See my Google Scholar profile
Propagación aproximada de intervalos de probabilidad en grafos de dependencias Universidad de Granada. Septiembre, 1999. (compressed postscript version) |
Rafael Cabañas de Paz, Alexandro Antonucci, Manuel Gómez-Olmedo, Andrés Cano (2017). Evaluating Interval-Valued Influence Diagrams. International Journal of Approximate Reasoning, 80: 393-411.
Rafael Cabañas de Paz, Andrés Cano, Manuel Gómez-Olmedo, A. Madsen (2016). Improvements to Variable Elimination and Symbolic Probabilistic Inference for Evaluating Influence Diagrams. International Journal of Approximate Reasoning, 70: 13-35.
Rafael Cabañas de Paz, Andrés Cano, Manuel Gómez-Olmedo (2016). Using binary trees for the evaluation of influence diagrams. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 24 (1): 59-89.
Andrés Cano, Manuel Gómez-Olmedo, C.B. Pérez-Ariza (2015). An extended approach to learning recursive probability trees from data. International Journal of Intelligent Systems, 30: 355-383.
Andrés Cano, Manuel Gómez-Olmedo, Thomas D. Nielsen (2014). Editorial: Special Issue on PGM-2012. International Journal of Approximate Reasoning, 55.
Andrés Cano, Manuel Gómez-Olmedo, Serafín Moral, Cora B. Pérez-Ariza, A. Salmerón (2013). Inference in Bayesian Networks with Recursive Probability Trees: Data Structure Definition and Operations. International Journal of Intelligent Systems, vol. 28: 623-647.
Andrés Cano, Manuel Gómez-Olmedo, A. Masegosa, Serafín Moral (2013). Locally Averaged Bayesian Dirichlet Metrics for Learning the Structure and the Parameters of Bayesian Networks. International Journal of Approximate Reasoning, vol. 54: 526-540.
Andrés Cano, Manuel Gómez-Olmedo, Serafín Moral, Cora B. Pérez-Ariza, Antonio Salmerón (2012). Learning recursive probability trees from probabilistic potentials. International Journal of Approximate Reasoning, vol. 53: 1367-1387.
Andrés Cano, Manuel Gómez-Olmedo, Cora B. Pérez-Ariza, Antonio Salmerón (2012). Fast factorisation of probabilistic potentials and its application to approximate inference in Bayesian networks. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, vol. 20: 223—243.
Andrés Cano, Manuel Gómez-Olmedo, Serafín Moral (2011). Approximate inference in Bayesian networks using binary probability trees. International Journal of Approximate Reasoning 52 (1): 49-62
Joaquín Abellán, Andrés Cano, Andrés R. Masegosa, Serafín Moral (2011). A memory efficient semi-Naive Bayes classifier with grouping of cases. Intelligent Data Analysis 15 (3): 299-318
Andrés Cano, M. Gomez-Olmedo, Andrés R. Masegosa, Serafín Moral (2011). A method for integrating expert knowledge when learning Bayesian Networks from data. IEEE Systems, Man and Cybernetics - Part B, vol 41(5): 1382-1394
Andrés Cano, Fabio G. Cozman, Thomas Lukasiewicz (2007). Reasoning with imprecise probabilities (editorial). International Journal of Approximate Reasoning, 44 (3): 197-199. (Abstract and fulltext)
Andrés Cano, Manuel Gómez, Serafín Moral, Joaquín Abellán (2007). Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks. International Journal of Approximate Reasoning. Volume 44(3): 261-280. (Abstract and fulltext)
Andrés Cano, Manuel Gómez, Serafín Moral (2006). A forward-backward Monte Carlo method for solving influence diagrams. International Journal of Approximate Reasoning, 42: 119-135. (Abstract and fulltext)
Andrés Cano, Serafín Moral, Antonio Salmerón (2003) Novel strategies to approximate probability trees in Penniless propagation. International Journal of Intelligence Systems, 18, 193-203. (Abstract) (Full text)
Andrés Cano, J.M. Fernández-Luna, Serafín Moral (2002) Computing intervals of probabilities with simulated annealing and probability trees. Journal of Applied Non-Classical Logics, 12(2): 151-171.
Andrés Cano, Serafín Moral, Antonio Salmerón (2002) Lazy evaluation in Penniless propagation over join trees. Networks, 39: 175-185. (Abstract) (Full text)
Andrés Cano, Serafín Moral, Antonio Salmerón (2002) Diferentes estrategias para aproximar árboles de probabilidad en propagación Penniless. Inteligencia Artificial. Revista Iberomericana de Inteligencia Artificial, 15: 10-18. (Full text)
Andrés Cano, Serafín Moral (2002) Strong Conditional Independence for Credal Sets. Annals of Mathematics and Artificial Intelligence ,35: 295-321. (Abstract) (Full text)
Andrés Cano, Serafín Moral (2002) Using probability trees to compute marginals with imprecise probabilities. International Journal of Approximate Reasoning, 29 (1): 1-46. (Abstract) (Full text)
Andrés Cano, Serafín Moral, Antonio Salmerón (2000) Penniless Propagation in Join Trees. International Journal of Intelligent Systems, 15: (11): 1027-1059. (abstract in this web) (Abstract) (Full text)
Antonio Salmerón, Andrés Cano, Serafín Moral (2000) Importance sampling in Bayesian networks using probability trees. Computational Statistics and Data Analysis, 34: 387-413. (abstract) (Abstract) (Full text)
|
|
|
Manuel Gómez, Andrés Cano. (2003) Applying numerical trees to evaluate asymmetric decision problems. Lectures Notes in Artificial Intelligence, Vol 2711: Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pag 196-207 (7th European Conference, ECSQARU 2003, Aalborg, Denmark, July 2003 Proceedings). (Thomas Dyhre Nielsen, Nevin Lianwen Zhang eds.), Springer-Verlag, (2003). ISSN: 0302-9743. ISBN: 3-540-40494-5. (Abstract) (Full text) |
Andrés Cano, Serafín Moral, Antonio Salmerón (2004) Algorithms for approximate probability propagation in Bayesian Networks. Studies in Fuzzines and Soft Computing: Advances in Bayesian Networks. Vol. 146, pag. 77-99 (José A. Gámez, Serafín Moral, Antonio Salmerón, eds). Springer-Verlag, (Berlin, 2004). ISSN: 1434-9922 ISBN: 3-540-20876-3 |
|
Andrés Cano, Javier
García Castellano, Andrés R. Masegosa, Serafín Moral,
(2005). Selective Gaussian naive Bayes model for
diffuse large B-cell lymphoma classification: Some
Improvements in Preprocessing and Variable Elimination.
Lectures Notes in
Artificial Intelligence, Vol 3571: Symbolic and
Quantitative
Approaches to Reasoning with Uncertainty, pag 908-920 (8th
European
Conference, ECSQARU 2005, Barcelona, Spain, July 2005
Proceedings).
(L. Godo Ed.), Springer-Verlag,
(2005). ISSN: 0302-9743 ISBN: 3-540-27326-3. (Abstract)
(Full
text) |
Andrés Cano, Javier
García Castellano, Andrés R. Masegosa, Serafín Moral,
(2005). Methods
to Determine the Brancking Attribute in Bayesian
Multinets. Lectures Notes in
Artificial Intelligence, Vol 3571: Symbolic and
Quantitative
Approaches to Reasoning with Uncertainty, pag 932-943 (8th
European
Conference, ECSQARU 2005, Barcelona, Spain, July 2005
Proceedings).
(L. Godo Ed.), Springer-Verlag,
(2005). ISSN: 0302-9743 ISBN: 3-540-27326-3. (Abstract)
(Full
text) |
|
|
|
|
|
SILVIA ACID CARRILLO; LUIS MIGUEL DE CAMPOS IBAÑEZ; ANDRÉS CANO UTRERA; JOSÉ ANTONIO GÁMEZ MARTÍN; MANUEL GÓMEZ OLMEDO; LUIS DANIEL HERNÁNDEZ MOLINERO; JUAN FRANCISCO HUETE GUADIX; PEDRO LARRAÑAGA MÚGICA; IRENE MARTINEZ MASEGOSA; SERAFÍN MORAL CALLEJÓN; JOSÉ MIGUEL PUERTA CALLEJÓN; FERNANDO RECHE LORITE; CARMELO RODRIGUEZ TORREBLANCA; RAFAEL RUMI RODRIGUEZ; JOSE DEL SAGRADO MARTINEZ; ANTONIO SALMERÓN CERDÁN; FRANCISCO JOSÉ SOLER FLORES (2002) Elvira: An Environment for Probabilistic Graphical Models. Proceedings of the first European Workshop on Probabilistic Graphical Models, pag 222-230 (PGM'02 Cuenca, November 2002) |
Andrés Cano, J.G. Castellano A.R. Masegosa and Serafín Moral. (2004) Application of a Selective Gaussian Naïve Bayes Model for Diffuse Large-B-Cell Lymphoma Classification Proceedings of the second European Workshop on Probabilistic Graphical Models, pag 33-40 (PGM'04, Leiden (Holland), November 2004) |
Andrés Cano, Manuel Gómez and Serafín Moral. (2004) A forward-backward Monte Carlo method for solving influence diagrams Proceedings of the second European Workshop on Probabilistic Graphical Models, pag 41-48 (PGM'04, Leiden (Holland), November 2004) |
|
|
|
F. J. G. Castellano, Serafín Moral and Andrés Cano. (2003). Árboles de Clasificación usando una Estimación Bayesiana. Actas de la X conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA'2003), (San Sebastián, noviembre 2003). |
|
|
|