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ABSTRACT

In this work we extend the use of Compound Gauss
Markov Random Fields to the restoration of color im-
ages. While most of the work in color image restoration
is concentrated on enforcing similarity between the in-
tensity values of the pixels in the image bands, we pro-
pose combining information by means of the line pro-
cess. In order to find the multichannel restoration mod-
ified versions of ICM and SA are proposed. The methods
are finally tested on real images.

1 Introduction

Color image processing differs from grayscale image pro-
cessing because of the redundancy and the complemen-
tary information within the color bands. The processing
is much more complicated due to the increased dimen-
sionality of the problem and the need to extract and
exchange information from and among all bands.

In the past some effort has been devoted to restore
multichannel/color images (see [1],[2] and [7] and the ref-
erences therein) by enforcing the similarity between the
intensity value of the pixels in the bands of the image.
Although this approach gives good results if the wave-
lengths of the bands are close, in other cases it results
in color bleeding. Here we will approach the problem
from the point of view of similar regions.

In this paper we examine the use of compound Gauss
Markov random fields (CGMRF) (see [3, 4, 5, 6]) to
restore color images. We propose two new iterative
restoration algorithms which extend the classical SA and
ICM approaches to color images. It is mentioned here
that the convergence of the Simulated Annealing (SA)
and Iterative Conditional Mode (ICM) algorithms has
not been established for the single channel deblurring
problem. The convergence of the proposed algorithm is
established as an extension of [8] to multichannel im-
ages.

The paper is divided as follows. In section 2 we intro-
duce the notation we use, the proposed model for the im-
age and line processes and the noise model. Stochastic
and deterministic relaxation approaches to obtain the
maximum a posteriori (MAP) estimates are presented

in section 3. Performance of the proposed methods is
presented in section 4.

2 Notation and Model

We will distinguish between f , the ‘true’ image which
would be observed under ideal conditions (i.e., no noise
and no distortions produced by blurring and instru-
mental effects), and g, the observed image. If we as-
sume, without loss of generality, an RGB format and
each image size is M × N , they can be represented by
gt =

(
gR

t
gG

t
gB

t
)

and f t =
(
fR

t
fG

t
fB

t
)
, where

each of the M ×N vectors gc, fc, c ∈ {R,G,B}, results
from the lexicographic ordering of the two-dimensional
signals in each channel. We will denote by fci the in-
tensity of the true color band c at the location of the
pixel i on the lattice. The convention applies equally to
the observed image g. The aim is then to reconstruct f
from g.

When using a CGMRF, we need to define a prior dis-
tribution, a probability distribution over images f where
we incorporate information on the expected structure
within an image. In this prior distribution we also in-
troduce a line process, l, that, intuitively, acts as an
activator or inhibitor of the relation between two neigh-
boring pixels depending on whether or not the pixels
are separated by an edge. It is also necessary to specify
p(g|f, l), the probability distribution of observed images
g if f were the ‘true’ image and l the line process, that
models how the observed image has been obtained from
the ‘true’ one. The Bayesian paradigm dictates that
inference about the true f and l should be based on
p(f, l|g) given by

p(f, l|g) ∝ p(g|f, l)p(f, l). (1)

Maximization of (1) with respect to f and l yields

f̂ , l̂ = arg max
f,l

p(f, l | g), (2)

the maximum a posteriori (MAP) estimator. Let us
examine the degradation and prior models.

The following degradation model is considered

g = Hf + n, (3)
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where g, f and n represent the observed image, the
original image and the noise respectively. We as-
sume for simplicity that the [3(M × N)] × [3(M × N)]
multichannel degradation matrix H is equal to H =
diag(HR HG HB), that is, no cross-channel degrada-
tion is present, in other words, gR

gG

gB

 =

 HR 0 0

0 HG 0
0 0 HB

 fR

fG

fB

+

 nR

nG

nB

 ,

however, the method we are presenting can be extended
to handle cross-channel degradations. We therefore have

p(g|f, l) ∝ exp

[
− 1

2σRn
2 ‖ g

R −HRfR ‖2

− 1

2σGn
2 ‖ g

G −HGfG ‖2

− 1

2σBn
2 ‖ g

B −HBfB ‖2
]
. (4)

The prior model used is

p(f, l) ∝ exp

− ∑
c∈{R,G,B}

1
2σcw2

∑
i

[
φ(fci − fci:+1)2(1− lc[i,i:+1])

+βlc[i,i:+1] + φ(fci − fci:+2)2(1− lc[i,i:+2])

+βlc[i,i:+2] + (1− 4φ)fci
2+
]

+
1
4

∑
c,c′∈{R,G,B}

c6=c′

∑
i

ε
[
lc[i,i:+1]l

c′

[i,i:+1]

+lc[i,i:+2]l
c′

[i,i:+2]

]}
, (5)

where we are assuming a ‘toroidal edge correction’ and
a toroidal correction on the color bands, i : +1, i : +2,
i : +3, i : +4 denote the four pixels around pixel i (if
i = (u, v) they correspond to (u+1, v), (u, v+1), (u−1, v)
and (u, v−1), respectively) and the line process between
pixels i and j, lc[i,j], takes the value zero if pixels i and j
in band c, c ∈ {R,G,B}, are not separated by an active
line and one otherwise (see Figure 1) . We then penalize
the introduction of an active line element in the posi-
tion [i, j] by the term βlc[i,j]. By introducing the term

ε(lc[i,i:+1]l
c′

[i,i:+1] + lc[i,i:+2]l
c′

[i,i:+2]) with c, c′ ∈ {R,G,B},
c 6= c′ and ε > 0, we increase the probability of a new ac-
tive line element in the position [i, j] if the other bands
present a line in the same position (see Figure 2). Notice
that ε could be dependent on the bands we are consid-
ering. The introduction of these cross terms will help to
recognize the same objects in all the bands even if they
do not have similar intensity. The parameter σcw

2 mea-
sures the smoothness of the ‘true’ band c of the image
and φ is just less than 0.25.

i i:+1i:+4

[i,i:+1][i,i:+4]
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Figure 1: Image and line sites at each channel.
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Figure 2: Interactions between line processes at different
bands.

It could be argued that by the introduction of these
cross-channels terms we may end up creating non-
existing regions in some channels (for instance, a pure
red object in a black background will help the creation of
the same object in the green and blue bands). However,
since we are smoothing using the four pixels around the
current one, the introduction of a line will only force
smoothing with fewer than four neighbors. Assuming
that regions are more or less flat this should not create
any problems.

3 MAP estimation using Stochastic Relaxation

Since p(f, l | g) is nonlinear it is extremely difficult to
find f̂ and l̂ by any conventional method. The method
we use here is the modified simulated annealing tech-
nique proposed in [8], a relaxation technique to search
for MAP estimates from degraded observations. It uses
the distribution

pT (f, l | g) =
1
ZT

exp

− 1
T

∑
c∈{R,G,B}
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[
1

2σcn2 ‖ g
c −Hcfc ‖2

−1
4

∑
i

ε
[
lc[i,i:+1]l

c+1
[i,i:+1] + lc[i,i:+2]l

c+1
[i,i:+2]

]
+

1
2σcw2

∑
i

[
φ(fci − fci:+1)2(1− lc[i,i:+1]) + βlc[i,i:+1]

+φ(fci − fci:+2)2(1− lc[i,i:+2]) + βlc[i,i:+2]

+(1− 4φ)fci
2
]]}

, (6)

where T is the temperature and ZT a normalization con-
stant.

We shall need to simulate the conditional a posteriori
density function for lc[i,j], given the rest of l, f and g
and the conditional a posteriori density function for fci
given the rest of f , l and g. To simulate the line process
conditional a posteriori density function, pT (lc[i,j] | l

c
[k,l] :

∀[k, l] 6= [i, j], lc−1, lc+1, f, g), we have

pT (lc[i,j] = 0 | lc[k,l] : ∀[k, l] 6= [i, j], lc−1, lc+1, f, g)

∝ exp
[
− 1
T

φ

2σcw2 (fci − fcj )2

]
, (7)

and

pT (lc[i,j] = 1 | lc[k,l] : ∀[k, l] 6= [i, j], lc−1, lc+1, f, g)

∝ exp
[
− 1

2T

(
β

σcw
2 − ε(l

c−1
[i,j] + lc+1

[i,j])
)]

. (8)

The conditional a posteriori density function for fci
given the rest of f , l and g, pT (fci | fcj : ∀j 6=
i, fc−1, f c+1, l, g), as described in [8].

Notice that the modified ICM method defined in [8]
can also extended to be used with multichannel images.
The results in that paper guarantee its convergence to
a local maximum.

4 Experimental Results

The proposed modified SA method was tested on real
color images. Results are presented first on the ‘Lena’
image, blurred with an out-of-focus point spread func-
tion, Hc, c ∈ {R,G,B}, with radius 5, and Gaussian
noise with σcn

2 = 4, for all the color bands. We chose
σcw

2 = 50, β = 175 and ε = 0.6. Figure 3(a)− (c) shows
the degraded image, the restoration obtained without
line process, that is, lci = 0, ∀i, ∀c, and the restora-
tion with the proposed method. It is clear that the
proposed method gives superior results by reducing the
ringing around the edges which, indeed, are consider-
ably sharper in the restoration with the line process.
We also compared the method with the method using
a CGMRF version that processed each band indepen-
dently, that is, ε = 0.0 in Eq. (5) (see Figure 3d). The
proposed modified SA method better detected the ob-
jects in each band, the edges were clearer and had no
color bleeding, which is a problem with the independent
restoration algorithm.
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Figure 3: (a) Degraded color Lena image, (b) restoration without line process and, (c) restoration with the proposed
method. (d) restoration with line process in each band but without interactions between bands.
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