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Abstract. Most whole-slide histological images are stained with hema-
toxylin and eosin dyes. Slide stain separation or color deconvolution is a
crucial step within the digital pathology workflow. In this paper, the
blind color deconvolution problem is formulated within the Bayesian
framework. Our model takes into account both spatial relations among
image pixels and similarity to a given reference color-vector matrix. Us-
ing Variational Bayes inference, an efficient new blind color deconvolution
method is proposed which provides a fully automated procedure to esti-
mate all the unknowns in the problem. A comparison with classical and
current state-of-the-art color deconvolution algorithms, using real images
with known ground truth hematoxylin and eosin values, has been carried
out demonstrating the superiority of the proposed approach.
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1 Introduction

In digital brightfield microscopy, tissues are usually stained before digitization
and evaluation, with hematoxylin and eosin (H&E) being the most widely used
stains. Color deconvolution (CD) aims at separating a color image into the con-
centration of each stain present in it. This is not an easy task since the exact
spectral profile of the stains varies from one image to another [10]. Hence, the
stain color-vector matrix, which relates the color image and the stain concen-
trations, often needs to be estimated for each slide. Once the stain color-vectors
are calculated, the color of different images can be normalized to a target image
for an easier evaluation. This is usually done by replacing the stain vectors with
the target stain vectors obtained from the reference slide, and converting the
calculated concentrations back to an RGB image.

One of the first CD methods was proposed by Ruifrok et al. [9]. The values for
the stain vector of each dye were obtained by measuring the relative absorption of
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each color from single-stained images. While these standard values are frequently
used, they have a strong dependence on the experimental setting utilized in [9].
In [6] H&E color-vector are obtained from the two largest singular values of
the SVD decomposition of the optical density matrix. McCann et al. [7] extend
the method in [6] by adjusting the contrast of the eosin channel and including a
weak interaction between eosin and hematoxylin in the pixels of the hematoxylin
channel where eosin values were changed. The algorithm is tested on a set of
three H&E images that were stained and destained to create H-only and E-only
images that are used as ground-truth separated images for the H&E image. In [4]
the stain color-vectors are estimated by projecting the input color image in the
Maxwellian chromaticity plane to form clusters, each one corresponding to one
stained tissue type. In [5] color normalization is performed by first deconvolving
both source and target images, applying a non-linear mapping of the source
to the target image channels and recombining the mapped channels into the
normalized source image. In [8] the CD problem is formulated as a blind source
separation problem tackled by Non-negative Matrix Factorization (NMF) and
Independent Component Analysis (ICA). Vahadane et al. [11] and Xu et al. [13]
independently extend the NMF in [8] with regularization and sparsity terms since
they assume that most pixels contain one type of biological material. The use of
Non-negative Least Squares (NNLS) instead of NMF is proposed in [3]. Alsubaie
et al. [1] propose using ICA in the wavelets domain where the independence
condition among sources is relaxed. All these methods depend on parameters
that need to be manually adjusted for an optimal deconvolution.

In this paper we propose a novel fully automated CD method that simultane-
ously estimates the color-vector matrix, the concentration of the stains, and all
required model parameters. In our Bayesian blind CD problem formulation we
introduce a smoothness prior model on the stain concentrations which helps re-
duce the acquisition noise and takes into account the spatial correlation between
adjacent pixels. Despite the variability among images, the color-vector matrices
are often assumed to be close to a commonly accepted standard matrix. Our
Bayesian modelling allows us to include this additional prior knowledge on the
sought after solution.

The rest of the paper is organized as follows: in Sect. 2 we mathematically
formulate the blind CD of histopathological images problem. This problem is
approached using the Bayesian framework in Sect. 3. In this section we also carry
out Bayesian inference to estimate the color-vector matrix, concentrations, and
model parameters in a fully automated manner. In Sect. 4 the proposed method
is evaluated in a set of H&E stained images and its performance is compared
with other classical and state-of-the-art CD methods. Finally, Sect. 5 concludes
the paper.

2 Problem Formulation

The RGB intensity image detected by a brightfield microscope observing a
stained histological specimen’s slide is the (M ×N)× 3 matrix, I, with columns



ic = (i1c, . . . , iMNc)
T, c ∈ {R,G,B} and MN the number of pixels. Accord-

ing to the monochromatic Beer-Lambert law [9], the Optical Density (OD) for
channel c of the slide, yc ∈ RMN×1, is yc = − log10

(
ic/i

0
c

)
, where i0c denotes

the incident light, and the division operation and log10(·) function are com-
puted element-wise. For a slide stained using ns stains the observed OD image
Y = [yR,yG,yB ] ∈ RMN×3 can be obtained from

YT = MCT + NT , (1)

where N is the capture noise matrix of size MN × 3 with i.i.d. N (0, β−1) com-
ponents, C ∈ RMN×ns is the stain concentration matrix

C =

 c11 . . . c1ns

...
...

...
cMN1 . . . cMNns

 =

 cT1,:
...
cTMN,:

 =
[
c1 . . . cns

]
, (2)

with i-th row cTi,: = (ci1, . . . , cins
), i = 1, . . . ,MN and columns cs = (c1s, . . . ,

cMNs)
T, s ∈ {1, . . . , ns} and M ∈ R3×ns is the normalized stains’ specific color-

vector matrix. Each column in matrix M is a unit `2 norm stain color-vector
containing the relative RGB color composition of the corresponding stain. Color
Deconvolution (CD) is a technique that allows to obtain the stain concentration
matrix, C, and the color-vector matrix, M, from the observed optical densi-
ties, Y. In the following section we will use Bayesian modeling and inference to
estimate M and C as well as the model parameters.

3 Bayesian Modelling and Inference

Following the degradation model in (1), we have

p(Y|M,C, β) =

MN∏
i=1

p(yi,:|M, ci,:, β) =

MN∏
i=1

N (yi,:|Mci,:, β
−1I3×3). (3)

The stain concentrations at each pixel on the image are expected to have
values similar to the ones of the surrounding pixels. So, we impose smoothing
prior models on the concentrations cs, s = 1, . . . , ns, that is, on the columns of
C, as the Gaussian distributions of the form

p(C) =

ns∏
s=1

p(cs) ∝
ns∏
s=1

α
MN
2

s exp

(
−1

2
αsc

T
s F

TFcs

)
, (4)

where F ∈ RMN×MN is a smoothing filter and αs, s = 1, . . . , ns, controls the
amount of smoothness.

The color-vector matrix M = [m1, . . . ,mns
] is also unknown, because it

depends on the staining procedures and microscopes. In [9], standard color-
vectors for hematoxylin, eosin, and DAB stains were proposed. Although those



standard color-vectors are not usually exact for each single image, they are very
representative and have been frequently used. In this paper we incorporate the
similarity to a representative color-vector matrix M = [m1, . . . ,mns

] into the
Gaussian prior model

p(M)=

ns∏
s=1

p(ms)∝
ns∏
s=1

γ
3
2
s exp

(
−1

2
γs‖ms−ms‖2

)
. (5)

where γs, s = 1, . . . , ns, controls our confidence on the accuracy of ms.
The joint probability distribution for our problem is

p(Y,C,M|β,α,γ) = p(Y|C,M, β)p(M|α)p(C|γ) . (6)

Following the Bayesian paradigm, inference will be based on the posterior
distribution p(C,M, β,α,γ|y) which cannot be obtained in closed form, so a
variational approach [2] is applied.

The hyperparameters {β,α,γ} have not been considered as variables for the
variational method, but as model parameters for which a Maximum Likelihood
Estimator (MLE) will be obtained and p(C,M, β,α,γ|y) is approximated by
the distribution

q(C,M) =

ns∏
s=1

q(ms)

ns∏
s=1

q(cs). (7)

It can then be shown [2] that for each unknown θ ∈ Θ = {m1, . . . ,mns ,
c1, . . . , cns

}, q(θ) will have the form

q(θ) ∝ exp 〈log p(y,C,M|β,α,γ)〉q(Θ\θ) , (8)

where Θ\θ represents all the variables in Θ except θ and 〈·〉q(Θ\θ) denotes ex-

pected value calculated using the distribution q(Θ\θ). Estimates for the different

variables can be obtained as θ̂ = 〈θ〉q(θ). Let us now obtain the analytic expres-
sions for each unknown estimate.

Concentration Update Let us define

e−si,: = yi,:−
∑
k 6=s

〈cik〉 〈mk〉 and z−si = 〈ms〉T e−si,: , for i = 1, . . . ,MN (9)

From (6) and (8) we have

〈log p(y,C,M|β,α,γ)〉q(Θ\cs)
=− β

2

(
‖ cs ‖2

〈
‖ms ‖2

〉
− 2cTs z

−s)
− 1

2
αsc

T
s F

TFcs + const (10)

which produces q(cs) = N (cs| 〈cs〉 ,Σcs) , where

Σ−1cs
= β

〈
‖ms ‖2

〉
IMN×MN + αsF

tF and 〈cs〉 = βΣcs
z−s. (11)



Algorithm 1 Variational Bayesian Blind Color Deconvolution

Require: Observed image I, reference color-vector matrix M.
From I, obtain the observed OD image, Y, and set 〈ms〉(0) = ms, Σ

(0)
ms = 0,

Σ
(0)
cs = 0, and 〈cs〉(0), ∀s = 1, . . . , ns, from the matrix C obtained as CT = M+YT,

with M+ the Moore-Penrose pseudo-inverse of M, and n = 0.
while convergence criterion is not met do

1. Set n = n+ 1.
2. Using 〈ms〉(n−1), Σ

(n−1)
ms , 〈cs〉(n−1) and Σ

(n−1)
cs obtain the new parameter es-

timations β(n), α(n) and γ(n) from (14), (15) and (16), respectively.

3. Using β(n), α
(n)
s , 〈ms〉(n−1) and Σ

(n−1)
ms obtain the concentration updates Σ

(n)
cs

and 〈cs〉(n) from (11).

4. Using β(n), γ
(n)
s , 〈cs〉(n) and Σ

(n)
cs obtain the color-vector update Σ

(n)
ms and

〈ms〉(n) from (13).
end while
Output the color-vector m̂s = 〈ms〉(n) and the concentrations ĉs = 〈cs〉(n).

Color-Vector Update In a similar way, using eq. (9), from eqs. (6) and (8)
we now have

〈log p(y,C,M|β,α,γ)〉q(Θ\ms)
=− β

2

(
‖ms ‖2

∑
i

〈
c2is
〉
− 2mT

s

∑
i

〈cis〉 e−si,:

)

− 1

2
γs ‖ms −ms ‖2 +const (12)

which produces q(ms) = N (ms| 〈ms〉 ,Σms
) , where

Σ−1ms
= (β

∑
i

〈
c2is
〉
+γs)I3×3 and 〈ms〉 = Σms

(β
∑
i

〈cis〉 e−si,: +γsms). (13)

Notice that 〈ms〉 may not be an unitary vector. We can always replace 〈ms〉
by 〈ms〉 / ‖ 〈ms〉 ‖ and Σms by Σms/ ‖ 〈ms〉 ‖2. Notice also that

〈
c2is
〉

can be

calculated using (11) and
〈
‖ms ‖2

〉
can be easily calculated from (13).

Parameter Update Finally, the MLE estimators of the noise, concentration,
and color-vectors precisions are

β̂−1 =
tr
〈
(YT −MCT)(YT −MCT)T

〉
q(Θ)

3MN
, (14)

α̂−1s =
tr(FTF

〈
csc

T
s

〉
)

MN
, (15)

γ̂−1s =
tr(
〈
(ms −ms)(ms −ms)

T
〉
)

3
. (16)

respectively. Notice that the involved expected values can be easily calculated.
The proposed Variational Bayesian Blind Color Deconvolution method, sum-

marized in Algorithm 1, allows to obtain the estimated concentrations ĉs and



color-vector m̂s iterating on the concentration and color-vector updates until
convergence. Finally, an RGB image of each separated stain, ŷsep

s , can be ob-
tained as ŷsep

s = exp10(−m̂sĉ
T
s ).

4 Experiments

We compared the proposed fully automated approach with classical and state-
of-the-art CD methods on the stain separation benchmark in [7]. This dataset is
formed by three H&E images and their corresponding H-only and E-only images
that can be used as ground truth images for the color deconvolution procedure.
Each image in the dataset was obtained by eosin staining the tissue, imaging,
destaining, staining with hematoxylin, imaging, staining also with eosin and
imaging. An example of H&E stained image in the dataset is shown in Fig. 1(a)
and its corresponding E-only and H-only images are shown in the left and right
hand side of Fig. 1(b), respectively.

The election of a reference color-vector matrix depends on the used stains.
For the H&E stains used in this paper, the value of M was set to the H&E values
proposed in [9]. We want to note that, for stains different from H&E, simply mea-
suring the tissue response to a single stain might provide its corresponding refer-

ence color-vector. The convergence criterion ‖ 〈cs〉(n)−〈cs〉(n−1) ‖2/‖ 〈cs〉(n) ‖2 <
10−5 for both stains, that is, s = 1, 2, was used. This is met in about 15 itera-
tions of the algorithm. We compare against the classical method in [6] and the
recent methods in [7] and [11]. For all the competing algorithms, parameters were
selected following the recommendations on the original paper or the reference
software freely available.

Figure 1(c)-(f) shows the separations with the proposed and competing meth-
ods. From the images, it is clear that the method in [7] and the proposed algo-
rithm produce results closer to the ground truth (see Fig. 1(b)) than the methods
in [6] and [11]. Although all methods effectively separate epithelial and stromal
structures, ours seems closer to ground truth. Note, for instance, that the long
structure in the center of the image (corresponding to bone tissue [7]) is not
clearly shown in the hematoxylin estimations in Figs. 1(c) and (e). All eosin es-
timations present a higher contrast than the ground truth although, estimations
obtained by the proposed method and the method in [7] are more similar to the
ground truth. The eosin estimation from the method in [7] seems to be slightly
less contrasted than ours.

Numerical results, using the Peak Signal to Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM) [12] measures, are presented in Table 1. This table in-
cludes the results for the non-blind method in [9] as a reference. The figures-
of-merit confirm the visual inspection results. The proposed method performs
better than the competitors, except for the case of the eosin stain for the al-
gorithm in [7]. This was expected since this algorithm selectively modifies the
obtained values for the stain separations to better accommodate ground truth.
More precisely, in [7] the eosin separation is corrected in contrast by adding a
small part of the hematoxylin stain, and the hematoxylin stain is then computed



a) H&E image b) Ground truth c) Method in [6]

d) Method in [7] e) Method in [11] f) Proposed method

Fig. 1. Ground truth and separations for the proposed and the compared method.

again by taking into account interaction between the stains in those places where
the contrast of the eosin coefficients is adjusted. Note that, in spite of these ad-
justments, our fully automated proposed method consistently provides better
PSNR results for the hematoxylin stain than the method in [7]. Notice that the
obtained PSNR and, especially, the SSIM values are quite low. This is due to the
staining-destaining process that makes the tissue to move and deform. These de-
formations were partially corrected in [7] by geometrically registering the H-only
and E-only to their corresponding estimations. Although we used the registered
images from [7] as ground truth for all the tests, there still are misalignment
between ground truth and estimations that deteriorate the figures-of-merit.

The proposed method is faster than the recent method in [11], taking 14
seconds on a i7-5550U @ 2.40GHz laptop with 16 GB RAM versus 50.2s. However
it is slower than the classical method in [6], that took 0.4s., and the method in
[7] that took 2.78s.

5 Conclusions

A novel fully automated variational Bayesian blind color deconvolution method
for histological images is proposed. The method estimates the color-vector ma-
trix, the concentration of the stains and all the model parameters. The proposed
model takes into account the spatial relations between pixels as well as the sim-
ilarity to a standard color-vector matrix. Comparison with classical and recent
methods demonstrated that the proposed method produces better results than
the competitors, except for the eosin stain by the algorithm in [7] as already
mentioned.



Table 1. PSNR and SSIM for the different methods and images in the dataset.

Image Stain Method in [9] Method in [6] Method in [7] Method in [11] Proposed
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HE1
H 17.07 0.4275 17.35 0.4304 18.20 0.4614 16.56 0.3745 18.33 0.4702
E 18.44 0.6675 18.70 0.6816 20.04 0.6964 18.17 0.6248 19.36 0.6922

HE2
H 16.21 0.4200 16.75 0.4578 17.52 0.4662 16.16 0.3945 17.63 0.4540
E 17.15 0.6592 17.54 0.6850 19.37 0.7008 17.08 0.6593 18.16 0.6949

HE3
H 16.89 0.4660 17.33 0.4724 18.54 0.5241 16.53 0.4106 18.58 0.5255
E 17.79 0.6905 18.12 0.7247 20.29 0.7158 17.57 0.6732 18.92 0.7288
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