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Abstract: The problem of recovering a high-resolution frame from a sequence of 
low-resolution and compressed images is considered.  The presence of the 
compression system complicates the recovery problem, as the operation 
reduces the amount of frequency aliasing in the low-resolution frames and 
introduces a non-linear noise process.  Increasing the resolution of the 
decoded frames can still be addressed in a recovery framework though, 
but the method must also include knowledge of the underlying 
compression system.  Furthermore, improving the spatial resolution of the 
decoded sequence is no longer the only goal of the recovery algorithm.  
Instead, the technique is also required to attenuate compression artifacts.  
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1. INTRODUCTION 

Compressed video is rapidly becoming the preferred method for video 
delivery.  Applications such as Internet streaming, wireless videophones, 
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DVD players and HDTV devices all rely on compression techniques, and 
each requires a significant amount of data reduction for commercial 
viability.  To introduce this reduction, a specif ic application often employs a 
low-resolution sensor or sub-samples the original image sequence.  The 
reduced resolution sequence is then compressed in a lossy manner, which 
produces an estimate of the low-resolution data.  For many tasks, the initial 
reconstruction of the compressed sequence is acceptable for viewing.  
However, when an application requires a high-resolution frame or image 
sequence, a super-resolution algorithm must be employed. 

Super-resolution algorithms recover information about the original high-
resolution image by exploiting sub-pixel shifts in the low-resolution data.  
These shifts are introduced by motion in the sequence and make it possible 
to observe samples from the high-resolution image that may not appear in a 
single low-resolution frame.  Unfortunately, lossy encoding introduces 
several distortions that complicate the super-resolution problem.  For 
example, most compression algorithms divide the original image into blocks 
that are processed independently.  At high compression ratios, the 
boundaries between the blocks become visible and lead to “blocking” 
artifacts.  If the coding errors are not removed, super-resolution techniques 
may produce a poor estimate of the high-resolution sequence, as coding 
artifacts may still appear in the high-resolution result.  Additionally, the 
noise appearing in the decoded images may severely affect the quality of any 
of the motion estimation procedures required for resolution enhancement. 

A straightforward solution to the problem of coding artifacts is to 
suppress any errors before resolution enhancement.  The approach is 
appealing, as many methods for artifact removal are presented in the 
li terature [1].  However, the sequential application of one of these post-
processing algorithms followed by a super-resolution technique rarely 
provides a good result.  This is caused by the fact that information removed 
during post-processing might be useful for resolution enhancement.   

The formulation of a recovery technique that incorporates the tasks of 
post-processing and super-resolution is a natural approach to be followed.  
Several authors have considered such a framework, and a goal of this chapter 
is to review relevant work.  Discussion begins in the next section, where 
background is presented on the general structure of a hybrid motion 
compensation and transform encoder.  In Section 3, super-resolution 
methods are reviewed that derive fideli ty constraints from the compressed 
bit-stream.  In Section 4, work in the area of compression artifact removal is 
surveyed.  Finally, a general framework for the super-resolution problem is 
proposed in Section 5.  The result is a super-resolution algorithm for 
compressed video. 
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2. VIDEO COMPRESSION BASICS 

The purpose of any image compression algorithm is to decrease the 
number of bits required to represent a signal.  Loss-less techniques can 
always be employed.  However for significant compression, information 
must be removed from the original image data.  Many possible approaches 
are developed in the literature to intelli gently remove perceptually 
unimportant content, and while every algorithm has its own nuances, most 
can be viewed as a three-step procedure.  First, the intensities of the original 
images are transformed with a de-correlating operator.  Then, the transform 
coefficients are quantized.  Finally, the quantized coefficients are entropy 
encoded.  The choice of the transform operator and quantization strategy are 
differentiating factors between techniques, and examples of popular 
operators include wavelets, Karhunen-Loeve decompositions and the 
Discrete Cosine Transform (DCT) [2].  Alternatively, both the transform and 
quantization operators can be incorporated into a single operation, which 
results in the technique of vector quantization [3]. 

The general approach for transform coding an MxN pixel image is 
therefore expressed as 

[ ]Tgx Q= , (11.1) 

where g is an (MN)x1 vector containing the ordered image, T is an 
(MN)x(MN) transformation matrix, Q is a quantization operator, and x is an 
(MN)x1 vector that contains the quantized coefficients. The quantized 
transform coefficients are then encoded with a loss-less technique and sent to 
the decoder.   

At the standard decoder, the quantized information is extracted from any 
loss-less encoding.  Then, an estimate of the original image is generated 
according to 

[ ]xTg *1ˆ Q−= , (11.2) 

where ^g is the estimate of the original image, T-1 is the inverse of the 
transform operator, and Q* represents a de-quantization operator.  Note that 
the purpose of the de-quantization operator is to map the quantized values in 
x to transform coefficients.  However, since the original quantization 
operator Q is a lossy procedure, this does not completely undo the 
information loss and Q*[Q[x]] 

�
x. 

The compression method described in (11.1) and (11.2) forms the 
foundation for current transform-based compression algorithms.  For 
example, the JPEG standard divides the original image into 8x8 blocks and 
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transforms each block with the DCT [4].  The transform coefficients are then 
quantized with a perceptually weighted method, which coarsely represents 
high-frequency information while maintaining low-frequency components.  
Next, the quantized values are entropy encoded and passed to the decoder, 
where multiplying the transmitted coefficients by the quantization matrix 
and computing the inverse-DCT reconstructs the image. 

While transform coding provides a general method for two-dimensional 
image compression, its extension to video sequences is not always practical.  
As one approach, a video sequence might be encoded as a sequence of 
individual images.  (If JPEG is util ized, this is referred to as motion-JPEG.)  
Each image is compressed with the transform method of (11.1), sent to a 
decoder, and then reassembled into a video sequence.  Such a method clearly 
ignores the temporal redundancies between image frames.  If exploited, 
these redundancies lead to further compression efficiencies.  One way to 
capitalize on these redundancies is to employ a three-dimensional transform 
encoder [5, 6].  With such an approach, several frames of an image sequence 
are processed simultaneously with a three-dimensional transform operator.  
Then, the coefficients are quantized and sent to the decoder, where the group 
of frames is reconstructed.  To realize significant compression efficiencies 
though, a large number of frames must be included in the transform.  This 
precludes any application that is sensitive to the delay of the system. 

A viable alternative to multi-dimensional transform coding is the hybrid 
technique of motion compensation and transform coding [7].  In this method, 
images are first predicted from previously decoded frames through the use of 
motion vectors.  The motion vectors establish a mapping between the frame 
being encoded and previously reconstructed data.  Using this mapping, the 
difference between the original image and its estimate can be calculated.  
The difference, or error residual, is then passed to a transform encoder and 
quantized.  The entire procedure is expressed as 

( )[ ]MCggTx ˆ−= Q , (11.3) 

where x is the quantized transform coefficients, and ^gMC is the motion 
compensated estimate of g that is predicted from previously decoded data. 

To decode the result, the quantized transform coefficients and motion 
vectors are transmitted to the decoder.  At the decoder, an approximation of 
the original image is formed with a two-step procedure.  First, the motion 
vectors are utilized to reconstruct the estimate.  Then, the estimate is refined 
with the transmitted error residual.  The entire procedure is express as 

[ ] MCgxTg ˆˆ *1 += − Q , (11.4) 
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where ^g is the decoded image, ^gMC is uniquely defined by the motion vectors, 
and Q* is the de-quantization operator. 

The combination of motion compensation and transform coding provides 
a very practical compression algorithm.  By exploiting the temporal 
correlation between frames, the hybrid method provides higher compression 
ratios than encoding every frame individually.  In addition, compression 
gains do not have to come with an explicit introduction of delay.  Instead, 
motion vectors can be restricted to only reference previous frames in the 
sequence, which allows each image to be encoded as it becomes available to 
the encoder.  When a slight delay is acceptable though, more sophisticated 
motion compensation schemes can be employed that utilize future frames for 
a bi-directional motion estimate [8]. 

The utility of motion estimation and transform coding makes it the 
backbone of current video-coding standards.  These standards include 
MPEG-1, MPEG-2, MPEG-4, H.261 and H.263 [9-14].  In each of the 
methods, the original image is first divided into blocks.  The blocks are then 
encoded using one of two available methods.  For an intra-coded block, the 
block is transformed by the DCT and quantized.  For inter-coded blocks, 
motion vectors are first found to estimate the current block from previously 
decoded images.  This estimate is then subtracted from the current block, 
and the residual is transformed and quantized.  The quantization and motion 
vector data is sent to the decoder, which estimates the original image from 
the transmitted coefficients. 

The major difference between the standards lies in the representation of 
the motion vectors and quantizers.  For example, motion vectors are signaled 
at different resolutions in the standards.  In H.261, a motion vector is 
represented with an integer number of pixels.  This is different from the 
methods employed for MPEG-1, MPEG-2 and H.263, where the motion 
vectors are sent with half-pixel accuracy and an interpolation procedure is 
defined for the estimate.  MPEG-4 utilizes more a sophisticated method for 
representing the motion, which facilitates the transmission of motion vectors 
at quarter-pixel resolution.  

Other differences also exist between the standards.  For example, some 
standards utilize multiple reference frames or multiple motion vectors for the 
motion compensated prediction.  In addition, the structure and variability of 
the quantizer is also different.  Nevertheless, for the purposes of developing 
a super-resolution algorithm, it is sufficient to remember that quantization 
and motion estimation data will always be provided in the bit-stream.  When 
a portion of a sequence is intra-coded, the quantizer and transform operators 
will express information about the intensities of the original image.  When 
blocks are inter-coded, motion vectors will provide an (often crude) estimate 
of the motion field.   
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3. INCORPORATING THE BIT-STREAM 

With a general understanding of the video compression process, it is now 
possible to incorporate information from a compressed bit-stream into a 
super-resolution algorithm.  Several methods for utili zing this information 
have been presented in the literature, and a survey of these techniques is 
presented in this section.  At the high-level, these methods can be classified 
according to the information extracted from the bit-stream.  The first class of 
algorithms incorporates the quantization information into the resolution 
enhancement procedure.  This data is transmitted to the decoder as a series 
of indices and quantization factors.  The second class of algorithms 
incorporates the motion vectors into the super-resolution algorithm.  These 
vectors appear as offsets between the current image and previous 
reconstructions and provide a degraded observation of the original motion 
field. 

 

3.1 System Model 

Before incorporating parameters from the bit-stream into a super-
resolution algorithm, a definition of the system model is necessary.  This 
model is util ized in all of the proposed methods, and it relates the original 
high-resolution images to the decoded low-resolution image sequence.  
Derivation of the model begins by generating an intermediate image 
sequence according to 

AHfg = , (11.5) 

where f is a (PMPN)x1 vector that represents a (PM)x(PN) high-resolution 
image, g is an (MN)x1 vector that contains the low-resolution data, A is an 
(MN)x(PMPN) matrix that realizes a sub-sampling operation and H is a 
(PMPN)x(PMPN) fil tering matrix.  

The low-resolution images are then encoded with a video compression 
algorithm.  When a standards compliant encoder is assumed, the low-
resolution images are processed according to (11.3) and (11.4).  
Incorporating the relationship between low and high-resolution data in 
(11.5), the compressed observation becomes 

( )[ ][ ] MCMC ggAHfTTg ˆˆˆ *1 +−= −
DCTDCT QQ , (11.6) 

where ^g is the decoded low-resolution image, TDCT and T
 
DCT
-1  are the forward 

and inverse DCT operators, respectively, Q and Q* are the quantization and 
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de-quantization operators, respectively, and ^gMC is the temporal prediction of 
the current frame based on the motion vectors.  If a portion of the image is 
encoded without motion compensation (i.e. intra-blocks), then the predicted 
values for that region are zero. 

Equation (11.6) defines the relationship between a high-resolution frame 
and a compressed frame for a given time instance.  Now, the high-resolution 
frames of a dynamic image sequence are also coupled through the motion 
field according to 

  kkll fCf ,= , (11.7) 

where fl and fk are (PMPN)x1 vectors that denote the high-resolution data at 
times l and k, respectively, and Cl,k is a (PMPN)x(PMPN) matrix that 
describes the motion vectors relating the pixels at time k to the pixels at time 
l.  These motion vectors describe the actual displacement between high-
resolution frames, which should not be confused with the motion 
information appearing in the bit-stream.  For regions of the image that are 
occluded or contain objects entering the scene, the motion vectors are not 
defined. 

Combining (11.6) and (11.7) produces the relationship between a high-
resolution and compressed image sequence at different time instances.  This 
relationship is given by 

( )[ ][ ] MCMC ggfAHCTTg llkklDCTDCTl QQ ˆˆˆ ,
*1 +−= − , (11.8) 

where ^g
 
l is the compressed frame at time l and ^g

 
l
MC is the motion 

compensated prediction util ized in generating the compressed observation. 

3.2 Quantizers 

To explore the quantization information that is provided in the bit-stream, 
researchers represent the quantization procedure with an additive noise 
process according to 

( )[ ][ ] Q
llkkllkklDCTDCT QQ ngfAHCgfAHCTT MCMC +−=−− ˆˆ ,,

*1 , (11.9) 

where n
 
l
Q represents the quantization noise at time l.  The advantage of this 

representation is that the motion compensated estimates are eliminated from 
the system model, which leads to super-resolution methods that are 
independent of the underlying motion compensation scheme.  Substituting 
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(11.9) into (11.8), the relationship between a high-resolution image and the 
low-resolution observation becomes 

Q
lkkll nfAHCg += ,ˆ , (11.10) 

where the motion compensated estimates in (11.8) cancel out. 
With the quantization procedure represented as a noise process, a single 

question remains: What is the structure of the noise?  To understand the 
answers proposed in the literature, the quantization procedure must first be 
understood.  In standards based compression algorithms, quantization is 
realized by dividing each transform coefficient by a quantization factor.  The 
result is then rounded to the nearest integer.  Rounding discards data from 
the original image sequence, and it is the sole contributor to the noise term of 
(11.10).  After rounding, the encoder transmits the integer index and the 
quantization factor to the decoder.  The transform coefficient is then 
reconstructed by multiplying the two transmitted values, that is 

( ) ( ) ( ) ( ) ( )
( ) 





⋅==

iq

iT
iqixiqiT DCT

DCT

,
Round,ˆ

g
g , (11.11) 

where TDCT(g,i) and TDCT( ^g,i) denote the ith transform coefficient of the low-
resolution image g and the decoded estimate ^g, respectively, q(i) is the 
quantization factor and x(i) is the index transmitted by the encoder for the ith 
transform coefficient, and Round(· ) is an operator that maps each value to 
the nearest integer. 

Equation (11.11) defines a mapping between each transform coefficient 
and the nearest multiple of the quantization factor.  This provides a key 
constraint, as it limits the quantization error to half of the quantization factor.  
With knowledge of the quantization error bounds, a set-theoretic approach to 
the super-resolution problem is explored in [15].  The method restricts the 
DCT coefficients of the solution to be within the uncertainty range signaled 
by the encoder.  The process begins by defining the constraint set 

( )






 ≤−≤−∈

2
ˆˆ

2
:ˆˆ

,
l

lkklDCT
l

kk

q
gfAHCT

q
ff , (11.12) 

where ^fk  is the high-resolution estimate, ql is a vector that contains the 
quantization factors for time l, ^g

 
l is estimated by choosing transform 

coefficients centered on each quantization interval, and the less-than 
operator is defined on an element by element basis. Finding a solution that 
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satisfies (11.12) is then accomplished with a Projection onto Convex Sets 
(POCS) iteration, where the projection of ^fk  onto the set is defined as 

[ ]
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 (11.13) 

where Pl[
^fk] is the projection operator that accounts for the influence of the 

observation ^gl on the estimate of the high-resolution image ^f
 
k. 

The set-theoretic method is well suited for limiting the magnitude of the 
quantization errors in a system model.  However, the projection operator 
does not encapsulate any additional information about the shape of the noise 
process within the bounded range.  When information about the structure of 
the noise is available, then an alternative description may be more 
appropriate.  One possible method is to util ize probabilistic descriptions of 
the quantization noise in the transform domain and rely on maximum a 
posteriori or maximum likelihood estimates for the high-resolution image.  
This approach is considered in [16], where the quantization noise is 
represented with the density 

( ) ( )
1−

=
DCT

Q
kDCTQ

k

p
p

T

nT
n N

N , (11.14) 

where nk
Q is the quantization noise in the spatial domain, |TDCT

-1 | is the 
determinant of the transform operator, and pN(· ) and pN-(· ) denote the 
probabili ty density functions in the spatial and transform domains, 
respectively [17]. 

Finding a simple expression for the quantization noise in the spatial 
domain is often difficult, and numerical solutions are employed in [16].  
However, an important case is considered in [18, 19], where the quantization 
noise is expressed with the Gaussian distribution 
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( ) ( ) ( ) ( )






−=

−− Q
kDCT

Q
kDCT

TQ
k

Q
k Zp nTKTnnN

11

2

1
exp , (11.15) 

where 
_
Kk

Q is the covariance matrix of the quantization noise in the transform 
domain for the kth frame of the sequence, and Z is a normalizing constant. 
 Several observations pertaining to (11.15) are appropriate.  First, notice 
that if the distributions for the quantization noise in the transform domain are 
independent and identically distributed, then pN(nk

Q) is spatially uncorrelated 
and identically distributed.  This arises from the structure of the DCT and is 
representative of the flat quantization matrices typically used for inter-
coding.  As a second observation, consider the perceptually weighted 
quantizers that are utilized for intra-coding.  In this quantization strategy, 
high-frequency coefficients are represented with less fidelity.  Thus, the 
distribution of the noise in the DCT domain depends on the frequency.  
When the quantization noise is independent in the transform domain, then 
pN(nk

Q) will be spatially correlated. 
 Incorporating the quantizer information into a super-resolution algorithm 
should improve the results, as it equips the procedure with knowledge of the 
non-linear quantization process.  In this section, three approaches to utilizing 
the quantizer data have been considered.  The first method enforces bounds 
on the quantization noise, while the other methods employ a probabilistic 
description of the noise process.  Now that the proposed methods have been 
presented, the second component of incorporating the bit-stream can be 
considered.  In the next sub-section, methods that utilize the motion vectors 
are presented.  

3.3 Motion Vectors 

Incorporating the motion vectors into the resolution enhancement 
algorithm is also an important problem.  Super-resolution techniques rely on 
sub-pixel relationships between frames in an image sequence.  This requires 
a precise estimate of the actual motion, which has to be derived from the 
observed low-resolution images.  When a compressed bit-stream is available 
though, the transmitted motion vectors provide additional information about 
the underlying motion.  These vectors represent a degraded observation of 
the actual motion field and are generated by a motion estimation algorithm 
within the encoder. 

Several traits of the transmitted motion vectors make them less than ideal 
for representing actual scene motion.  As a primary flaw, motion vectors are 
not estimated at the encoder by utilizing the original low-resolution frames.  
Instead, motion vectors establish a correspondence between the current low -
resolution frame and compressed frames at other time instances.  When the 
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compressed frames represent the original image accurately, then the 
correlation between the motion vectors and actual motion field is high.  As 
the quali ty of compressed frames decreases, the usefulness of the motion 
vectors for estimating the actual motion field is diminished.   

Other flaws also degrade the compressed observation of the motion field.  
For example, motion estimation is a computationally demanding procedure.  
When operating under time or resource constraints, an encoder often 
employs efficient estimation techniques.  These techniques reduce the 
complexity of the algorithm but also decrease the reliability of the motion 
vectors.  As a second problem, motion vectors are transmitted with a 
relatively coarse sampling.  At best, one motion vector is assigned to every 
8x8 block in a standards compliant bit-stream.  Super-resolution algorithms, 
however, require a much denser representation of motion. 

Even with the inherent errors in the transmitted motion vectors, methods 
have been proposed that capitalize on the transmitted information.  As a first 
approach, a super-resolution algorithm that estimates the motion field by 
refining the transmitted data is proposed in [18, 19].  This is realized by 
initializing a motion estimation algorithm with the transmitted motion 
vectors.  Then, the best match between decoded images is found within a 
small region surrounding each initial value.  With the technique, restricting 
the motion estimate adds robustness to the search procedure.  More 
importantly, the use of a small search area greatly reduces the computational 
requirements of the motion estimation method.   

A second proposal does not restrict the motion vector search [20, 21].  
Instead, the motion field can contain a large deviation from the transmitted 
data.  In the approach, a similarity measure between each candidate solution 
and the transmitted motion vector is defined.  Then, motion estimation is 
employed to minimize a modified cost function.  Using the Euclidean 
distance as an example of similarity, the procedure is expressed as 

( ) ( )








−+−= ∑
−

=

1

0

2

,,

2

,, ,ˆˆminargˆ
,

MN

i

Encoder
kl

T
MVkllkklkl iAi

kl

CcgfAHCC
C

λ , 

 (11.16) 

where ^Cl,k  is a matrix that represents the estimated motion field, cl,k(i)  is a 
two-dimensional vector the contains the motion vector for pixel location i, 
Cl,k

Encoder  is a matrix that contains the motion vectors provided by the encoder, 
AMV

T (Cl,k
Encoder,i)  produces an estimate for the motion at pixel location i from 

the transmitted motion vectors, and �  quantifies the confidence in the 
transmitted information. 
 In either of the proposed methods, an obstacle to incorporating the 
transmitted motion vectors occurs when motion information is not provided 
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for the frames of interest.  In some cases, such as intra-coded regions, the 
absence of motion vectors may indicate an occlusion.  In most scenarios 
though, the motion information is simply being signaled in an indirect way.  
For example, an encoder may provide the motion estimates Cl,l'

Encoder and 
Cl',k

Encoder , while not explicitly transmitting Cl,k
Encoder .  When a super-resolution 

algorithm needs to estimate ^Cl,k , the method must determine Cl,k
Encoder from 

the transmitted information.  For vectors with pixel resolution, a 
straightforward approach is to add the horizontal and vertical motion 
components to find the mapping Cl,k

Encoder .  The confidence in the estimate 
must also be adjusted, as adding the transmitted motion vectors increases the 
uncertainty of the estimate.  In the method of [18, 19], a lower confidence in 
Cl,k

Encoder  results in a larger search area when finding the estimated motion 
field.  In [20, 21], the decreased confidence results in smaller values for � . 

4. COMPRESSION ARTIFACTS 

Exploring the influence of the quantizers and motion vectors is the first 
step in developing a super-resolution algorithm for compressed video.  These 
parameters convey important information about the original image sequence, 
and each is well suited for restricting the solution space of a high-resolution 
estimate.  Unfortunately, knowledge of the compressed bit-stream does not 
address the removal of compression artifacts.  Artifacts are introduced by the 
structure of an encoder and must also be considered when developing a 
super-resolution algorithm.  In this section, an overview of post-processing 
methods is presented.  These techniques attenuate compression artifacts in 
the decoded image and are an important component of any super-resolution 
algorithm for compressed video.  In the next sub-section, an introduction to 
various compression artifacts is presented.  Then, three techniques for 
attenuating compression artifacts are discussed. 

4.1 Artifact Types 

Several artifacts are commonly identified in video coding.  A first 
example is blocking.  This artifact is objectionable and annoying at all bit-
rates of practical interest, and it is most bothersome as the bit-rate decreases.  
In a standards based system, blocking is introduced by the structure of the 
encoder.  Images are divided into equally sized blocks and transformed with 
a de-correlating operator.  When the transform considers each block 
independently, pixels outside of the block region are ignored and the 
continuity across boundaries is not captured.  This is perceived as a 
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synthetic, grid-like error at the decoder, and sharp discontinuities appear 
between blocks in smoothly varying regions. 

Blocking errors are also introduced by poor quantization decisions.  
Compression standards do not define a strategy for allocating bits within a 
bit-stream.  Instead, the system designer has complete control.  This allows 
for the development of encoders for a wide variety of applications, but it also 
leads to artifacts.  As an example, resource critical applications typically rely 
on heuristic allocation strategies.  Very often different quantizers may be 
assigned to neighboring regions even though they have similar visual 
content.  The result is an artificial boundary in the decoded sequence. 

Other artifacts are also attributed to the improper allocation of bits.  In 
satisfying delay constraints, encoders operate without knowledge of future 
sequence activity.  Thus, bits are distributed on an assumption of future 
content.  When the assumption is invalid, an encoder must quickly adjust the 
amount of quantization to satisfy a given rate constraint.  The encoded video 
sequence possesses a temporally varying image quality, which manifests 
itself as a temporal flicker. 

Edges and impulsive features introduce a final coding error.  Represented 
in the frequency domain, these signals have high spatial frequency content.  
Quantization removes some of the information for encoding and introduces 
quantization error.  However, when utilizing a perceptually weighted 
technique, additional errors appear.  Low frequency data is preserved, while 
high frequency information is coarsely quantized.  This removes the high-
frequency components of the edge and introduces a strong ringing artifact at 
the decoder.  In still images, the artifact appears as strong oscillations in the 
original location of the edge.  Image sequences are also plagued by ringing 
artifacts but are usually referred to as mosquito errors. 

4.2 Post-processing Methods 

Post-processing methods are concerned with removing all types of 
coding errors and are directly applicable to the problem of super-resolution.  
As a general framework, post-processing algorithms attenuate compression 
artifacts by developing a model for spatial and temporal properties of the 
original image sequence.  Then, post-processing techniques find a solution 
that satisfies the ideal properties while also remaining faithful to the 
available data.  

One approach for post-processing follows a constrained least squares 
(CLS) methodology [22-24].  In this technique, a penalty function is 
assigned to each artifact type.  The post-processed image is then found by 
minimizing the following cost functional 
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( ) 2

3
2

2
2

1
2 ˆˆ MCgpRpBpgpp −+++−= λλλE ,  (11.17) 

where p is a vector representing the post-processed image, ^g is the estimate 
decoded from the bit-stream, B and R are matrices that penalize the 
appearance of blocking and ringing, respectively, ^gMC is the motion 
compensated prediction and � 1, � 2, and � 3 express the relative importance of 
each constraint.  In practice, the matrix B is implemented as a difference 
operator across the block boundaries, while the matrix R describes a high-
pass fil ter within each block. 

Finding the derivative of (11.17) with respect to p and setting it to zero 
represents the necessary condition for a minimum of (11.17).  A solution is 
then found using the method of successive approximations according to 

( ){ }MCgpRpRBpBgppp ˆˆ 321
1 −+++−−=+ kkTkTkkk λλλα , (11.18) 
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algorithm, and pk and pk+1 denote the post-processed solution at iteration k 
and k+1, respectively [25].  The decoded image is commonly defined as the 
initial estimate, p0.  Then, the iteration continues until a termination criterion 
is satisfied. 

Selecting the smoothness constraints (B and R) and parameters (� 1, � 2 and 
� 3) defines the performance of the CLS technique, and many approaches 
have been developed for compression applications.  As a first example, 
parameters can be calculated at the encoder from the intensity data of the 
original images, transmitted through a side channel and supplied to the post-
processing mechanism [26].  More appealing techniques vary the parameters 
relative to the contents of the bit-stream, incorporating the quantizer 
information and coding modes into the choice of parameters [27-29]. 

Besides the CLS approach, other recovery techniques are also suitable for 
post-processing.  In the framework of POCS, blocking and ringing artifacts 
are removed by defining images sets that do not exhibit compression 
artifacts [30, 31].  For example, the set of images that are smooth would not 
contain ringing artifacts.  Similarly, blocking artifacts are absent from all 
images with smooth block boundaries.  To define the set, the amount of 
smoothness must be quantified.  Then, the solution is constrained by 

{ }BT≤∈ 2
: Bggp , (11.19) 

where TB is the smoothness threshold used for the block boundaries and B is 
a difference operator between blocks.   
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An additional technique for post-processing relies on the Bayesian 
framework.  In the method, a post-processed solution is computed as a 
maximum a posteriori (MAP) estimate of the image sequence presented to 
the encoder, conditioned on the observation [32, 33].  Thus, after applying 
Bayes’ rule, the post-processed image is given by 

( ) ( )
( )g

ppg
p

g ˆ
|ˆ

maxarg
p

pp= . (11.20) 

Taking logarithms, the technique becomes 

( ) ( )ppgp
p

log|ˆlogmaxarg += p , (11.21) 

where p( ^g | p) is often assumed constant within the bounds of the 
quantization error. 

Compression artifacts are removed by selecting a distribution for the 
post-processed image with few compression errors.  One example is the 
Gaussian distribution 

( ) { }2
2

2
1exp RgBgg λλ −−=p .  (11.22) 

In this expression, images that are li kely to contain artifacts are assigned a 
lower probabili ty of occurrence.  This inhibits the coding errors from 
appearing in the post-processed solution. 

5. SUPER-RESOLUTION 

Post-processing methods provide the final component of a super-
resolution approach.  In the previous section, three techniques are presented 
for attenuating compression artifacts.  Combining these methods with the 
work in Section 3 produces a complete formulation of the super-resolution 
problem.  This is the topic of the current section, where a concise 
formulation for the resolution enhancement of compressed video is 
proposed.  The method relies on the MAP estimation techniques to address 
compression artifacts as well as to incorporate the motion vectors and 
quantizer data from the compressed bit-stream. 
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5.1 MAP Framework 

The goal of the proposed super-resolution algorithm is to estimate the 
original image sequence and motion field from the observations provided by 
the encoder.  Within the MAP framework, this joint estimate is expressed as  

( ){ }
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(11.23) 

where ^fk is the estimate for the high-resolution image, G is an (MN)xL matrix 
that contains the L compressed observations ^gk-TB ,…, ^g k+TF , TF and TB are 
the number of frames contributing to the estimate in the forward and 
backward direction of the temporal axis, respectively, and DTB,TF  and DTB,TF

Encoder 
are formed by lexicographically ordering the respective motion vectors 
Ck-TB,k ,…,Ck+TF,k  and Ck-TB,k

Encoder ,…,Ck+TF,k Encoder  into vectors and storing the result 
in a (PMPN)x(TF+TB+1) matrix.   

5.1.1 Fidelity Constraints 

Definitions for the conditional distributions follow from the previous 
sections.  As a first step, it is assumed that the decoded intensity values and 
transmitted motion vectors are independent.  This results in the conditional 
density 

( ) ( ) ( )TFTBk
Encoder

TFTBTFTBkTFTBk
Encoder

TFTB ppp ,,,,, ,|,|,|, DfDDfGDfDG = .
 (11.24) 

Information from the encoder is then included in the algorithm.  The 
density function p(G | fk, DTB,TF)  describes the noise that is introduced during 
quantization, and it can be derived through the mapping presented in (11.14).  
The corresponding conditional density is 

( ) ( ) ( )

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


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−−−∝ ∑
+

−=

−
TFk

TBkl
lkkll

T
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2
1
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1

,, ,

 (11.25) 
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when ^gl is the decoded image at time instant l and Kl is the noise covariance 
matrix in the spatial domain that is found by modeling the noise in the 
transform domain as Gaussian distributed and uncorrelated. 

The second conditional density relates the transmitted motion vectors to 
the original motion field.  Following the technique appearing in (11.16), an 
example distribution is 

( ) ( ) ( )
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

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−−∝ ∑ ∑
+

−=

−

=

TFk

TBkl

MN

i

Encoder
kl

T
MVklTFTBk

Encoder
TFTB iAip

1

0

2

,,,, ,exp,| CcDfD γ ,

 (11.26) 

where cl,k(i)  is the motion vector for pixel location i, AMV
T (Cl,k

Encoder,i)  
estimates the motion at pixel i from the transmitted motion vectors, and �������
positive value that expresses a confidence in the transmitted vectors. 

As a final piece of information from the decoder, bounds on the 
quantization error should be exploited.  These bounds are known in the 
transform domain and express the maximum difference between DCT 
coefficients in the original image and in the decoded data.  High-resolution 
estimates that exceed these values are invalid solutions to the super-
resolution problem, and the MAP estimate must enforce the constraint.  This 
is accomplished by restricting the solution space so that  

( )






 +−=<−∈ TFkTBkll

lkklDCTkk ,...,,
2

ˆ: ,

q
gfAHCTff , (11.27) 

where ql is the vector defined in (11.12) containing the quantization factors 
for time l 

5.1.2 Prior Models 

After incorporating parameters from the compressed bit-stream into the 
recovery procedure, the prior model p(fk, DTB,TF)  is defined.  Assuming that 
the intensity values of the high-resolution image and the motion field are 
independent, the distribution for the original, high-resolution image can be 
utilized to attenuate compression artifacts.  Borrowing from work in post-
processing, the distribution 

( ) ( ){ }2
2

2
1exp kkkp fRfBf λλ +−∝  (11.28) 
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is well motivated, where R penalizes high frequency content within each 
block, B penalizes significant differences across the horizontal and vertical ���������	�
����
���������������
��	�

1
��
����

2 control the influence of the different 
smoothing parameters.  The definitions of R and B are changed slightly from 
the post-processing method in (11.22), as the dimension of a block is larger 
in the high-resolution estimate and block boundaries may be several pixels 
wide.  The distribution for p(DTB,TF)  could be defined with the methods 
explored in [34]. 
 

5.2 Realization 

By substituting the models presented in (11.25)-(11.28) into the estimate 
in (11.23), a solution that simultaneously estimates the high-resolution 
motion field as well as the high-resolution image evolves.  Taking 
logarithms, the super-resolution image and motion field are expressed as 
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 (11.29) 

The minimization of (11.29) is accomplished with a cyclic coordinate-
decent optimization procedure [35].  In the approach, an estimate for the 
motion field is found while the high-resolution image is assumed known.  
Then, the high-resolution image is predicted using the recently found motion 
field.  The motion field is then re-estimated using the current solution for the 
high-resolution frame, and the process iterates by alternatively finding the 
motion field and high-resolution images.  Treating the high-resolution image 
as a known parameter, the estimate for the motion field becomes 
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where 
-
fk is the current estimate for the high-resolution image at time k.  

Finding a solution for ^DTB,TF  is accomplished with a motion estimation 
algorithm, and any algorithm is allowable within the framework.  An 
example is the well-known block matching technique. 

Once the estimate for the motion field is found, then the high-resolution 
image is computed.  For the current estimate of the motion field, 

_
DTB,TF , the 

minimization of (11.29) is accomplished by the method of successive 
approximations and is expressed with the iteration 
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where 
-
fl

n and 
-
fl

n+1 are the enhanced frames at the nth and (n+1)th iteration, 
���������	��

����������������������� laxation parameter that determines the convergence and 
rate of convergence of the algorithm, 

_
Cl,k

T  compensates an image backwards 
along the motion vectors, AT defines the up-sampling operation and Pi is the 
projection operator for the quantization noise in frame i, as defined in 
(11.13). 

5.3 Experimental Results 

To explore the performance of the proposed super-resolution algorithm, 
several scenarios must be considered.  In this sub-section, experimental 
results that il lustrate the characteristics of the algorithm are presented by 
utilizing a combination of synthetically generated and actual image 
sequences.  In all of the experiments, the spatial resolution of the high-
resolution image sequence is 352x288 pixels, and the frame rate is 30 frames 
per second.  The sequence is decimated by a factor of two in both the 
horizontal and vertical directions and compressed with an MPEG-4 
compliant encoder to generate the low-resolution frames. 
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5.3.1 Synthetic Experiments 

In the first set of experiments, a single frame is synthetically shifted by 
pixel increments according to 

( ) okok fCf 4,mod,= , (11.32) 

where fo is the original frame, mod(k,4) is the modulo arithmetic operator  
that divides k by 4 and returns the remainder, and Co,0, Co,1, Co,2, and Co,3 
represent the identity transform, a horizontal pixel shift, a vertical pixel shift, 
and a diagonal pixel shift, respectively.  The original frame is shown in 
Figure 1, and the goal of the experiment is to establish an upper bound on 
the performance of the super-resolution algorithm.  This is achieved since 
the experiment ensures that every pixel in the high-resolution image appears 
in the decimated image sequence. 

The resulting image sequence is sub-sampled and compressed with an 
MPEG-4 compliant encoder utilizing the VM5+ rate control mechanism.  No 
filtering is utilized, that is H=I.  In the first experiment, a bit-rate of 1 Mbps 
is employed, which simulates applications with low compression ratios.  In 
the second experiment, a bit-rate of 256 kbps is utilized to simulate high 
compression tasks.  Both experiments maintain a frame rate of 30 frames per 
second. 
  

 

Figure 1. Original High Resolution Frame  
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An encoded frame from the low and high compression experiments is 
shown in Figure 2(a) and (b), respectively.  Both images correspond to frame 
19 of the compressed image sequence and are representative of the quali ty of 
the sequence.  The original low-resolution frame 19 supplied to the encoder 
also appears in Figure 2(c).  Inspecting the compressed images shows that at 
both compression ratios there are noticeable coding errors.  Degradations in 
the 1 Mbps experiment are evident in the numbers at the lower right-hand 
corner of the image.  These errors are amplified in the 256 kbps experiment, 
as ringing artifacts appear in the vicinity of the strong edge features 
throughout the image.   

Visual inspection of the decoded data is consistent with the objective peak 
signal-to-noise ratio (PSNR) metric, which is defined as 

2

2

ˆ1
255

ff −
=

MN

PSNR , (11.33) 

where f is the original image and ^f is the high-resolution estimate.  Util izing 
this error criterion, the PSNR values for the low and high compression 

  
 (a) (b) 

  
(c) 

Figure 2. Low-Resolution Frame: (a) Compressed at 1 Mbps; (b) Compressed at 256 kbps, 
and (c) Uncompressed.  The PSNR values for (a) and (b) are 35.4dB and 29.3dB, 

respectively. 
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images in Figures 2(a) and (b) are 35.4dB and 29.3dB, respectively. 
 With the guarantee that every pixel in the high-resolution image appears 
in one of the four frames of the compressed image sequence, the super-
resolution estimate of the original image and high-resolution motion field is 
computed with (11.29), where TB=1 and TF=2.  In the experiments, the 
shifts in (11.32) are not assumed to be known, but a motion estimation 
algorithm is implemented instead. However, the motion vectors transmitted 
in the compressed bit-stream provide the fidelity data.  The influence of 
these vectors is controlled by the parameter � , which is chosen as � =1.  Other ���������
	��
	������ ����� ����	�����	����
���������������
����������	�� ���!�"����	#� �$�!�$���!�$��%�	 &����
	�� ��	��'�$��(

1 �����'(
2 in (11.31) and chosen to vary relative to the amount of quantization in ����	
����	���	$)+*��$�,����	
�-�$./���$�0����	�� ���-�$�1�
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n-1||2<50, and a new estimate for 
_
DTB,TF  is computed whenever 

||
-
fl

n-
-
fl

n-1||2<100. 
 The high-resolution estimate for the 1 Mbps experiment appears in Figure 
3(a), while the result from the 256 kbps experiment appears in Figure 4(a).  
For comparison, the decoded results are also up-sampled by bi-linear 
interpolation, and the interpolated images for the low and high compression 
ratios appear in Figure 3(b) and 4(b), respectively.  As can be seen from the 
figure, ringing artifacts in both of the super-resolved images are attenuated, 
when compared to the bi-linear estimates.  Also, the resolution of the image 
frames is increased.  This is observable in many part of the image frame, and 
it is most evident in the numbers at the lower right portion of the image.  The 
improvement in signal quality also appears in the PSNR metric.  Comparing 
the super-resolved images to the original high-resolution data, the PSNR 
values for the low and high compression ratio experiments are 34.0dB and 
29.7dB, respectively.  These PSNR values are higher than the corresponding 
bi-linear estimates, which produce a PSNR of 31.0dB and 28.9dB, 
respectively. 

Computing the difference between the bi-linear and super-resolution 
estimates provides additional insight into the problem of super-resolution 
from compressed video.  In the 1 Mbps experiment, the PSNR of the super-
resolved image is 3.0dB higher than the PSNR of the bi-linear estimate.  
This is a greater improvement than realized in the 256 kbps experiment, 
where the high-resolution estimate is only .8dB higher than the PSNR of the 
bi-linear estimate.  The improvement realized by the super-resolution 
algorithm is inversely proportional to the severity of the compression. 
Higher compression ratios complicate the super-resolution problem in a 
major way, as aliased high frequency information in the low-resolution 
image sequence is removed by the compression process. Since relating the  
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(a) 

 
(b)  

Figure 3. Results of the Synthetic Experiment at 1 Mbps: (a) Super-
Resolved Image and (b) Bi-Linear Estimate.  The PSNR values for (a) and 

(b) are 34.0dB and 31.0dB, respectively. 
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(a) 

 
(b)  

Figure 4. Results of the Synthetic Experiment at 256 kbps: (a) Super-
Resolved Image and (b) Bi-Linear Estimate.  The PSNR values for (a) and 

(b) are 29.7dB and 28.9dB, respectively. 
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low and high-resolution data through a motion field is the foundation of a 
super-resolution algorithm, the removal of this information limits the amount  
of expected improvement.  Moreover, the missing data often introduces 
errors when estimating the motion field, which further limits the procedure. 
 Overcoming the problem of high-resolution data that is observable at 
other time instances but removed during encoding is somewhat mitigated by 
incorporating additional frames into the high-resolution estimate.  This 
improves the super-resolved image, as an encoder may preserve the data in 
one frame but not the other.  In addition, the approach benefits video 
sequences that do not undergo a series of sub-pixel shifts.  In either case, 
increasing the number of frames makes it more likely that information about 
the high-solution image appear at the decoder.  The amount of improvement 
is however restricted by the fact that objects may only appear in a limited 
number of frames and motion estimates from temporally distant frames may 
be unreliable. 

5.3.2 Non-Synthetic Experiments 

Increasing the number of frames that are utilized in the super-resolution 
estimate is considered in the second set of experiments.  In this scenario, the 
high-resolution image sequence is considered that contains the frame 
appearing in the synthetic example.  The scene consists of a sequence of 
images that are generated by a slow panning motion.  In addition, the 
calendar object is also moving in the horizontal direction.  
 Like the previous experiments, the high-resolution frames are down-
sampled by a factor two and compressed with an MPEG-4 compliant 
encoder utilizing the VM5+ rate control.  No filtering is utilized, and the 
sub-sampled image sequence is encoded at both 1 Mbps and 256 kbps to 
simulate both high and low compression environments.  Encoded images 
from both experiments are shown in Figure 5(a) and (b), respectively, and 
correspond to frame 19 of the sequence.  As in the synthetic example, some 
degradations appear in the low compression ratio result, which become more 
noticeable as the compression ratio is increased.  These errors appear 
throughout the frame but are most noticeable around the high-frequency 
components of the numbers in the lower right-hand corner. 

The super-resolution estimates for the 1 Mbps and 256 kbps experiments 
appear in Figure 6(a) and 7(a), respectively, while the decoded results after 
up-sampling with bi-linear interpolation appear in Figure 6(b) and 7(b), 
respectively.  By inspecting the figure, conclusions similar to the synthetic 
experiments are made.  Ringing artifacts in both of the super-resolution 
estimates are reduced, as compared to the bi-linear estimates.  In addition, 
the resolution of the image frames is increased within the numbers appearing 
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at the lower right of the frame.  (Specifically, notice the improvement on the 
6.)  These improvements result in an increase in PSNR. For the super-
resolved images, the low and high compression ratio experiments produce a 
PSNR of 31.6dB and 29.1dB, respectively.  The bi-linear estimate provides 
lower PSNR values of 30.9dB and 28.7dB, respectively. 
 Comparing the improvement in PSNR between the synthetic and actual 
image sequences provides a quantitative measure of the difficulties 
introduced by processing real image sequences.  For the 1Mbps experiments, 
the PSNR of the high-resolution estimate is .7dB larger than the bi-linear 
result.  This is a smaller improvement than realized with the synthetic 
example, where the gain is 3.0dB.  Differences between the experiments are 
even more noticeable at the lower bit-rate, where the PSNR of the high-
resolution estimate is only .4dB greater than the bi-linear estimate.  This is 
also a decrease in performance, as compared to the .8dB gain of the synthetic 
simulations. 
 As discussed previously, several problems with actual image sequences 
contribute to a decrease in performance.  These problems include the 
removal of information by a compression system and the absence of sub-
pixel shift in the image sequence.  To address these problems, it is 
advantageous to include additional frames in the super-resolution estimate, 
as these frames contain additional observations of the high-resolution 
estimate.  The impact of the additional frames is explored in the final 
experiment, where the super-resolution estimate for the 256 kbps actual 
image sequence is recomputed.  Parameters for the experiment are equal to 
the previously defined values, except that nine frames are included in the 
high-resolution estimate, corresponding to TB=3 and TF=5. 
 

  
 (a) (b) 

Figure 5. Low-Resolution Frame: (a) Compressed at 1 Mbps, and (b) Compressed at 256 
kbps.  The PSNR values for (a) and (b) are 35.5dB and 29.2dB, respectively. 
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(a) 

 
(b)  

Figure 6. Results of the Non-Synthetic Experiment at 1Mbps: (a) Super-
Resolved Image and (b) Bi-Linear Estimate.  The PSNR values for (a) and 

(b) are 31.6dB and 30.8dB, respectively. 
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(a) 

 
(b)  

Figure 7. Results of the Non-Synthetic Experiment at 256 kbps: (a) Super-
Resolved Image and (b) Bi-Linear Estimate.  The PSNR values for (a) and 

(b) are 29.1dB and 28.7dB, respectively. 
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 The super-resolution image for the nine frame experiment appears in 
Figure 8, and it illustrates an improvement when compared to the four frame 
estimate shown in Figure 8.  As in the previous experiments, differences 
between the images are most noticeable in the regions surrounding the 
numbers, where the addition of the five frames into the super-resolution 
algorithm further attenuates the ringing and improves the definition of the 
numbers.  These improvements also increase the PSNR of the high-
resolution estimate, which increase from 29.1dB to 29.5dB after 
incorporating the extra five frames 
 

  

6. CONCLUSIONS 

In this chapter, the problem of recovering a high-resolution frame from a 
sequence of low-resolution and compressed images is considered.  Special 
attention is focused on the compression system and its effect on the recovery 
technique.  In a traditional resolution recovery problem, the low-resolution 
images contain aliased information from the original high-resolution frames.  
Sub-pixel shifts within the low-resolution sequence facilitate the recovery of 
spatial resolution from the aliased observations.  Unfortunately when the 

 

Figure 8. Result of the Non-Synthetic Experiment with Nine Frames.  The 
compression rate is 256 kbps, and the PSNR is 29.5dB. 
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low-resolution images are compressed, the amount of aliasing is decreased.  
This complicates the super-resolution problem and suggests that a model of 
the compression system be included in the recovery technique.  Several 
methods are explored in the chapter for incorporating the compression 
system into the recovery framework.  These techniques exploit the 
parameters in the compressed bit-stream and lead to a general solution 
approach to the problem of super-resolution from compressed video. 
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