through subsequent 
sampling, filtering or quantization procedures.  Recovering the 
high-frequency information is possible though, as multiple low-
resolution observations may provide additional information 
about the high-frequency data.  This information is introduced 
through sub-pixel displacements in the sampling grid, which 
allows for the recovery of resolution. 

Object motion within an image sequence provides one 
source of the necessary sub-pixel displacements [3,5,8].  
(Global camera motion is another.)  Here, we consider a 
sequence of observations that have been compressed prior to 
any resolution recovery.  This mimics many practical 
applications, but it introduces several changes to the 
formulation.  As a first change, the corrupting noise process 
becomes somewhat complex, as errors introduced during 
compression may be spatially varying, correlated or correspond 
to the well -known blocking or ringing artifacts.  As a second 
difference, pixel intensities no longer comprise the observations.  
Instead, motion vectors and quantized transform coeff icients are 
provided to the recovery algorithm.  Since this data describes 
both the intensity and motion within the original sequence, we 
believe that it motivates a joint estimate of the sub-pixel 

displacement and high-resolution image data.  This differs from 
other work where the estimation of the high-resolution data and 
the displacements are treated separately [1,2] and extends our 
previous efforts [6,7]. 

The rest of this paper is organized as follows: In section 2, 
we define the acquisition system to be considered.  In section 3, 
we formulate the problem within the Bayesian framework and 
introduce an iterative algorithm for the joint estimation of the 
displacements and high-resolution information.  In section 4, we 
present results from the proposed procedure. 

2. SYSTEM MODEL 

When images from a single camera are captured at closely 
spaced time instances, then it is reasonable to assume that the 
content of the frames are similar.  That is, we can say that  

   ( ) ( ) ( )( ) ( )yxnyxdyyxdxfyxf kl
y
kl

x
klkl ,,,,, ,,, +++= , (1) 

where fl(x,y) and fk(x,y) are spatial locations in the high-

resolution images at times l and k, respectively, d
 x
l,k (x,y)  and 

d
 y
l,k (x,y)  comprise the displacement that relates the pixel at time 

k to the pixel at time l, and nl,k(x,y) is an additive noise process 
that accounts for any image locations that are poorly described 
by the displacement model. 

The expression in (1) can be rewritten with a matrix-vector 
notion.  In this form, the relationship between two images 
becomes 
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where fl and fk are formed by lexicographically ordering each 
image into a one-dimensional vector, C(dl,k) is the two-
dimensional matrix that describes the displacement across the 
entire frame, dl,k is the column vector defined by 
lexicographically ordering the complex values 
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l,k (x,y), and nl,k is the noise process.  When the 

images are PMxPN arrays, then fl, fk, dl,k and nl,k are column 
vectors with length PMPN and C(dl,k) has dimension 
PMPNxPMPN.  



In classical imaging scenarios, the noise introduced in (1) 
and (2) is the dominant noise component.  However in many 
modern imaging systems, the sequence of images are further 
degraded by compression.  This reduces the bandwidth required 
for transmission and storage, and it requires two 
transformations.  First, each high-resolution frame is filtered and 
down-sampled.  Then, the down-sampled result is compressed 
with a video compression algorithm.  Several video compression 
algorithms are available, with the hybrid motion compensation-
transform based coding techniques the most common (e.g. the 
MPEG and ITU family of standards).  In these methods, each 
image is encoded by dividing it into a sequence of equally sized 
blocks.  Then, the blocks are predicted from previously encoded 
frames, and the residual error is transformed and quantized.  The 
prediction is then signaled to the decoder as a motion vector that 
defines the location of the predicted block, and the residual is 
transmitted as a sequence of variable length code words that 
define the quantized transform coeff icients. 

The conversion of a high-resolution frame to its low-
resolution and compressed observation is therefore expressed as 
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where gk is a vector that contains the compressed low-resolution 
images with dimension MNx1, fk is the high-resolution data, vl,k 
is the motion vector transmitted by the encoder that signals the 
prediction of frame k from previously compressed frame i, 
C(vl,i) represents the prediction process with a matrix (for 
images said to be “intra-coded”, the prediction from all frames 
is zero), A is an MNxPMPN matrix that sub-samples the high-
resolution image, H is an PMPNxPMPN matrix that filters the 
high-resolution image, TDCT and TDCT

-1  are the forward and 
inverse-DCT calculations, and Q[ �
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procedure.  Combining (2) and (3), we state the relationship 
between any low and high-resolution image as 
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where the compression noise is assumed dominant, and the 
noise term in (1) and (2) neglected. 

The system model in (4) motivates an algorithm that 
recovers high-resolution frames from a sequence of low-
resolution and compressed images.  The approach should be 
apparent by noticing that information about a single high-
resolution frame appears in multiple low-resolution 
observations.  When this information is not redundant, as 
provided with sub-pixel displacements in the mapping of frame 
fk to fl and the introduction of aliasing by the sampling 
procedure AH, then each observation provides additional 
information about the high-resolution image frame.   

3. PROBLEM FORMULATION AND PROPOSED 
ALGORITHM 

The Bayesian maximum a posterior (MAP) estimate 
provides the necessary framework for recovering high-

resolution information from a sequence of compressed 
observations.  Since information about the displacements is 
present in the compressed bit-stream, we consider the joint 
estimate 
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where kf̂ andD̂ are estimates of the high-resolution image and 

motion field, respectively, D is the matrix defined as (dT
k-TB,k 

,…, dT
k+TF,k)

T, G is the matrix defined as (gT
k-TB,…, gT

k+TF)T, V 
is the matrix defined as (vT

k-TB ,…, vT
k+TF)T, and vT

k+TF is the 
column vector (vT

k-TB,0 … vT
k-TB, � )T that contains all of the 

transmitted motion vectors utili zed in the prediction of gk-TB.  In 
the definitions, TF and TB describe the number of frames 
utili zed along the forward and backward directions of the 
temporal axis.   

Taking logarithms and recognizing that the optimization is 
independent of p(G, V), the MAP estimate becomes 
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where fk and D are assumed independent. 

3.1 Distribution Models 

The first density function in (6) defines the noise introduced 
by the quantization operator.  This quantization noise is best 
understood in the DCT domain, where the noise distribution for 
each frequency index is independent but not necessarily 
identically distributed.  Modeling the noise process as a jointly 
Gaussian random variable provides a reasonable approximation 
of the quantization error, as it can account for both the round-
off error of a basic quantizer as well as the more sophisticated 
errors introduced by operational rate-distortion encoding 
methods.  

The resulting conditional density is expressed as 
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where KQ,l is the covariance of the quantization noise in the 
spatial domain at frame l.  Since errors in the spatial domain are 
related to errors in the transform domain by the inverse-DCT 
operation, this covariance matrix is 
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where KDCT,l is the covariance matrix describing the noise in the 
DCT domain at frame l.  One interesting property of this 
relationship is that when the noise is independent and 
identically distributed (i.i.d.) in the DCT domain, it is also i.i.d. 
in the spatial domain.  Conversely, when the noise is not 
identically distributed in the DCT domain (but still 



independent), then the distribution in the spatial domain 
becomes correlated.  Both situations occur in practical 
applications, as the quantization intervals are equal for all 
frequency indices during inter-coding, which leads to an i.i.d. 
process in the spatial domain, while perceptually motivated 
quantization tables utili zed during intra-coding result in 
correlated noise in the spatial domain. 

The structure of the compression system also motivates 
selection of the second density function in (6), p(fk).  The 
purpose of this density function is to incorporate a priori 
information about the original high-resolution images into the 
recovery method.  Most criti cal here is that the original images 
rarely contain coding artifacts such as ringing or blocking.  Both 
compression errors are penalized with the density 
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where Q1 responds to the high frequency content within each 
block, Q2 responds to significant differences across the 
horizontal and vertical block boundaries, and � 1 and � 2 control 
the influence of the different smoothing parameters. 

The distribution for the motion vectors relies on both the 
structure of the compression system as well as the composition 
and encoding quality of previously compressed images.  At the 
high-level, selection of the motion vectors are straightforward.  
For each block in the current down-sampled image, a block with 
similar content is found within a previously encoded frame.  
When the selected motion vector corresponds to the actual sub-
pixel displacement within the image sequence, then the density 
function for the motion vectors follows from (7) and is stated as 
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where KMV,l is the covariance matrix of the quantization noise in 
the previously encoded frames “mapped” through the motion 
field.  This is defined as 
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When match errors occur and can be modeled as a Gaussian 
process, then the covariance matrix becomes 
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where KMatch,l is the match error in the prediction of frame l. 
The last distribution appearing in (6) provides an a priori 

model for the displacement between image frames.  Like the 
distribution in (9), we utili ze a prior that penalizes large 
undulations in the displacements across the image while also 
penalizing any synthetic blocking structure.  The prior is given 
as 
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where � 3 and � 4 control the influence of the different smoothing 
parameters.  We note that dependencies between the 

displacements of different frames could also be incorporated 
into (13). 

3.2 Optimization Procedure 

By substituting the models presented in (7)-(13) into the 
estimate described in (6), a solution that simultaneously 
estimates the high-resolution motion fields as well as the high-
resolution images evolves.  Taking the negative of (6), the 
algorithm becomes a minimization that is expressed 
as
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The minimization of (14) is accomplished with a cyclic 

coordinate-decent optimization procedure [4].  In this approach, 
an estimate for the motion field is found while the high-
resolution image is assumed known.  Then, the high-resolution 
image is estimated with the recently found motion field.  The 
motion field is then re-estimated using the current solution for 
the high-resolution frame, and the process iterates by 
alternatively finding the motion field and high-resolution 
images.  Treating the high-resolution image as a known 
parameter, the estimate for the motion field in (14) is found by 
the method of successive approximations 
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where 1
,

ˆ +m
kld  and m

kl,d̂  are (m+1)th and mth estimates of the 

displacement between frame k and l, respectively, AT defines the 

up-sampling operation, and � l,k
 d   controls the convergence and 

rate of convergence of the algorithm. 

Once the estimate for the motion field is found, then the 
high-resolution image is computed.  For a fixed D, the 
minimization of (14) is expressed as 
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where 1ˆ +n
k

f and n
k

f̂ are the enhanced frames at the nth and (n+1)th 

iteration, � f is a relaxation parameter that determines the 
convergence and rate of convergence of the algorithm, and 
CT(dk,l) compensates an image backwards along the motion 
vectors. 

4. EXPERIMENTAL RESULTS  

The performance of the algorithm is ill ustrated by 
processing frames from the Mobile sequence.  Each original 
image is 704x576 pixels, and it is decimated by a factor of two 
in each dimension, cropped to a size of 176x144 pixels and 
compressed with an MPEG-4 encoder operating at 1Mbps.  
Three frames from the compressed bit-stream are then 
sequentially provided to the proposed algorithm, where 
TB,TF=1, Q1 is a 3x3 discrete Laplacian, Q2 is a difference 
operation across the horizontal and vertical block boundaries, 
�

1=5x10-2, 
�

2=2x10-2, 
�

3=1x105, 
�

4=0, � f=1.25x10-1, and �
l,k

 d  
=1x10-6. The algorithm is stopped when 
|| 

^fk+1- 
^fk ||

2
/ || 

^fk ||
2
 < 2x10-7, and a new estimate for the motion 

field is computed whenever || 
^fk+1- 

^fk ||
2
/ || 

^fk ||
2
 < 1x10-6. 

A representative result from the algorithm appears in Figure 
1, where (a) is the original image before decimation or 
compression, (b) is the compressed observation after bi-linear 
interpolation, (c) is the compressed observation after bi-cubic 
interpolation, and (d) is the image provided by the proposed 
algorithm.  As can be seen from the figure, the proposed method 
is able to recover a significant amount of the high-frequency 
information.  This is most evident in the text at the top and 
bottom of the frame as well as the horizontal stripes in the upper 
left of the images. The improvement also manifests itself in a 
PSNR of 33.20dB for the entire frame, an increase over the 

PSNRs of 30.41dB and 30.58dB for the bi-linear and bi-cubic 
methods, respectively.  
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 (a) (b) (c) (d) 

Figure 1.  Recovery of high-frequency information from a sequence of low-resolution and compressed observations: (a) original 
image before decimation and compression; (b) decoded observation after bi-linear interpolation; (c) decoded observation after bi-
cubic interpolation, and (d) result of the proposed method.  PSNRs for the frames are (b) 30.41dB, (c) 30.58dB and (d) 33.20dB. 


