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ABSTRACT 

A method for simultaneously estimating the high-resolution 
frames and the corresponding motion field from a compressed 
low-resolution video sequence is presented.  The algorithm 
incorporates knowledge of the spatio-temporal correlation 
between low and high-resolution images to estimate the original 
high-resolution sequence from the degraded low-resolution 
observation.  Information from the encoder is also exploited, 
including the transmitted motion vectors, quantization tables, 
coding modes and quantizer scale factors.  Simulations illustrate 
an improvement in the peak signal-to-noise ratio when 
compared with traditional interpolation techniques and are 
corroborated with visual results. 

1. INTRODUCTION 

A number of applications require high-resolution images for 
success.  Examples include scientific imaging and a variety of 
consumer and entertainment products.  In the first case, medical, 
astronomical and weather images are processed, and the 
increased spatial accuracy provides the ability to resolve small 
anomalies in the data.  In the second case, the conversion of 
low-resolution images into higher-resolution content is required.  
For example, desktop video, security monitoring and other low-
rate applications are restricted from transmitting full frame 
images.  Instead, the data is enlarged at the receiver. 

In this paper, we are concerned with the estimation of high-
resolution images from a series of low-resolution observations. 
When observations are corrupted by additive noise, then 
techniques such as [3,9,11] address the resolution enhancement 
problem successfully.  However, in many modern systems, 
images are compressed to reduce the cost of transmission.  This 
renders an additive noise model inaccurate.  Instead, the 
degradation model must reflect knowledge of the compression 
system, which includes the design of the compression algorithm 
as well as the parameters provided in the compressed bit-stream.  
With the ITU or MPEG family of coding methods, these 
parameters include the coding modes, motion vectors, 
quantization tables and quantizer scale factors.  

Methods that exploit either all or part of these parameters 

for resolution enhancement have appeared in the literature 
[1,2,5,6,7].  While the techniques reflect different approaches to 
the problem, each relies on the pre-calculation of an accurate, 
sub-pixel motion field.  This field establishes a correspondence 
between pixels at different time instances.  Here, we will 
consider an alternative approach.  Instead of pre-computing the 
motion field prior to resolution enhancement, we simultaneously 
estimate the motion while enhancing the images.  Thus, we are 
able to jointly estimate the spatial and temporal correlation 
between each frame of the sequence.  This is done utilizing 
complete knowledge of the compressed bit-stream.   

The rest of the paper is organized as follows.  In section 2, 
we provide the necessary background for the approach and 
formulate the problem within the Bayesian framework.  In 
section 3, we introduce an iterative algorithm for motion 
estimation and resolution enhancement.  The algorithm relies on 
several models for the image sequence and incorporates 
information derived from the compressed bit-stream.  Finally, 
experimental results are presented in section 4.  A video 
sequence is decimated and compressed with the MPEG-4 
standard.  Simulations illustrate the performance of the 
algorithm. 

2. BACKGROUND 

Consider two frames of a high-resolution sequence at time 
instances l and k.  When the frames are closely spaced in time, 
then it is reasonable to assume that frame l can be accurately 
predicted from frame k through the use of a motion vector.  
Thus, we can say that  
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where fl(x,y) and fk(x,y) are spatial locations in the high-
resolution images at times l and k, respectively, and 
(dl,k

x (x,y), dl,k
y
(x,y))T is the motion vector that relates the pixel at 

time k to the pixel at time l.  
The expression in (1) can be rewritten in matrix-vector 

notion.  In this form, the relationship between two images 
becomes 
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where fl and fk are PMPNx1 column vectors that are formed by 
lexicographically ordering each PMxPN image into a one-
dimensional vector, dl,k is the 2PMPNx1 column vector that is 
formed by lexicographically ordering the motion vectors, and 
C(dl,k) is a two-dimensional matrix that describes the motion 
compensation procedure for the entire frame.  If the motion 
compensation is represented with pixel accuracy, then C(dl,k) is 
a permutation matrix, with each entry equal to either zero or 
one.  When sub-pixel motion is considered, then the entries of 
C(dl,k) are real numbers that define an interpolation scheme.  

Before transmission, the high-resolution images are filtered, 
down-sampled and compressed.  The conversion of a high-
resolution frame to its lower resolution observation is therefore 
expressed as 
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where gk is a vector containing the low-resolution images with 
dimension MNx1, fk is the high-resolution data, gk

Pred is the low-
resolution image predicted from a reference compressed frame 
by utilizing the transmitted motion vectors (for an intra-coded 
region the prediction is zero), A is an MNxPMPN matrix that 
sub-samples the high-resolution image, H is an PMPNxPMPN 
matrix that filters the high-resolution image, TDCT and TDCT

-1  are 
the forward and inverse-DCT calculations, and Q[Â@ UHSUHVHQWV

the quantization procedure.  Combining (2) and (3), we state the 
relationship between any low and high-resolution frame as 
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,
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Looking at the relationship in (4), we see that every low-
resolution observation contains information about multiple 
high-resolution images. We exploit this relationship by 
considering the reverse logic – that information about every 
high-resolution frame is stored in multiple observations.  One 
obstacle complicates the approach, as we must identify and 
define the motion field that relates the high-resolution frame to 
different observations. In previous approaches for the resolution 
enhancement of compressed video, the task of finding the 
motion field is treated as an independent problem.  
Enhancement is applied assuming that the motion field is 
completely known.  In this work, we treat the motion field as an 
unknown value and estimate it as we perform the resolution 
enhancement. 

The maximum a posterior (MAP) estimate allows us to 
realize the goal of simultaneously estimating the high-resolution 
image and its corresponding motion field.  Within this 
framework, the estimate of the high-resolution frame at time k, 
^fk , and the matrix of the motion vectors, 

 ^D, are obtained as 

   

( ){ }
( ) ( )

,
),(

,,|,
maxarg

,|,maxargˆ,ˆ

,

,













=

=

Encoder
kk

Encoder

Encoder
kk

p

pp

p

k

k

DG

DfDfDG

DGDfDf

Df

Df

 (5) 

where D is the matrix defined as (dk-TB,k ,…, dk+TF,k)
T, G is the 

matrix defined as  (gk-TB,…, gk+TF)
T, and DEncoder is the matrix 

that contains the transmitted motion vectors.  In the definitions, 
TF and TB describe the number of frames utilized along the 
forward and backward directions of the temporal axis.  Taking 

the logarithm of (5) and recognizing that the optimization is 
independent of p(G, DEncoder), the MAP estimates become 
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where fk and D as well as G and DEncoder are assumed to be 
independent. 

3. PROPOSED ALGORITHM 

To realize the estimate described in (6), we must first define 
the probability density functions that appear in the expression. 
After that, we can construct an appropriate optimization 
technique for the maximization.  In this section, we accomplish 
both tasks.  The first sub-section discusses the probability 
density models required for the estimate.  Specifically, we 
define p(G| fk,D), p(DEncoder| fk,D), p(fk) and p(D).  The second 
sub-section describes an algorithm that simultaneously estimates 
the motion field and high-resolution data. 

3.1 Probability Density Models 

The compression system motivates all of the probability 
definitions of the sub-section.  The first probability density in 
(6) is p(G|fk,D).  This density function describes the noise 
process introduced during compression, errors introduced 
during the conversion of the high-resolution image to the lower 
resolution observation, and any fluctuation in intensity values 
along the motion field.  The conditional density is modeled as 
Gaussian distributed and expressed as 
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where �l is proportional to the inverse of the noise variance at 
time instant l, and the summation includes all of the 
observations contributing to the estimate of the current high-
resolution frame. 

When developing a model for the high-resolution images, 
expressed as p(fk), we realize that standard compression 
techniques introduce two major types of artifacts.  Blocking 
artifacts arise from the independent processing of the image 
blocks, while ringing artifacts are introduced by the coarse 
quantization of high frequency information.  Since these visual 
artifacts are rarely part of the original image sequence, they 
should not be present in a high-resolution estimate.  These 
artifacts are penalized with the density 
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where Q1fk represents the high frequency content within each 
block, Q2fk represents the differences across the horizontal and 
vertical block boundaries, and �1 and �2 control their relative 
importance [10].  Frames with significant high frequency energy 
or large variations across the block boundaries are assigned a 
low probability with the model in (8). 

The distribution of the motion vectors also relies on the 
compression mechanism.  During encoding, video compression 
algorithms identify motion vectors by comparing the down-
sampled high-resolution images to previously encoded frames. 



The down-sampled images are not available to the resolution 
enhancement procedure, as they are not transmitted to the 
decoder.  Therefore, the motion vectors in the bit-stream 
provide an additional observation of the high-resolution frame 
and should be incorporated into the enhancement method.  This 
is accomplished with the density function  
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where dl,k
Encoder is a vector that contains the transmitted motion 

vector, up-sampled to the higher resolution, and � is a positive 
value that expresses a confidence in the transmitted vectors.  As 
the value for � increases, the estimates become closer to the 
transmitted motion vectors. 

The last distribution appearing in (6) provides an a priori 
model for the motion field.  In this paper, we utilize the non-
informative prior 

 ( ) Kp ∝D , (10) 

where K is a constant.  This assigns equal probability to every 
estimate for the motion field.  More sophisticated models could 
also be utilized, such as those explored in [8]. 

The encoder provides one final piece of information that 
should be incorporated into the resolution enhancement 
algorithm.  When compressing the low-resolution images, an 
encoder calculates the DCT for each image block (or error 
residual) and quantizes the transform coefficients. These 
quantized values are transmitted to the encoder as a quantization 
step size and quantization index.  When transmitting the 
information in this format, the decoder is completely aware of 
the maximum difference between the actual coefficient and the 
quantized value.  Incorporating this constraint into the algorithm 
requires that 
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be satisfied.  Simply stated, this constraint requires that all 
estimates for the high-resolution image, after filtering and 
down-sampling, quantize to the coefficients appearing in the bit-
stream. 

3.2 Optimization Procedure 

By substituting the models presented in (7)-(11) into the 
estimate described in (6), we obtain 
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where DCTAllowable denotes the allowable set of DCT coefficients 
as signaled by the encoder. 

The minimization of (12) is accomplished with a cyclic 
coordinate-decent optimization procedure [4].  In this approach, 
an estimate for the motion field is found while the high-
resolution image is assumed known.  Then, the high-resolution 
image is estimated with the recently found motion field.  The 
motion field is then re-estimated using the current solution for 
the high-resolution frame, and the process iterates by 
alternatively finding the motion field and high-resolution 
images.  Treating the high-resolution image as a known 
parameter, the estimate for the motion field in (12) becomes 
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which is minimized with a motion estimation algorithm.  Any 
algorithm is allowable within the framework, and an example is 
the well-known block matching technique. 

Once the estimate for the motion field is found, then the 
high-resolution image is computed.  For a fixed D, the 
minimization of (12) is accomplished by the method of 
successive approximations, expressed as 
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where 
^fk

n+1 and 
^fk

n are the enhanced frames at the nth and (n+1)th 
iteration, PDCT is a projection operator that constrains the 
solution to the valid set of DCT coefficients, . is a relaxation 
parameter that determines the convergence and rate of 
convergence of the algorithm, CT(dk,l) compensates an image 
backwards along the motion vectors and AT defines the up-
sampling operation. 

4. EXPERIMENTAL RESULTS  

To explore the performance of the proposed super-resolution 
algorithm, forty frames of the Mobile sequence are decimated 
and compressed.  The original images are 704x576 pixel arrays, 
which are decimated by sub-sampling by a factor of two.  Only 
the central portion of the images is considered, resulting in a 
low-resolution image that is 176x144 pixels in extent.  The 
sequence is then compressed with an MPEG-4 encoder 
operating at 256kbps and utilizing the VM5+ rate control 
mechanism.  The resolution enhancement algorithm then 
processes the compressed frames.  In the algorithm, TB=3, 
TF=5, Q1 is a 3x3 discrete Laplacian, Q2 is a difference 
operation across the block boundaries, �1 �2=.1, �=.45, and 
� �� 7KH DOJRULWKP LV VWRSSHG ZKHQ || 

^fk+1- 
^fk ||

2
<50, and a new 

estimate for the motion field is computed whenever 
|| 

^fk+1- 
^fk ||

2
<100. 



Visual results from the experiments are shown in Figure 1.  
In the figure, (a) displays a portion of an uncompressed high-
resolution image, (b) shows the result of bi-linearly 
interpolating the decoded low-resolution image and (c) 
illustrates the result of the proposed approach.  When 
comparing the images, notice the performance of the algorithm 
within the numbers of the calendar.  For example, the numbers 
29 and 30 are not discernible in the bi-linear result.  However, 
they are readable in the super-resolution estimate.  As a second 
example, notice the improvement of the number 18.  In the bi-
linear estimate, the number is severely distorted.  The proposed 
method provides significant improvement and recovers much of 
the spatial detail. 

Improving the legibility of the numbers is just one example 
of the performance of the algorithm.  Improvements over the 
entire sequence are quantified with the peak signal-to-noise 
(PSNR) metric.  In the figure, the PSNR of the bi-linear and 
super-resolution results are 28.79dB and 29.58dB, respectively.  
This is an improvement of .79dB, which is representative of the 
entire sequence.  The average PSNR of bi-linearly interpolated 
result is 28.72dB, while the average PSNR of the proposed 
algorithm is 29.53dB.  

5. REFERENCES 

[1] Y. Altunbasak and A.J. Patti, "A Maximum A Posteriori 
Estimator for Higher Resolution Video Reconstruction from 
MPEG Video," Proc. of the IEEE ICIP, Vancouver, BC, 
Canada, Sept. 10-13, 2000. 

[2] D. Chen and R.R. Schultz, "Extraction of High-Resolution 
Still from MPEG Sequences," Proc. of the IEEE ICIP, 
pp.465-69, Chicago, IL, Oct. 4-7, 1998. 

[3] R.C. Hardie, K.J. Barnard and E.E. Armstrong, “Joint MAP 
Registration and High-Resolution Image Estimation Using 
a Sequence of Undersampled Images,” IEEE Trans. IP, 
vol.6, no.12, pp.1621-1633, 1997. 

[4] D.G. Luenberger, Linear and Nonlinear Programming, 
Addison-Wesley, 1984. 

[5] A.J. Patti and Y. Altunbasak, “Super-Resolution Image 
Estimation for Transform Coded Video with Application to 
MPEG,” Proc. of IEEE ICIP, Kobe, Japan, Oct. 25-28, 
1999. 

[6] B. Martins and S. Forchhammer, "A Unified Approach to 
Restoration, De-interlacing and Super-resolution of MPEG-
2 Decoded Video," Proc. of the IEEE ICIP, Vancouver, 
CA, Sept. 10-13, 2000. 

[7] J. Mateos, A.K. Katsaggelos and R. Molina, "Resolution 
Enhancement of Compressed Low Resolution Video," 
Proc. IEEE ICASSP, Istanbul, Turkey, June 5-9, 2000. 

[8] T. Ozcelik, J.C. Brailean, and A.K. Katsaggelos, “Image 
and Video Compression Algorithms Based on Recovery 
Techniques using Mean Field Annealing,” Proc. of the 
IEEE, vol.83, no.2, pp.304-316, 1995. 

[9] R.R. Schultz and R.L. Stevenson, "Extraction of High 
Resolution Frames from Video Sequences," IEEE Trans. 
IP, vol.5, no.6, pp.996-1011, 1996. 

[10] C.A. Segall and A.K. Katsaggelos, “Enhancement of 
Compressed Video using Visual Quality Metrics,” Proc. of 
the IEEE ICIP, Vancouver, BC, Canada, Sept. 10-13, 2000. 

[11] B. Tom and A.K. Katsaggelos, "Resolution Enhancement of 
Monochrome and Color Video Using Motion 
Compensation," IEEE Trans. IP, vol.10, no.2, pp.278-287, 
Feb. 2001. 

 

   
 (a) (b) (c) 
Figure 1.  Experimental results illustrate the potential of the proposed procedure:  (a) original image, (b) bi-linearly interpolating the 
low-resolution compressed image and (c) result of the proposed approach.  The proposed algorithm introduces improvement 
throughout the image sequence.  (Notice the improvement in the number 18.)  The PSNR values for the bi-linear and proposed 
technique are 28.79dB and 29.53dB, respectively.  


