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ABSTRACT

In this paper, a solution to the multichannel image

restoration problem is provided using compound Gauss

Markov random �elds. For the single channel deblur-

ring problem the convergence of the Simulated Anneal-

ing (SA) and Iterative Conditional Mode (ICM) algo-

rithms has not been established. We propose two new

iterative multichannel restoration algorithms which can

be considered as extensions of the classical SA and ICM

approaches and whose convergence is established. Ex-

perimental results with color images demonstrate the

e�ectiveness of the proposed algorithms.

1. INTRODUCTION

Multichannel image processing di�ers from single chan-

nel (grayscale) image processing because of the redun-

dancy and the complementary information within the

channels. The processing is much more complicated

due to the increased dimensionality of the problem and

the need to extract and exchange information from and

among all channels.

In the past some e�ort has been devoted to restore

multichannel/color images (see [1, 2, 7] and the refer-

ences therein) by enforcing the similarity between the

intensity value of the pixels in the channels of the im-

age. Although this approach gives good results if the

wavelengths of the channels are close, in other cases

it results in color bleeding. Here we will approach the

problem from the point of view of similar regions.

In this paper we examine the use of compound Gauss

Markov random �elds (CGMRF) (see [3, 4, 5, 6]) to re-

store multichannel images. We propose two new iter-

ative restoration algorithms which extend the applica-
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tion of the classical Simulated Annealing (SA) and Iter-

ative Conditional Mode (ICM) approaches from single

channel to multichannel images. It is mentioned here

that the convergence of the SA and ICM algorithms has

not been established for the single channel deblurring

problem. The convergence of the proposed algorithms

is established as an extension of [8] to multichannel

images.

The paper is organized as follows. In section 2, no-

tation, the proposed model for the image and line pro-

cesses, and the noise model are introduced. Stochastic

and deterministic relaxation approaches to obtain the

maximum a posteriori (MAP) estimates are presented

in section 3. Finally, the performance of the proposed

methods is presented in section 4.

2. NOTATION AND MODEL

We will distinguish between f , the `true' image which

would be observed under ideal conditions (i.e., no noise

and no distortions produced by blurring and instru-

mental e�ects), and g, the observed image. Let us

assume that there are L channels, each of size M �

N , represented by gt = (g1
t
g2

t
: : : gL

t
) and f t =

(f1
t
f2

t
: : : fLt

); where each of the M �N vectors gc,
fc, c = 1; : : : ; L, results from the lexicographic order-

ing of the two-dimensional signals in each channel. We

will denote by fc
i the intensity of the original channel

c at the location of the pixel i on the lattice. The con-

vention applies equally to the observed image g. The

aim is then to reconstruct f from g.

When using a CGMRF, we need to de�ne a prior

distribution, a probability distribution over images f
where we incorporate information on the expected struc-

ture within an image. In this prior distribution we also

introduce a line process, l, that, intuitively, acts as an
activator or inhibitor of the relation between two neigh-

boring pixels depending on whether or not the pixels
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are separated by an edge. It is also necessary to specify

p(gjf; l), the probability distribution of observed im-

ages g if f were the `true' image and l the line process,
that models how the observed image has been obtained

from the `true' one. The Bayesian paradigm dictates

that inference about the true f and l should be based

on p(f; ljg) given by

p(f; ljg) / p(gjf; l)p(f; l): (1)

Maximization of (1) with respect to f and l yields

f̂ ; l̂ = argmax
f;l

p(f; ljg); (2)

the maximum a posteriori (MAP) estimator. Let us

examine the degradation and prior models.

The degradation model we consider is given by

g = Hf + n; (3)

where g, f and n represent the observed image, the

original image and the noise, respectively. We assume,

for the sake of simplicity, that the [L(M�N)]�[L(M�

N)] multichannel degradation matrix H is equal to

H = diag(H1 H2 : : : HL), that is, no cross-channel

degradation is present. However, the method we are

presenting here can be extended to handle cross-channel

degradations. We therefore have

p(gjf; l) / exp

(
�

LX
c=1

1

2�c
n
2
k gc �Hcfc

k
2

)
; (4)

where �c
n
2 is the noise variance for the channel c.

The prior model used is

p(f; l) / exp

(
�

LX
c=1

1

2�c
w
2

X
i

h
(1� 4�)fc

i
2

+�(fc
i � fc

i:+1)
2(1� lc[i;i:+1]) + �lc[i;i:+1]

+�(fc
i � fc

i:+2)
2(1� lc[i;i:+2]) + �lc[i;i:+2]

i

+

LX
c;c

0=1
c6=c0

X
i

�

4

h
lc[i;i:+1]l

c
0

[i;i:+1] + lc[i;i:+2]l
c
0

[i;i:+2]

i
9>>=
>>; ; (5)

where we are assuming a `toroidal edge correction',

i : +1, i : +2, i : +3, i : +4 denote the four pix-

els around pixel i (if i = (u; v) they correspond to

(u+1; v); (u; v+1); (u�1; v) and (u; v�1), respectively)
and the line process between pixels i and j, lc

[i;j]
, takes

the value zero if pixels i and j in channel c, c = 1; : : : ; L,
are not separated by an active line and one otherwise.

We then penalize the introduction of an active line ele-

ment in the position [i; j] by the term �lc[i;j]. By intro-

ducing the term �(lc
[i;i:+1]

lc
0

[i;i:+1]
+ lc

[i;i:+2]
lc

0

[i;i:+2]
) with

c; c0 = 1; : : : ; L, c 6= c0 and � > 0, we increase the prob-

ability of a new active line element in the position [i; j]
if the other channels present a line in the same position.

Notice that � could be dependent on the channel we are
considering. The introduction of these cross terms will

help to recognize the same objects in all the channels

even if they do not have similar intensity. The param-

eter �c
w
2 measures the smoothness of the `true' channel

c of the image and � is just less than 0.25.

It could be argued that by the introduction of these

cross-channels terms for the line process we may end

up creating non-existing regions in some channels (for

instance, in a RGB representation, a 50% red, 50% blue

object in a 50% blue background may create the same

object in all the bands). However, since we are smooth-

ing using the four pixels around the current one, the

introduction of a line will only force smoothing with

fewer than four neighbors. Furthermore, the introduc-

tion of these terms will allow to recognize a 50% red,

50% blue object in a 40% blue background helping to

create the same object in the blue band.

3. MAP ESTIMATION USING

STOCHASTIC RELAXATION

Since p(f; ljg) is nonlinear it is extremely di�cult to

�nd f̂ and l̂ by any conventional method. The method

we use here is the modi�ed Simulated Annealing tech-

nique proposed in [8], a relaxation technique to search

for MAP estimates from degraded observations. It uses

the distribution

pT (f; ljg) =
1

ZT

exp

(
�
1

T

LX
c=1

�
1

2�c
n
2
k gc �Hcfc

k
2

+
1

2�c
w
2

X
i

h
(1� 4�)fc

i
2

+�(fc
i � fc

i:+1)
2(1� lc[i;i:+1]) + �lc[i;i:+1]

+ �(fc
i � fc

i:+2)
2(1� lc[i;i:+2]) + �lc[i;i:+2]

ii

�

LX
c;c

0=1
c6=c0

X
i

�

4

h
lc[i;i:+1]l

c
0

[i;i:+1] + lc[i;i:+2]l
c
0

[i;i:+2]

i
9>>=
>>; ; (6)

where T is the temperature and ZT a normalization

constant.

We shall need to simulate the conditional a poste-

riori density function for lc
[i;j]

, given the rest of l, f
and g and the conditional a posteriori density function
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(a) (b) (c)

Figure 1: (a) Degraded image, (b) restoration without line process and, (c) restoration with the proposed method.

for fc
i given the rest of f , l and g. To simulate the

line process conditional a posteriori density function,

pT (l
c
[i;j]

jlc
[k;l]

: 8[k; l] 6= [i; j]; lc
0

: 8c0 6= c; f; g), we have

pT (l
c
[i;j] = 0jlc[k;l] : 8[k; l] 6= [i; j]; lc

0

: 8c0
6= c; f; g) /

exp

�
�
1

T

�

2�c
w
2
(fc

i � f c
j )

2

�
; (7)

pT (l
c
[i;j] = 1jlc[k;l] : 8[k; l] 6= [i; j]; lc

0

: 8c0
6= c; f; g) /

exp

2
4� 1

T

0
@ �

2�c
w
2
� �

X
c0 6=c

lc
0

[i;j]

1
A
3
5 : (8)

For our Gaussian noise case, the conditional density

function for fc
i given the rest of f , l and g, pT (f

c
i jf

c
j :

8j 6= i; fc
0

: 8c0 6= c; l; g), we will simulate is the Gaus-
sian distribution de�ned by [8],

pT (f
c
i jf

c
j : 8j 6= i; fc

0

: 8c0
6=c; l; g) � N

�
�c
i ; T�

c
i
2
�
; (9)

with mean

�c
i = �ci

2
4� X

j nhbr i

(fc
i � fc

j (1� lc[i;j])) + (1� 4�)fc
i

3
5

+(1� �ci )
�
(Hctgc)i � (HctHcfc)i + fc

i

�
; (10)

and

�c
i
2
= (1� !c

i
2
)

�c
w
2�c

n
2

nnc
i �

c
n
2 + s �c

w
2
; (11)

where s is the sum of the square of the coe�cients

de�ning the blur function, that is, s =
P

i
hci

2, nnc
i =

�
P

j nhbr i(1�l
c
[i;j]

)+(1�4�), where the su�x `j nhbr i'
denotes the four neighbor pixels at distance one from

pixel i, !c
i = (�c

n
2(1� nnc

i ) + (1� s)�c
w
2)=(�c

n
2 + �c

w
2);

and �ci = �c
n
2=(�c

n
2+�c

w
2): Note that, although accord-

ing to pT (f
c
i jf

c
j : 8j 6= i; fc

0

: 8c0 6= c; l; g), the value

of a pixel, fc
i , will depend on the value of the pixels in

the other channels when we have cross channel blur-

ring, the prior image model only introduces graylevel

dependency within each channel.

Having de�ned the needed probability distributions,

let us examine the modi�ed SA and ICM algorithms.

The convergence of the algorithms is established as an

extension of [8], to restore multichannel images.

Algorithm 1 (MSA procedure)

1. Set t = 0 and assign an initial con�guration de-

noted as f(�1), l(�1) and initial temperature

T (0) = 1.

2. The evolution l(t � 1) ! l(t) of the line process

can be obtained by sampling the next point of

the line process from the raster-scanning scheme

based on the conditional probability mass func-

tion de�ned in (7) and (8) and keeping the rest

of l(t� 1) unchanged.

3. Set t = t+1. Go back to step 2 until a complete

sweep of the �eld l is �nished.

4. The evolution f(t�1)! f(t) of the image system

can be obtained by sampling the next value of

the whole multichannel image based on the con-

ditional probability mass function given in (9)

5. Set T (t) = CT = log(1 + k(t)), where CT is a con-

stant and k(t) is the sweep iteration number at

time t.

6. Go to step 2 until t > tf , where tf is a speci�ed

integer.
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(a) (b) (c)

Figure 2: Line process obtained by the proposed algorithm for the , (a) red band, (b) green band and (c) blue

band.

The modi�ed ICM procedure is obtained by selecting

in steps 2 and 4 of Algorithm 1 the mode of the corre-

sponding transition probabilities.

The results in [8] guarantee that the MSA and ICM

algorithms converge to a local MAP estimate, even in

the presence of blurring.

4. EXPERIMENTAL RESULTS

The proposed modi�ed SA method was tested on real

color images represented in RGB format. Results are

presented on the `Lena' image, blurred with an out-of-

focus point spread function, Hc, c 2 fR;G;Bg, with
radius 5, and Gaussian noise with �c

n
2 = 4, for all the

color bands. We chose �c
w
2 = 50, � = 175 and � =

0:6. Figure 1 shows the degraded image, the restoration

obtained without line process, that is, lci = 0, 8i;8c,
and the restoration with the proposed method. It is

clear that the proposed method gives superior results

by reducing the ringing around the edges which, indeed,

are considerably sharper in the restoration with the line

process. The line process obtained by the proposed

algorithm for each band is shown in �gure 2.

We also compared the proposed SA method with

the method using a CGMRF version that processed

each band independently, that is, � = 0:0 in (5). The

proposed modi�ed SA method better detected the ob-

jects in each band, the edges were clearer and had no

color bleeding, which is a problem with the indepen-

dent restoration algorithm.

REFERENCES

[1] Galatsanos, N.P. and Chin, R. T., \Digital

Restoration of Multichannel Images", IEEE Trans.

Acoust., Speech, Signal Processing, vol. 37, n. 3, pp.

415{421, 1989.

[2] Galatsanos, N.P., Katsaggelos, A.K., Chin and R.

T., Hillery, A.D., \Least Squares Restoration of

Multichannel Images", IEEE Trans. on Signal Pro-

cessing, vol. 39, n. 10, pp. 2222{2236, 1991.

[3] Geman, S., Geman D., \Stochastic Relaxation,

Gibbs Distributions, and the Bayesian Restoration

of Images", IEEE Trans. on PAMI, vol. PAMI-9, n.

6, pp. 721{742, 1984.

[4] Jeng, F.C., \Compound Gauss-Markov Random

Fields for Image Estimation and Restoration",

Ph.D Thesis, Rensselaer Polytechnic Inst., 1988.

[5] Jeng, F.C., and Woods, J.W., \Simulated Anneal-

ing in Compound Gaussian Random Fields", IEEE

Trans. Inform. Theory, n. 36, pp. 94{107, 1988.

[6] Jeng, F.C. and Woods, J.W., \Compound Gauss-

Markov Models for Image Processing", in Dig-

ital Image Restoration, Katsaggelos, A.K. (ed.),

Springer Series in Information Science, vol. 23,

Springer{Verlag, 1991.

[7] Molina, R., Mateos, J., \Multichannel Image

Restoration in Astronomy", Vistas in Astronomy,

vol. 41, n. 3, pp. 373-379, 1997.

[8] Molina, R., Katsaggelos, A. K., Mateos, J., Her-

moso, A., Segall, A., \Restoration of Severely

Blurred High Range Images Using Stochastic and

Deterministic Relaxation Algorithms in Compound

Gauss Markov Random Fields", to appear in Pat-

tern Recognition, 1999.


