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Over the last few years, a growing number of researchers from varied disciplines
have been utilizing Markov random fields (MRF) models for developing optimal,
robust algorithms for image restoration. While linear-shift invariant (LSI) mod-
els have been generally used for image restoration in Astronomy, no much work
has been reported on the use of more complex models in this area. In a previous
paper ! we examined several methods within the Bayesian paradigm to perform
image restoration in Astronomy. Here, we describe the use of Compound Gaussian
Markov Random Fields (CGMRF), a non LSI model that preserves image discon-
tinuities, to restore astronomical images. Problems on the application of the model
arising from the high dynamic range and severe blurring of astronomical images
are addressed and new methods to estimate the real underlying image based on
stochastic relaxation and mean field approximation are proposed.

1 Introduction

During recent years several techniques for the deconvolution of observational
psf’s have been developed based on different algorithms, linear or non-linear.
So far, the most used method for restoration of HST images seems to be
the Richardson-Lucy (R-I.) method, although maximum entropy methods, in
particular the MemSys package, are also frequently used in the astronomical
community (see the issue edited by Nifez? for an excellent overview of image
reconstruction and restoration in astronomy).

In this paper we concentrate on the use of CGMRF, a non LSI model that
preserves image discontinuities, to restore astronomical images. The CGMRF
theory provides us a way to control the change on the image model using
a hidden random field. The use of the underlying random field, called line
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Figure 1: Image and line sites

process, was introduced by Geman and Geman?. Given the image and the noise
models, the process of finding the maximum a posteriori (MAP) estimate for
the CGMRF is much more complex, since we no longer have a convex function
to be minimized. In section 2 we introduce the used notation and the proposed
model for the image and line processes as well as the noise models. Both,
stochastic and deterministic relaxation approaches to obtain the MAP estimate
are presented in section 3. Algorithms based on the mean field approximation
are described in section 4. Finally, in section 5 we test those algorithms on
real astronomical images.

2 Notation and Model

Bayesian methods start with a prior distribution, a probability distribution
over images f, p(f) (it is here that we incorporate information on the expected
structure within an image). Tt is also necessary to specify the probability
distribution p(g|f), of observed images g if f were the true image. The Bayesian
paradigm dictates that inference about the true f should be based on p(f|g)
given by

p(flg) o< p(f)p(glf).

To show just one restoration, it is common to choose the mode of this posterior
distribution, that is, to display the image f which satisfies

f maximizes p(£)p(g|f).

This is known as the maximum a posterior: estimate of f.

Let us now introduce the CGMRF image model. The idea is to build a
prior model consisting of two processes, one accounting for the intensity values
and the other for the location of edges in the image. Its probability distribution
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is given by
—log p(f,1) = const + E [6(f; — £i:41)°(1 — Leiip1s) + Blasig1>

+ (fi — £5:42)°(1 — Leiigas) + Bleiigos + (1 — 40)E7] /202 (1)

where #: +1, i: +2, 2: +3, ¢: +4 denote the four pixels around pixel i as de-
scribed in Fig. 1, ¢ just less than 0.25 and the line process is introduced by
simply defining the function l.; ;- as taking the value zero if pixels ¢ and j are
not separated by an active line and one otherwise (see Fig. 1). We penalize
the introduction of the line element by the term Sl.; ;. since otherwise the
expression in Eq. 1 would obtain its minimum value by setting all line ele-
ments equal to one. The intuitive interpretation of this line process is simple;
it acts as an activator or inhibitor of the relation between two neighbor pixels
depending on whether or not the pixels are separated by an edge.

Let us now describe the noise model. The main sources of noise are the
discrete nature of photons and electronic noise in the CCD detector. Physical
considerations suggest that this noise is independent from pixel to pixel and
depending on the average number of photons arriving at the CCD cell. A
simplified noise model is to assume that it is Gaussian with mean zero and
variance 02. That means that the observed image corresponds to the model
gi = (Df);+n; = Z]' di_;f; + n;, where D is the p x p matrix defining the
systematic blur, assumed to be known and approximated by a block circulant
matrix, n; is the additive Gaussian noise with zero mean and variance o2 and
d; are the coefficients defining the blurring function.

Then, the probability of the observed image g if f were the ‘true’ image is

1
p(g | f) oc exp —FIIg—DfII2 : (2)

Although in this paper we use this Gaussian noise model, the theory we
develop here can be easily extended to the Poisson noise model.

3 Stochastic and Deterministic Relaxation for Estimating the MAP

Let us now proceed to find f, i, the MAP estimate of f and 1, that is

f1=arg Hfl_alXp(f,l | g). (3)

)

>

Since p(f,1 | g) is nonlinear it is extremely difficult to find f and 1 by any
conventional method. The relaxation technique to search for MAP estimates

3



we are going to propose, which is called simulated annealing (SA), uses the
distribution

1 1 1 ,
£1]g)= —expi——U(f,1|g) L = — Df
pr(f,1] g) 7 exp{ U(t, Ig)} 7 exp{ 7202 || I
—= E [6(f; — £i:41)°(1 — Leqigrs) + Blaiip>

+ ¢(fz - fi:+2) (1 - 1<z i +2>) + 61<Z 742> + (1 - 4¢ ] /QUW}

where T is the temperature and Z7 is a normalization constant.
Then the classical simulated annealing algorithm proceeds as follows.

Algorithm 1 Sequential SA procedure.
1. Set T =1. Set k= 0.

2. Let u denote the sites in the line process. For each site, u, simulate its
posterior probability distribution, pr(l, | rest of 1,f,g).

3. For each pizel i update £; by simulating pr(f; | rest of £,1,g).

4. Set k = k+1. Decrease the temperature T and go back to the step 2 until
k 1s greater than a specified number.

Note that the temperature is decreased only after a full sweep of the line
process and the picture (after going through all lines and pixels and update
them according to the algorithm). Conditions for the algorithm to converge to
the MAP are established in Geman and Geman? and Chellapa et al. *.

Hence, we have to simulate the conditional a posterior: density function
for 1<; ;», given the rest of 1, f and g and the conditional a posterior: den-
sity function for f; given the rest of £, 1 and g. Lets us now examine these
distributions.

In order to simulate the line process conditional a posterior: density func-
tion, pr(lci > | rest of £, g), we have

1
prlleiss =0 rest of LEg) o exp [—fz‘i w57 ©
L p
prlleis =1 rest of LE,g) o exp |~ (6)
Furthermore, for Gaussian noise, pr(f; | rest of £,1,g) ~ N (;,07), where

p; and o; are given by

= Y ol = laij>) 1<w>) =) <(DTg)i — (DTDf); +f7;) o

C

jnhbre
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where ¢ is the sum of the square of the coefficients defining the blur func-
tion, that is, ¢ = Z]' djz», nn; = Ejnhbrigb(l —1lgijs) + (1 —4¢) and A; =
nn; o2 /(nn; o2 +col).

Unfortunately, classical simulated annealing for the Gibbs sampler may
not converge for high dynamic range and severe blurring ®. In particular, no
convergence proof of algorithm 1 in presence of blurring has been given.

To solve this problem we use the value of f; obtained in the previous
iteration, f?'?, and, in algorithm 1, instead of simulating from the normal
distribution defined in Eq. 7 and Eq. 8 to obtain the new value of f;, we
simulate from the normal distribution with mean p} and variance o2’ defined

a55

pi = w4 (1 —wi)ps, (9)

of' = (1-wi)oy, (10)

where w; = ((1 — nn;)o2 + (1 — ¢)o2) /(02 + 02). We also update the whole
image at the same time.

Instead of using a stochastic approach, we can use a deterministic method,
called iterative conditional mode (ICM), to search for a local maximum. An
advantage of the deterministic method is that its convergence is much faster
than the stochastic approach, since instead of simulating the distributions, the
mode from the corresponding conditional distribution is chosen instead. The
disadvantage is the local nature of the solution obtained. This method can
be seen as a particular case of simulated annealing where the temperature is
always set to zero.

In the test example section we apply the following modified SA and ICM
algorithms, whose convergence have been established to restore astronomical
images®.

Algorithm 2 Sequential Modified SA procedure

1. SetT'=1. Set k= 0.

2. Let u denote the sites in the line process. For each site, u, simulate its
posterior probability disiribution, pr(l, | rest of 1,f,g).

3. The evolution t;,_1 — f}, of the observed system can be obtained by sam-
pling in parallel the next value of the whole image based on the conditional
probability mass function defined in Eq. 9 and Fq. 10.

4. Set k = k+1. Decrease the temperature T and go back to the step 2 until
k 1s greater than a specified number.
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The modified ICM procedure is obtained by selecting, in steps 2 and 3 of
algorithm 2, the mode of the corresponding transition probabilities.

4 Mean Field Annealing

To find the MAP we can also use the mean field approximation (MFA) (see
Chandler 7 for a clear treatment of the mean field theory). The mean field
theory concerns the estimation of E[x;|g]. By definition

Bbxilgl = Yoxin(xlg) = - Yol UGl (1)

where x = (f,1) and U(x|g) is defined in Eq. 4.

However, it is well known that the calculation of Z and the sum above
involve all possible realizations of the MRF which is complex and computa-
tionally not feasible.

The mean field theory suggests an approximation to Eq. 11 based on the
following assumption: the influence of x;,j # i, in the calculation of E[x;|g]
can be approximated by the influence of E[x;|g].

Using the mean field approximation we have for our problem that E[f;|g]
is given by Eq. 7 and

1
It exp(— (o ( — 52— 522)

E[1<m’>|g] =

The mean field is usually computed iteratively, to find the mean field at i,
the mean field at the neighbors of i is needed. However, in our iterative method,
we do not use Eq. 7 because the matrix defining the iterative procedure is not
a contraction matrix and use instead the mean defined in Eq. 9 as the iterative
procedure. Finally, % can be fixed or increased gradually (annealing) in the
iterations of the mean field calculations.

5 Results

The proposed methods were tested on images of Saturn which were obtained
at the Cassegrain /8 focus of the 1.52-m telescope at Calar Alto Observatory
(Spain) on July, 1991. Results are presented on a image taken through a
narrow-band interference filter centered at the wavelength 9500 A.

The blurring function, D can be approximated by d; oc (143%2/R%)~%. The
parameters § and R were estimated from the intensity profiles of satellites of
Saturn that were recorded simultaneously with the planet and of stars that

6



were recorded very close in time and airmass to the planetary images. We
found 6 ~ 3 and R ~ 3.4 pixels.

Figure 2 depicts the original image and the restorations after running our
proposed ICM, SA and MFA method. In all the images the improvement in
spatial resolution is evident. To examine the quality of the MAP estimate
of the line process we compared it with the position of the ring and disk
of Saturn, obtained from the Astronomical Almanac, corresponding to our
observed image. Although all the methods detect a great part of the ring and
the disk, the proposed ICM and MFA method show thick lines. The proposed
SA method, on the other hand, gives us thinner lines and the details are more
resolved. However, it needs more iterations and is slower than the other two
methods.
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Figure 2: (a) Original image. Restoration: (b) proposed ICM method, (c) proposed SA
method and (d) proposed MFA method. Line Process: (e) proposed ICM method, (f)
proposed SA method and (g) proposed MFA method.



