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ABSTRACT

SPECT (Single Photon Emission Computed Tomography)
is used in nuclear medicine to determine the distribution of a
radioactive isotope within a patient from tomographic views
or projection data. These images are severely degraded due
to the presence of noise and several physical factors like at-
tenuation and scattering. In this paper we use, within the
Bayesian framework, a Compound Gauss Markov Random
Field (CGMRF) as prior model to reconstruct such images.
In order to find the Maximuma Posteriori(MAP) estimate
we propose a new iterative method, which is stochastic for
the line process and deterministic for the reconstruction.
The proposed method is tested and compared with other
reconstruction methods on both synthetic and real SPECT
images.

1. INTRODUCTION

SPECT images are observation data acquired by a gamma-
camera following an orbit around the patient’s body, at reg-
ularly spaced angles. At each position, the registered pho-
ton counts at the gamma-camera are conveniently processed
and stored as discrete two-dimensional images. A recon-
structed image is the discrete representation of a slice or
cross section of the isotope distribution within the patient,
transversal to the gamma-camera rotation axis.

Bayesian reconstruction methods have been extensively
used to reconstruct medical images since they can improve
the reconstructions with respect to the classical, non statisti-
cal methods, such as FBP (Filtered Back Projection)[1] and
ART (Algebraic Reconstruction Techniques)[2].

In the Bayesian paradigm, the reconstructed imageX is
usually selected as

X̂ = arg max
X

P (X|Y ) = arg max
X

P (Y |X)P (X), (1)
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whereP (X) is a prior distribution incorporating informa-
tion about the expected structure in the imageX, andP (Y |X)
models the degradation process of projectionsY of the pixel
intensities of the emission source (patient). In order to apply
the Bayesian paradigm to the reconstruction of SPECT im-
ages we need therefore to specify the degradation and prior
models and the process to obtain the MAP estimate.

The rest of the paper is organized as follow. In section
2 we define the degradation and image models used, and in
section 3 we propose a method for finding the MAP esti-
mate. The application of this method to synthetic and real
images is described in section 4. Finally, section 5 con-
cludes the paper.

2. DEGRADATION AND IMAGE MODELS

The degradation model for emission tomography can be spec-
ified as a product of independent Poisson distributions:

P (Y |X) =
M∏
s=1

(
∑N
i=1As,ixj)

ys exp{−
∑N
t=1As,txt}

ys!
,

(2)

whereM is the number of detectors,N the number of pix-
els in the image andA is the system matrix or discrete
Radon transform (an element of this matrixAs,i represents
the probability that an emitted photon from source pixeli
reaches detector locations).

The prior model we use is a Compound Gauss-Markov
Random Field (CGMRF) model. This model provides us
with a means to control changes in the image using a hid-
den random field. A CGMRF model has two levels, an up-
per level which is the image to be restored and a lower or
hidden level that it is a finite range random field to govern
the transition between the sub-models. The use of an under-
lying random field, called the line process, was introduced
by Geman and Geman [3] in the discrete case. Extensions
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Fig. 1. Image and line sites

to the continuous case were presented by Jeng and Woods
[4] and Chellapa et al. [5] (see also [6, 7] for medical image
reconstruction).

The CGMRF model to be used is introduced from a sim-
pler one, the Conditional Auto-Regression (CAR) model
[8]. This prior model is defined by

P (X) ∝ exp
{
−1

2
αXt(I − φC)X

}
, (3)

where the entries ofC, Ci,j , are equal to one if pixelsi and
j are spatial neighbors and zero otherwise,α is a scaling
parameter, and|φ| < 1/4.

If we assume a ”toroidal edge correction”, from Eq. (3),
we obtain

− logP (X) = constant+
α

2
Xt(I − φC)X

= constant+
α

2

∑
i

φ(xi − xi:+1)2

+
α

2

∑
i

φ(xi − xi:+2)2 +
α

2

∑
i

(1− 4φ)x2
i ,

wherei:+1, i:+2, i:+3, i:+4 are the four neighboring pixels
around pixeli (see figure 1).

We now introduce the line process by rewriting this equa-
tion as

− logP (X) = constant

+
α

2

∑
i

φ(xi − xi:+1)2(1− l[i,i:+1])

+
α

2

∑
i

φ(xi − xi:+2)2(1− l[i,i:+2])

+
α

2

∑
i

[
βl[i,i:+1] + βl[i,i:+2]

]
+
α

2

∑
i

(1− 4φ)x2
i , (4)

wherel([i, j]) takes the value of zero if pixelsi andj are
not separated by an active line and one otherwise. The pa-
rameterβ is a scalar weight, which adjusts the introduction
of the active line elements. Forβ very large the prior model

becomes Gaussian. The process line acts as inhibitor or ac-
tivator of the relation between two neighboring pixels de-
pending on whether or not there exists an edge. Notice that
the CAR model is obtained whenl[i, j] = 0,∀i, j.

3. MAP ESTIMATION

Let us now proceed to find̂X, L̂, the MAP estimates ofX
andL, that is

X̂, L̂ = arg max
X,L

P (X,L|Y ). (5)

SinceP (X,L|Y ) is nonlinear, it is difficult to findX̂
and L̂ by conventional methods. The method we propose
for estimating the original image and the line process is
stochastic for the line process and deterministic for the re-
construction, as described next.

In order to estimate the line process we simulate the cor-
responding conditionala posterioridensity function. Let us
denote byPT (l[i,j]|L[i,j], X, Y ) the conditional a posteriori
density function for the line processl[i,j], givenX, Y and
the rest ofL, L[i,j] = (l[s,t] : ∀[s, t] 6= [i, j]). To simulate
this density function, we have

PT (l[i,j] = 0|L[i,j], X, Y ) ∝ exp
[
− 1
T

αφ

2
(xi − xj)2

]
(6)

PT (l[i,j] = 1|L[i,j], X, Y ) ∝ exp
[
− 1
T

αβ

2

]
, (7)

whereT is the temperature.
Given an estimate of the line process,L, and the obser-

vation,Y , we estimate the imageX using the deterministic
method in [9], extended for the use on tomographic images
and modified to take into account only neighbors not sep-
arated by an active line element (see [10] for a discussion
on iterative methods to reconstruct medical images). This
method starts with the probability distribution

− logP (X|L, Y ) = constant

+
M∑
s=1

( N∑
i=1

(As,ixj)− ys log
[ N∑
t=1

As,txt
])

+
α

2

∑
i

φ(xi − xi:+1)2(1− l[i,i:+1])

+
α

2

∑
i

φ(xi − xi:+2)2(1− l[i,i:+2])

+
α

2

∑
i

[
βl[i,i:+1] + βl[i,i:+2]

]
+
α

2

∑
i

(1− 4φ)x2
i . (8)

Differentiating− logP (X|L, Y ) with respect to each



pixel xi, we obtain the following equation

1 + α

φxi ∑
j∈Ni

(1− l[i,j]) + (1− 4φ)xi

 =

M∑
s=1

ysAs,i∑N
t=1As,txt

+ αφ
∑
j∈Ni

xj(1− l[i,j]),

wherej ∈ Ni denotes the neighboring pixels at distance
one fromi and we have assumed that

∑M
s=1As,i = 1.

By addingαφxi
∑
j∈Ni l[i,j] to both sides of the previ-

ous equation we obtain

1 + αxi =
M∑
s=1

ysAs,i∑N
t=1As,txt

+α

φ ∑
j∈Ni

xj(1− l[i,j]) + φxi
∑
j∈Ni

l[i,j]


or

α−1 + xi = α−1
M∑
s=1

ysAs,i∑N
t=1As,txt

+φ
∑
j∈Ni

xj(1− l[i,j]) + φxi
∑
j∈Ni

l[i,j].

Multiplying both sides of the previous equation byxi we
obtain

xi = µi

φ ∑
j∈Ni

xj(1− l[i,j]) + φxi
∑
j∈Ni

l[i,j]


+(1− µi)xi

M∑
s=1

ysAs,i∑N
t=1As,txt

, (9)

with µi = xi/(xi + α−1).
We can now use Eqs. (6), (7) and (9) in the following

algorithm to find the MAP estimates ofL andX:
Let k = 1, 2, ..., be the sequence of iterations in which

the sites (lines or pixels) are visited for updating.

1. Setk = 0 and assign an initial configuration denoted
asX−1, L−1 and a initial temperatureT = 1.

2. The evolutionL̂k−1 → L̂k of the line process is ob-
tained simulating the probability functions defined in
Eqs. (6) and (7).

3. The evolutionX̂k−1 → X̂k of the image is obtained
usingX̂k−1 in the right hand side of Eq. (9) andXk

in the left hand side of Eq. (9).

4. Setk = k+1. Decrease the temperatureT according
to an annealing scheme [4]. Go to step 2 untilk > N ,
whereN is a specified integer.

4. EXPERIMENTAL RESULTS

We compare the results using the proposed method with the
reconstruction obtained by FBP and the CAR and GGMRF
(Generalized Gauss Markov Random Field) [11] priors. For
the two last models, the scaling parameters for the recon-
structions were obtained using the estimation process de-
scribed in [12].

The methods were tested on the 128x128 pixels syn-
thetic image depicted in figure 2(a). A circular orbit with
parallel hole collimator geometry is assumed. 128 detectors
with 128 angles are simulated and the projection dataY are
degraded with Poisson noise. The corresponding sinogram
is shown in figure 2(b). We can observe that the method
with a CAR prior penalizes in excess the edges (see fig-
ure 2(c)), while the method with the GGMRF prior (fig-
ure 2(d)) preserves the edges when the shape parameter is
near1 (for our experiments we used a shape parameter fixed
to1.1). The reconstruction with CGMRF (figure 2(e)) shows
an improved reconstruction. Figure 2(f) shows the edges
corresponding to figure 2(e). It is clear that the proposed
method has captured the edges present in the image.

We also applied our reconstruction method to real im-
ages (see figure 3). The detector system was a Siemens Or-
biter 66601, and the collimator was the parallel hole, medium
energy, Siemens Anticamera 4445060 model. The gamma-
camera described a circular orbit, at 5.625 degrees steps,
for a total of 64 angles. The image corresponds to the in-
ferior part of the liver (the right lobe and the center poste-
rior hepatic zone, crossed there by blood vessels). The data
provided by the detector system and its FBP reconstruction
can be observed in figure 3(a) and (b), respectively. In fig-
ures 3(c) and 3(d) we show the reconstructions with CAR
and GGMRF priors. The reconstruction with the proposed
method and the corresponding line process are shown re-
spectively in figures 3(e) and 3(f). The proposed method
clearly increases the quality of the reconstruction since the
areas with different levels of vascularization can be better
distinguished.

5. CONCLUSIONS

In this paper we have presented a new method that can be
used to reconstruct SPECT images. This method uses a
prior model with a line process. The MAP estimation is
performed by simulated annealing for the line process and
a deterministic iterative scheme for the image. The experi-
mental results show the validity of the method.

6. REFERENCES

[1] A. C. Kak and M. Slaney,Principles of computerized
tomographic imaging, IEEE Press, 1988.



(a) Original image (b) Sinogram

(c) CAR reconstruction (d) GGMRF reconstruction

(e) CGMRF reconstruction (f) Line process

Fig. 2. Results with a synthetic image.

[2] P. Oskoui-Fard and H. Stark, “Tomographic image re-
construction using the theory of convex projections,”
IEEE Trans. on Medical Imaging, vol. 7, pp. 45–58,
1988.

[3] S. Geman and S. Geman, “Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration of
images,” IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, vol. 6, pp. 721–741, 1984.

[4] F. C. Jeng and J. W. Woods, “Simulated annealing in
compound Gaussian random fields,”IEEE Trans on
Information Theory, vol. 36, pp. 94–107, 1988.

[5] R. Chellapa, T. Simchony, and Z. Lichtenstein, “Image
estimation using 2D noncausal Gauss-Markov random
field models,” inDigital Image Restoration, A.K. Kat-
saggelos, Ed., pp. 109–141. Springer Verlag, 1991.

[6] R. Leahy and X. Yan, “Incorporation of anatomi-
cal MR data for improved functional imaging with
PET,” in Information Processing in Medical Imaging,
A. C. Colchester and D. Hawkes, Eds., pp. 121–131.
Springer Verlag, 1991.

(a) Sinogram (b) FBP reconstruction

(c) CAR reconstruction (d) GGMRF reconstruction

(e) CGMRF reconstruction (f) Line process

Fig. 3. Results with a real image.

[7] S. Lee, A. Rangarajan, and G. Gindi, “Bayesian image
reconstruction in SPECT using high-order mechanical
models as priors,”IEEE Trans. on Medical Imaging,
vol. 14, pp. 669–680, 1995.

[8] B. Ripley, Spatial statistic, Wiley, New York, 1981.

[9] R. Molina, “On the hierarchical Bayesian approach
to image restoration. applications to astronomical im-
ages,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. PAMI-16, pp. 1122–1128, 1994.

[10] R. Leahy, “Recent developments in iterative image
reconstruction for PET and SPECT,”IEEE Trans. on
Medical Imaging, vol. 19, pp. 257–259, 2000.

[11] C. Bouman and K. Sauer, “A generalized Gaussian
image model for edge-preserving MAP estimation,”
IEEE Trans. on Image Processing, vol. 2, pp. 296–
310, 1993.
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