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Abstract. Over the last few years, a growing number of researchers
from varied disciplines have been utilizing Markov random fields (MRF)
models for developing optimal, robust algorithms for various problems,
such as texture analysis, image synthesis, classification and segmentation,
surface reconstruction, integration of several low level vision modules,
sensor fusion and image restoration. However, not much work has been
reported on the use of this model in image restoration.

In this paper we examine the use of compound Gauss Markov random
fields (CGMRF) to restore severely blurred high range images. For this
deblurring problem, the convergence of the Simulated Annealing (SA)
and Iterative Conditional Mode (ICM) algorithms has not been estab-
lished. We propose two new iterative restoration algorithms which extend
the classical SA and ICM approaches. Their convergence is established
and they are tested on real and synthetic images.

1 Introduction

Image restoration refers to the problem of recovering an image, f, from its
blurred and noisy observation, g, for the purpose of improving its quality or
obtaining some type of information that is not readily available from the de-
graded image.

Tt is well known that translation linear shift invariant (LST) image models
do not, in many circumstances, lead to appropriate restoration methods. Their
main problem is their inability to preserve discontinuities. To move away from
simple LSI models several methods have been proposed.

The CGMREF theory provides us with a mean to control changes in the image
model using a hidden random field. A compound random field has two levels; an
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upper level which is the real image that has certain translation invariant linear
sub-models to represent image characteristics like border regions, smoothness,
texture, etc. The lower or hidden level is a finite range random field to govern
the transitions between the sub-models. The use of the underlying random field,
called the line process, was introduced by Geman and Geman in [4] in the discrete
case and extended to the continuous case by Jeng [5], Jeng and Woods [6, 7] and
Chellapa, Simchony and Lichtenstein [3].

Given the image and noise models, the process of finding the maximum «a
posteriori (MAP) estimate for the CGMRF is much more complex, since we
no longer have a convex function to be minimized and methods like simulated
annealing (SA) (see [4]) have to be used. Although this method leads to the MAP
estimate, it is a very computationally demanding method. A faster alternative
is deterministic relaxation which results in local MAP estimation, also called
iterative conditional mode (ICM) [1].

In this paper we extend the use of SA to restore high dynamic range images
in the presence of blurring, a case where convergence of this method has not
been shown (see [5, 6, 7] for the continuous case without blurring).

In Sect. 2 we introduce the notation we use and the proposed model for
the 1mage and line processes as well as the noise model. Both, stochastic and
deterministic relaxation approaches to obtain the MAP estimate without blur-
ring are presented in Sect. 3. Reasons why these algorithms may be unstable
in the presence of blurring are studied in Sect. 4. In Sect. 5 we modify the SA
algorithm and its corresponding relaxation approach in order to propose our
modified algorithms. Convergence proofs are given in Sect. 7. In Sect. 6 we test
both algorithms on real images and Sect. 7 concludes the paper.

2 Notation and Model

We will distinguish between f, the ‘true’ image which would be observed under
ideal conditions and g, the observed image. The aim is to reconstruct f from g.
Bayesian methods start with a prior distribution, a probability distribution over
images f by which they incorporate information on the expected structure within
an image. It is also necessary to specify p(g | f), the probability distribution of
observed images g if f were the ‘true’ image. The Bayesian paradigm dictates
that the inference about the true f should be based on p(f | g) given by

p(f 1 g)=p(g | p(f)/p(g) o plg | FIp(f)- (1)
Maximization of (1) with respect to f yields
f= argmaxp(f | g), (2)

the maximum a posteriori estimator. For the sake of simplicity, we will denote by
f (%) the intensity of the true image at the location of the pixel 7 on the lattice. We
regard f as a p x 1 column vector of values f(i). The convention applies equally
to the observed image g. Let us now examine the image and noise models.



The use of CGMRF was first presented in [4] using an Ising model to represent
the upper level and a line process to model the abrupt transitions. Extensions
to continuous range models using GMRF were presented in [5]. The CGMRF
model used in this paper was proposed by Chellapa, Simchony and Lichtenstein
in [3] and it is an extension of the Blake and Zisserman’s weak membrane model
[2] used for surface interpolation and edge detection. The convergence proof that

will be given here can also be extended to the CGMRF defined in [5, 6, 7].
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Fig. 1. Image and line sites.

The probability density function (pdf) of the CGMRF is given by

—logp(f,1) = const
—— ' [6(f() — FG : +1)2 (1 —I([3,4 : +1]) + BI([d, 3 : +1])

205, <
+o(fF() = F(i - +2))* (L= U([i, i - +2]) + BU[i i = +2]) + (1 = 40) f2(D)] . (3)

where {([7, j]) takes the value zero if pixels ¢ and j are not separated by an active
line and one otherwise and 7 : +1, 7 : +2, ¢ : 43, i : +4 denote the four pixels
around pixel ¢ as described in figure 1. That is, we penalize the introduction of
the line element between pixels ¢ and j (see figure 1) by the term 3I([z, j]). The
intuitive interpretation of this line process is simple; it acts as an activator or
inhibitor of the relation between two neighboring pixels depending on whether
or not the pixels are separated by an edge. In this paper we shall use this simple
image model. The convergence proofs that follow can be easily extended to more
complex image model including more neighboring pixels or interactions in the
line process.

Let us now describe the noise model. A simplified but very realistic noise
model for many applications is the Gaussian model with mean zero and vari-
ance o2. This means that the observed image corresponds to the model g(i) =
(DAY +n(3) = Ej d(i— 7)f(j)+n(i), where D is the p x p matrix defining the

systematic blur, assumed to be known and approximated by a block circulant



matrix, n(7) is the additive Gaussian noise with zero mean and variance o2 and
d(j) are the coefficients defining the blurring function.
Then, the probability of the observed image g if f were the ‘true’ image is

1
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p(g | f) xexp |-=— llg — DfII*| - (4)

3 MAP Estimation Using Stochastic and Deterministic
Relaxation

The MAP estimates of f and [, f, [ are given by,

fil=arg H}'c}Xp(f,l | 9). (5)

This is an obvious extension of (2) where now we have to estimate both the image
and line processes. The modified simulated annealing (MSA), algorithm we are
going proposing in this work, ensures convergence to a local MAP estimate
regardless of the initial solution. We start by examining the SA procedure as
defined in [5].

Since p(f,! | g) is nonlinear it is extremely difficult to find f and [ by any
conventional method. Simulated annealing is a relaxation technique to search
for MAP estimates from degraded observations. It uses the distribution

pr(119) = 5-exp {20 la = DI
— g YOO — £+ 40P~ ([ +10) + A1 i +1)

+ O(f(0) = F(i - +2))* (1= U([i, i - +2])) + BI([i, i = +2]) + (1 = 46)F*(i)] } (6)

where T is the temperature and Z7p a normalization constant.

We shall need to simulate the conditional a posterior: density function for
I([7, 7]), given the rest of [, f and g and the conditional a posteriori density func-
tion for f(i) given the rest of f, l and g. To simulate the line process conditional
a posteriori density function, pr(I([Z, 7]) | I([k,1]) : Y[k, ] # [i, 7], f, ), we have

(I ) = O 118, < V18,1 7 1] ) o exp =755,

7 - 16)7).
Q
oI ) = 11 W18 2 1] 0) o ex |52 )

Furthermore, for our Gaussian noise model,

pr(F() | £G) 5 #00,9) ~ N (uG0), To* i) ) (9)



where p!f1(i) and 02L[i](i) are given by

PGy = M(i)g Z | f(j)(;nii]l((g’j]))
(1 — Al <(DT9)(Z') —C(DTDf)(i) N f(i)> ’ (10)
(i) = 7u0n (11)

~ nnllil(i) o2 +co2’

where ¢ i1s the sum of the square of the coefficients defining the blur function,

that is, ¢ = Y, d(7)%, nnl)(3) = 6 ) e s(1 = 1([i,31)) + (1 — 46) and

nnilil (i) o2

nnllil(i) o2 + coZ’

AT () =

and [[7] is the four dimensional vector representing the line process configuration
around image pixel ().

Then the sequential SA to find the MAP, with no blurring (D = T), proceeds
as follows (see [5]):

Algorithm1 Sequential SA procedure. Let i;, t = 1,2,..., be the sequence
in which the sites are visited for updating.

1. Sett =0 and assign an initial configuration denoted as f_1, [_1 and initial
temperature T(0) = 1.

2. The evolution l;_1 — l; of the line process can be obtained by sampling the
next point of the line process from the raster-scanning scheme based on the
conditional probability mass function defined in (7) and (8) and keeping the
rest of l;_1 unchanged.

3. Sett =t+1. Go back to step 2 until a complete sweep of the field l 1s finished.

4. The evolution fi_1 — f; of the observed system can be obtained by sampling
the next value of the observation of the line process from the raster-scanning
scheme based on the conditional probability mass function given in (9) and
keeping the rest of l;_1 unchanged.

5 Sett =t + 1. Go back to step 4 until a complete sweep of the field f s
finished.

6. Go to step 2 untilt > t;, wheret; s a specified integer.

The following theorem from [5] guarantees that the SA algorithm converges
to the MAP estimate in the case of no blurring.

Theorem 1. If the following conditions are satisfied:

1. |¢] < 0.25
2. T(t) — 0 as t — oo, such that
5. T(1) > C/log(1 + k(1))



then for any starting configuration f_1,1_1, we have

p(ftali | f—lal—lag) - PO(f;l) ast — o0,

where po(.,.) is the uniform probability distribution over the MAP solutions and
k(1) is the sweep iteration number at time t.

Instead of using a stochastic approach, we can use a deterministic method to
search for a local maximum. An advantage of the deterministic method is that
its convergence is much faster than the stochastic approach, since instead of
simulating the distributions, the mode from the corresponding conditional dis-
tribution is chosen. The disadvantage is the local nature of the solution obtained.
This method can be seen as a particular case of SA where the temperature is
always set to zero.

4 Instability of the SA and ICM Solutions

Unfortunately, due to the presence of blurring the convergence of SA has not
been established for this problem. The main problem of the methods is that,
if ¢ is small, as is the case for severely blurred images, the term [(DTg)(i) —
(DT Df)(i)]/c in (10) is highly unstable. For the ICM method the problem gets
worse because sudden changes in the first stages, due to the line process, become
permanent (see [9]).

Let us examine intuitively and formally why we may have convergence prob-
lems with algorithm 1 and its deterministic relaxation approximation when se-
vere blurring is present. Let us assume for simplicity no line process and examine
the iterative procedure where we update the whole image at the same time; it
is important to note that this is not the parallel version of SA but an iterative
procedure. We have,

DTD
c

T
fr =AdN fio1 — (1= A) [ ft—1—ft—1] +(1_>‘)¥

= Af;_1 + const, (12)

where ¢ is the iteration number, understood as sweep of the whole image, and

A= [I—/\(I—qSN)—(l—/\) (13)

DTD]

For the method to converge A must be a contraction mapping. However this
may not be the case. For instance, if the image suffers from severe blurring then
c is close to zero and the matrix [DT D/c] has eigenvalues greater than one.
Furthermore, if the image has a high dynamic range, like astronomical images
where ranges [0,7000] are common, it is natural to assume that o2 is big and
thus, (1 — A)[DT D/c] has eigenvalues greater than one. Therefore, this iterative
method may not converge. It is important to note that, when there is no blurring,
¢ =1 and A is a contraction mapping.



Let us modify A in order to have a contraction. Adding [(1 — A)(1 —¢)/c]f
to both sides of (12) we have, in the iterative procedure,

(I+[A =X =c)/e]) fi = (1 =M1 =c)/c]fe-1
+Af;_1 + const

or

Ji=wfio1 + (1 —w)[Afi—1 + const],
with w = (1 — ¢)o2 /(02 4 02). We then have for this new iterative procedure
fi = fift_l + (1 — w)const,

where

A=[T—p(I—¢N)=(1-p)D" D],

with p = 02/(0% + 02), is now a contraction mapping.

5 The Modified Simulated Annealing Algorithm

Let us now examine how to obtain a contraction for our iterative procedure. Let
us rewrite (10) as an iterative procedure and add (a(1 —nnill(3)) 4 3(1 - ¢))f(3)
to each side of the equation, we have
(@ + B)fi(i) = (a(1 = nnlf(0)) + B(1 = ¢)) fi1 (3)
+ag Y fisa ()1 = U([E 5)))

+B((DT g)(i) = (DT Df)e-1() + cfi-1(2)), (14)
where a = 1/¢2 and g = 1/02, or,
fi(i) =
W=l £ () + (1 = Wl (5)) (Al[i](i)qs Z 'ft_1(j71§11£[;(i§[i,j]))
_|_(1 _ )\L[l](l)) <(D g)(l) — (CD Df)f—l(i) +ft—1(i))> ’

where wlt—l[i](i) = (c2(1 - nnlf—l[i](i)) + (1 =)ol /(o2 + o2).

So, in order to have a contraction, we update the whole image at the same
time using the value of f(i) obtained in the previous iteration, fi,_, (i), and,
instead of simulating from the normal distribution defined in (9) to obtain the
new value of f(¢), we simulate from the distribution

N (@), Toz ) (15)



with mean

i (i) = w1 G0) £, () + (1= bt ) B i) (16)
and
o2 1By = (1 (Gl )2y g2l gy (17)
The reason to use this modified variance is clear if we take into account that,
if
X ~ N(m,o?)
and

YIX ~ N (OX + (1= Nm, (1 =2)e?),

where 0 < A < 1, then
Y ~ N(m,c?).

We then have for this iterative method that the transition probabilities are
TT(tk)(ftk | ftk_l 3 ltk 3 g) X
Uy
(fro = M fo —Ql”‘ gl' Q1 [fe — M fy, —Qlt"g]]:
(18)

1
Pl 5mn

where

M.’tk — Qltk + (I — Qlik )(Cltk — (DTD):’:IC), (19)

Q]tk — (I _ Qltk )Bltk , (20)
where

CL’ [] N /\Lt i)
k *ftk(l)—¢ k ) Z ftk( )
jnhbri T tk Z)

and

C

o g iy = a—A%Wm)Ggﬂﬂlﬁ—f@),

2" is a diagonal matrix with entries wltk[i](i) and Qlfk is a diagonal matrix
with entries Ufnl[i](z').
In the coming section we apply the modified SA and ICM algorithms, whose

convergence is established in the appendix to restore astronomical images.
The algorithms are the following:

Algorithm 2 Sequential MSA procedure. Let i;, t = 1,2,..., be the se-
quence in which the sites are visited for updating.

1. Sett =0 and assign an nitial configuration denoted as f_1, l_1 and nitial
temperature T(0) = 1.



2. The evolution l;_1 — l; of the line process can be obtained by sampling the
nezt point of the line process from the raster-scanning scheme based on the
conditional probability mass function defined in (7) and (8) and keeping the
rest of l;_1 unchanged.

3. Sett =t+1. Go back to step 2 until a complete sweep of the field l 1s finished.

4. The evolution fi_1 — f; of the observed system can be obtained by sampling

the next value of the whole tmage based on the conditional probability mass
function given in (15)
. Go to step 2 until t > t;, where ty 15 a specified integer.

Uy

The following theorem guarantees that the MSA algorithm converges to a
local MAP estimate, even in the presence of blurring.

Theorem 2. If the following conditions are satisfied:

1. |¢] < 0.25
2. T(t) — 0 as t — oo, such that
5. T(1) > C/log(1 + k(1))

then for any starting configuration f_1,l_1, we have

p(fe, e | fo1,l21,9) — po(fil) ast — oo,

where po(.,.) is a probability distribution over local MAP solutions and k(t) is
the sweep iteration number at time t.

The modified ICM procedure is obtained by selecting in steps 2 and 4 of
Algorithm 2 the mode of the corresponding transition probabilities.

6 Test Examples

Let us examine how the modified ICM algorithm works on a synthetic star image,
blurred with an atmospherical point spread function (PSF), D, given by

d(i) o< (1+ (u® +v?)/R%) ™", (21)

with § = 3, R = 3.5, i = (u,v), and Gaussian noise with ¢2 = 64. If we use
02 = 24415, which is realistic for this image, and take into account that, for the
PSF defined in (21), ¢ = 0.02, A defined in (13) is not a contraction. Figures
2a and 2b depict the original and corrupted image, respectively. Restorations
from the original and modified ICM methods with 8 = 2 for 2500 iterations are
depicted on Fig. 2¢ and Fig. 2d, respectively. Similar results are obtained with
500 1terations.

The methods were also tested on images of Saturn which were obtained at the
Cassegrain /8 focus of the 1.52-m telescope at Calar Alto Observatory (Spain)
on July, 1991. Results are presented on a image taken through a narrow-band
interference filter centered at the wavelength 9500 A.
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Fig. 2. (a) Original image. (b) Observed image. (c) ICM restoration. (d) Restoration
with the proposed ICM method.

The blurring function defined in (21) was used. The parameters § and R were
estimated from the intensity profiles of satellites of Saturn that were recorded
simultaneously with the planet and of stars that were recorded very close in time
and airmass to the planetary images. We found é ~ 3 and R ~ 3.4 pixels.

Figure 3 depicts the original image and the restorations after running the
original ICM and our proposed ICM methods for 500 iterations and the original
SA and our proposed SA methods for 5000 iterations. In all the images the
improvement in spatial resolution is evident. To examine the quality of the MAP
estimate of the line process we compared it with the position of the ring and
disk of Saturn, obtained from the Astronomical Almanac, corresponding to our
observed image. Although all the methods detect a great part of the ring and the
disk, the ICM method, Fig. 4a, shows thick lines. The SA method, on the other
hand, gives us thinner lines and the details are more resolved, Fig. 4b. Obviously
there are some gaps in the line process but better results would be obtained by
using 8 neigbors instead of 4 or, in general, adding more I-terms to the energy
function.

Table 1 shows the computing time per iteration of the studied methods. They
are referred to the computing time of the ICM method. The little difference
between the ICM and SA methods is due to the fact that most of the time is
spent in convolving images.



Fig.3. (a) Original image, (b) restoration with the original ICM method and (c) its
line process, (d) restoration with the original SA method and (e) its line process. (f)
restoration with the proposed ICM method and (g) its line process, (h) restoration
with the proposed SA method and (i) its line process.

7 Conclusions

In this paper we have presented two new methods that can be used to restore high
dynamic range images in the presence of severe blurring. These methods extend
the classical ICM and SA procedures, so that convergence of the algorithms is
now guaranteed. The experimental results verify the derived theoretical results.
Further extensions of the algorithms are under consideration.

Appendix: Convergence of the MSA Procedure

In this section we shall examine the convergence of the MSA algorithm. It is
important to make clear that in this new iterative procedure we simulate f(z)



(a) (b)

Fig. 4. Comparison between the real edges (light) and the obtained line process (dark).
(a) Proposed ICM method, (b) Proposed SA method

Table 1. Computing times per iteration of the methods referred to the ICM computing
time.

Method Original ICM |Original SA |Proposed ICM|Proposed SA
Relative Time 1.00 1.13 0.12 0.20

using (15) and to simulate [([¢, j]) we keep using (7) and (8). We shall denote by
77 the corresponding transition probabilities. That is, Tr(s,)(fer|fraoy, by, 9) is
obtained from (18) and 774, (It [ f1,_,, lt,_, ) is obtained from (7) and (8).
Since updating the whole image at the same time prevents us from having
Pipr(1) = pr() we will not be able to show the convergence to the global MAP
estimates using the same proofs as in [4, 6].
To prove the convergence of the chain we need some lemmas and definitions

as in [b, 6].
We assume a measure space (§2, X, 1) and a conditional density function
7n(Sn|Sn—1) which defines a Markov chain s1,sa,..., 8y, .... In our application,

the s; are vectors valued with a number of elements equal to the number of pixels
in the image. For simplicity, we assume §2 is R? and p is a Lebesgue measure on
R?. Define a Markov operator P, : L' — L' as follows

Puf(sn) = /ﬂ Ta(5nlsn—1)F(5n_1)dsn_1. (22)

By PI” we mean the composite operation P, ym Poym—1...Poy2Pny1. The
convergence problem we are dealing with is the same as the convergence of Pf?
as m — 0o.



Definition 3. Let 2 be a vector with components z(7) and @ be a matrix with
components ¢(7, j). We define || z ||2 and || @ ||2 as follows

2 1l = (3 (@),

1Q = sup B2 — sty 2,

2
where p(i) are the eigenvalues of matrix Q'Q.

Definition4. A continuous nonnegative function V' : 2 — R is a Liapunov
function if

| llllm V(s) = oo, (23)

where || s || is a norm of s.

Denote by D the set of all pdfs with respect to Lebesgue measure and the
L1 norm defined as follows:

||fl|1=/n|f(s)|ds vier

Definition5. Let P, : L' — L' be a Markov operator. Then {P,} is said to be
asymptotically stable if, for any fi, fo € D,

i || PP — f2) 1= 0. (21)
Let us prove the following lemma.
Lemma6. If |¢| < 0.25 then, VI,
M [l2< 1,
where M' has been defined in (19).

Proof. First we note that from (14)

foli) = fiorG) = p(& D> (Fer(i) = fimr(G))(1 = 1[G, 31) + (1 — 48) fim1(4))

+(1 = p)((DT9)(@) = (DT Df)e-1(3)),

where p = a/(a + ).

So, M' is symmetric and for any vector z
P M = 20— (Y 6(e(i) — a(i s+ (1~ I +1)
(Y 6(a(i) = (i 21— ([ +2D) + (1= 46) 3 ()

—(1=p)2" DT Dz



Obviously if |¢] < 0.25, Yo # 0, 2T M'z < 3 2(i)?. Furthermore,
:ETMI:L‘ZZ:E(Z' —quS S+ )2—|—Z¢(m( — (i +2))?
+(1—49) > 2*(i)) — (1 — p)a” D" Da

=2"(I—p(I —¢N) - (1-p)D" D)z
and if |¢| < 0.25, =1 < (I — p(I — ¢N) — (1 — p)DT D). So, if |¢| < 0.25 ,

—I<M<I
and .
:L‘TMI MICE < :ET:E,
which proves that M' is a contraction matrix for |¢| < 0.25. O

We shall also use the following lemma from [5, 6].

Lemma 7. Assume B is a d-dimensional positive definite matriz with eigenval-
ues p(1) > p(2) > ... > p(d) > 0 and B = J'DJ, where D is a diagonal mairiz
which consists of the eigenvalues. Let b > 0, then

T g 0870002 q(%) ol

The following theorem from [6] gives the sufficient conditions on the conver-
gence of PJ” in terms of transition density functions.

Theorem 8. Let (£2, X, u) be a measure space and ;1 be Lebesgue measure on
R%. If there exists a Liapunov function, V : £2 — R, such that

/ V(8n)Tn(snlsn-1)dsn < aV(sp_1)+ 5 for0<a<1 and §>0 (25)
17

and

1=o00, m; =1im for any integer m > 0, (26)

> N b, |
i=1

where

him,(Sm,) = inf T, (Smy | Smae1) (27)

llsm;—ll<r

and r 1s a positive number satisfying the following inequality:

V(s)>1+% Vs> r
then, for the Markov operator, P, : L' — L', defined by (22) we have that P

1s asymptotically stable.



We are going to show that the sufficient conditions of Theorem 8 are satisfied
by the Markov chain defined by our MSA procedure. The proof follows the same
steps as the one given in [5, 6].

Let V(f,!) be the Liapunov function

VIED =1l + 1112 (28)

Step 1: Show that

Z / V(fik ; llk)ﬂ.T(tk)(ftk ; llk |flk_1 ; llk_l ; g)dflk S /8 + Olv(ftk_l ) ltk_l)'
2

.

First we show that

/ I o N2 w20y (ol fros sl @)lfen < B+ 0 || fos ll2 Vlono (29)
n

We have
/.Q H ffk H? TT(tk)(ftk|ftk—17ltkﬂg)dftk = (by Change of Variable)
_ R T _
= /ﬂ | fi, + My, —I—Qltkg |2 const exp [_mﬁk (@] Yoo | dfe

< / (I Fox llz + 1 M oy (|2 + [| Q"% g ||2)const
n

ox0 |- g QT o
<B+all foy 2 (30)
where

o= max | M' [,

B = mlax T(tk)]l/z[trace(gll)]l/z—f- [ Qlt"g 21,

with @ < 1, since for Lemma 6, M' is a contraction, V.
Furthermore, it can be easily shown that

ZT‘-T(fk)(ltklftk—lﬁltk—l) H lik ||2§ /81 + o H ltk—l ”2’ (31)

.

since I, has only a finite number of levels, choosing 31 big enough, the above
inequality obviously holds.



Let us now show that (29) holds. We have, using (30) and (31),

Z/ V(ftkaltk)ﬂ-T(tk)(ftkaltk|ftk_1 ) ltk_lag)dftk =
n

iy

= Z/ || ftk ||2 ﬂ-T(tk)(fik:ltklftk_lyltk_lﬁg)dftk
n

Ity

+ Z/ﬂ || ltk ||2 ﬂ-T(tk)(ftkaltklftk_laltk_11g)dftk

iy

< ﬁl +a ” ffk—l ||2 +62 H Ifk—l ||2: ﬁ"i' av(ffk—lvlfk—1)'

Step 2: Step 2 is the same that in [5, 6] using

amax:max{ sup [%(f(i)—f(j))2,$]}

I7l2<a S
and " 3
Smin = min< inf ([—(f(i) — FG)?, =]+ .
i = min{ ol (12276 - )", 171
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